NATURAL HISTORY OF CENTRAL ASIA
VOLUME IX

THE FRESH-WATER FISHES OF CHINA

CENTRAL ASIATIC EXPEDITIONS
THE FRESH-WATER FISHES OF CHINA
The Fresh-Water Fishes of China

BY

John Treadwell Nichols, A.B.

Curator of Recent Fishes
The American Museum of Natural History

With 143 Figures in the Text, 10 Colored Plates, and 1 Map

Natural History of Central Asia
Volume IX
Ruth Tyler, M.A., Editor

The American Museum of Natural History
F. Trubee Davison, President
New York
1943
PREFACE

The Asiatic Expeditions of the American Museum of Natural History have brought together general collections of fresh-water fishes from representative localities in China. "These make up what is probably the most nearly adequate representation of such fishes that has been assembled to date, and with its aid it is possible to obtain a fair idea of the fauna as a whole, which in the last analysis will probably be found to comprise some 500 forms. This supposes that even in the best known areas a few undescribed species still await discovery, and that close study of large series of specimens of various variable and difficult groups, from different parts of China, will lead to the recognition of a number of new forms well in excess of the number of which will doubtless be found to be merely nominal" (Nichols, in Andrews, R. C., 1932, Natural History of Central Asia, I, p. 597).

This is primarily a general report on the American Museum collections of Chinese fresh-water fishes. It also aims to be a comprehensive review of the fresh-water fishes of China proper, outlying territories such as Manchuria and Mongolia not being included. No attempt has been made to include marine species, or brackish-water species with marine affinities, though such may at times occur in fresh water. In so far as possible, all recent literature has been studied and carefully considered to, and including, the year 1934 (see beyond).

The last few years before the present war witnessed much active interest in systematic ichthyology in China; in stimulating this interest the series of preliminary papers issued by the American Museum can presumably claim a share. We now aim to acquaint the several workers in this field more fully with the extent of our collections and the conclusions to which they lead. It is also hoped that the present volume will serve as a "handbook" to the subject.

To review briefly the sources of the principal material examined in preparing this report, the first small collections of Chinese fresh-water fishes to reach the American Museum were obtained from the Reverend John Graham in Yunnan, and by Doctor H. R. Caldwell in Fukien, and reported on in 1918. Doctor Caldwell later sent in more extensive collections from the neighborhood of Yenping.

In the winter of 1921-1922, Mr. Clifford H. Pope spent three months at Huping, Tungting Lake, Hunan, and nine months in 1922 and 1923 near Nodoa on
PREFACE

Hainan Island, making comprehensive collections of the fish faunas of central and of southern China at these localities, respectively. This material is the most extensive that we have had for study. At other times Mr. Pope obtained lesser collections from various localities in Chihli, Suixian in Anhwei, Shansi, Shantung, and Fukien. To him belongs the credit for assembling a major part of our material. The material from Chihli and Anhwei was reported on by Mr. Henry W. Fowler of the Academy of Natural Sciences of Philadelphia in 1924, in a paper which was of great service to the writer when initiating his study of the collections as a whole.

Other members of the Asiatic Expeditions collected a few fishes incidentally, notably Doctor Walter Granger in western China; some from the vicinity of Canton were received through the courtesy of Doctor William E. Hoffmann of Lingnan University.

Preliminary papers based on these collections include a report on those from Chihli and Anhwei by Fowler (1924), on the fishes of Hainan by Nichols and Pope (1927), a provisional check-list of the fresh-water fishes of China (1928), and a series of American Museum Novitates articles describing new forms by Nichols (1925–1931, see bibliography).

Acknowledgment should be made of courtesies and assistance received by Mr. Pope from Mr. George Bachman and other members of the faculty of Huping College, near Yochow, Hunan; the late Reverend William J. Leverett and associates of the American Presbyterian Mission at Nodao, Hainan, as well as numerous other persons and institutions. The color plates are from sketches made under Mr. Pope’s direction in the field by Mr. Wang Hao-T’ing. With the exception of one taken from “The Fishes of Hainan” (Nichols and Pope, 1927), they are reproduced here for the first time. The text figures have been taken from preliminary papers; a few are reproduced with Mr. Fowler’s permission from his report. The outline drawings from “The Fishes of Hainan” were executed by Miss Olive Otis; most of the others, by Mrs. Louise Nash and Mrs. Helen Ziska.

The literature references, both in the text and the bibliography, have been painstakingly revised by Miss Ruth Tyler, the editor, and she should have credit for such completeness, uniformity, and freedom from error as they show.

A consistent usage in Chinese place names could not be attempted in this volume. The spelling of the authors cited has in many cases been retained. Hence the reader will find Chihli as well as the more recent equivalent, Hopei; Cochinchina as well as French Indo-China, Korea and Chosen, Manchuria and Manchukuo, Peiping and Peking. The map of China showing the location of places visited by members of the Asiatic Expeditions, 1921–1930 (Andrews, 1932, Natural History of Central Asia, I), and the map of later date inserted in this volume will prove useful for an orientation of Chinese provincial areas. Data on a number of the localities
mentioned and the collecting stations will be found in the reptile volume of this series (Pope, 1935, Natural History of Central Asia, X, pp. 491–503).

The main portion of the manuscript for this volume was closed in February, 1935. Delay in securing means for publication made it advisable to examine numerous papers which had appeared in 1935 and 1936, very active years in Chinese ichthyology, and to embody taxonomic changes and additions therefrom in a Supplement, the manuscript for which was closed in May, 1938. Further unexpected delays occurred, and now that the volume is finally in the hands of the printer it seems best to let it stand as of 1938, rather than to attempt to introduce the small amount of additional material possible, which, though of interest, would give a false impression of up-to-dateness. As of 1938, it closes the pre-war period of Chinese ichthyology, of which it is a part.

John Treadwell Nichols

The American Museum of Natural History
New York, N. Y.
July, 1943
CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preface</td>
<td>v</td>
</tr>
<tr>
<td>Text Figures</td>
<td>xxxi</td>
</tr>
<tr>
<td>Plates</td>
<td>xxxv</td>
</tr>
</tbody>
</table>

CHAPTER I.—INTRODUCTION

- Faunal Discussion ... 1
- Orientation of the Chinese Fish Fauna 2
- Speculation on the History of the Ostariophysi 6
- Tables of Adaptations of the Carp-like Fishes 10
- Plan of the Present Work 11
- Doubtful Species References 11

CHAPTER II.—SYSTEMATIC ACCOUNT OF THE FRESH-WATER FISHES OF CHINA

- Family Acipenseridae. Sturgeons 15
 - Genus *Acipenser* Linnaeus 15
 - Key to Chinese *Acipenser* 15
 - *Acipenser sinensis* Gray 16
 - *Acipenser dabryanus* Duménil 16
 - Genus *Huso* Brandt and Ratzeburg 16
 - *Huso dauricus* (Georgi) 16
- Family Polyodontidae. Paddle Fishes 17
 - Genus *Psephurus* Günther 17
 - *Psephurus gladius* (Martens) 17
- Family Elopidae. Tarpons 17
 - Genus *Megalops* Lacépède 17
 - *Megalops cyprinoides* (Broussonet) 18
- Family Clupeidae. Herrings 18
 - Genus *Hilsa* Regan 18
 - *Hilsa reevesii* (Richardson) 18
- Family Engraulidae. Anchovies 19
 - Genus *Coilia* Gray 19
 - Key to Chinese Fresh-Water *Coilia* 19
 - *Coilia nasus* Temminck and Schlegel 19
 - *Coilia brachygnathus* Kreyenberg and Pappenheim 19
Family Salmonidae. Salmons...
Genus *Plecoglossus* Temminck and Schlegel

Plecoglossus altivelis Temminck and Schlegel...
Genus *Brachymystax* Günther

Brachymystax lenok (Pallas)...
Genus *Hucho* Günther

Hucho bleekeri Kimura...
Family Salangidae. Salangids...
Genus *Salangichthys* Bleeker

Key to Chinese *Salangichthys*...
Subgenus *Protosalanx* Regan

Salangichthys hyalocranius (Abbott)...
Subgenus *Paraprotosalanx* Fang

Salangichthys anderssoni (Rendahl)...
Genus *Salanx* Cuvier...
Key to Chinese *Salanx*...
Subgenus *Hemisalanx* Regan

Salanx progynatus (Regan)...
Subgenus *Leucosoma* Gray

Salanx chinensis (Osbeck)...
Subgenus *Salanx* Cuvier

Salanx cuvieri Cuvier and Valenciennes...
Salanx brachyrostralis Fang...
Subgenus *Parasalanx* Regan

Salanx gracillimus (Regan)...
Salanx anniate (van Dam)...
Salanx acuticeps Regan...
Salanx longianalis (Regan)...
Salanx augusticeps (Regan)...
Family Monopteridae. Symbranch Eels...
Genus *Fluta* Bloch and Schneider...
Key to Chinese *Fluta alba*...
Fluta alba xanthognatha (Richardson)...
Fluta alba cinerea (Richardson)...
Family Mastacembelidae. Spiny Eels...
Genus *Mastacembelus* Scopoli...
Key to Chinese *Mastacembelus*...
Mastacembelus armatus undulatus McClelland...
Mastacembelus sinensis (Bleeker)...
Family Anguillidae. True Eels...
Genus *Anguilla* Shaw...
Key to Chinese *Anguilla*...
Anguilla sinensis McClelland...
Anguilla japonica Temminck and Schlegel...
Anguilla mauritiana Bennett...
Family Siluridae. Catfishes...
<table>
<thead>
<tr>
<th>Genus</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parasilurus Bleeker</td>
<td>33</td>
</tr>
<tr>
<td>Key to Chinese Parasilurus</td>
<td>33</td>
</tr>
<tr>
<td>Parasilurus cincus (Dabry de Thiersant)</td>
<td>34</td>
</tr>
<tr>
<td>Parasilurus mento (Regan)</td>
<td>34</td>
</tr>
<tr>
<td>Parasilurus grahami (Regan)</td>
<td>34</td>
</tr>
<tr>
<td>Parasilurus asotus asotus (Linnaeus)</td>
<td>34</td>
</tr>
<tr>
<td>Parasilurus asotus bedfordi (Regan)</td>
<td>35</td>
</tr>
<tr>
<td>Parasilurus asotus longus Wu</td>
<td>35</td>
</tr>
<tr>
<td>Parasilurus cochinchinensis (Cuvier and Valenciennes)</td>
<td>35</td>
</tr>
<tr>
<td>Parasilurus anomalus (Herre)</td>
<td>35</td>
</tr>
<tr>
<td>Silurodon Kner</td>
<td>36</td>
</tr>
<tr>
<td>Silurodon hexanema Kner</td>
<td>36</td>
</tr>
<tr>
<td>Aoria Jordan</td>
<td>36</td>
</tr>
<tr>
<td>Key to Chinese Aoria</td>
<td>36</td>
</tr>
<tr>
<td>Aoria argentivittata (Regan)</td>
<td>37</td>
</tr>
<tr>
<td>Aoria henryi Herre</td>
<td>37</td>
</tr>
<tr>
<td>Aoria scethala (Sykes)</td>
<td>37</td>
</tr>
<tr>
<td>Aoria pulcher (Chaudhuri)</td>
<td>37</td>
</tr>
<tr>
<td>Cranoglanis Peters</td>
<td>37</td>
</tr>
<tr>
<td>Key to Chinese Cranoglanis</td>
<td>38</td>
</tr>
<tr>
<td>Cranoglanis sinensis Peters</td>
<td>38</td>
</tr>
<tr>
<td>Cranoglanis multiradiatus (Koller)</td>
<td>38</td>
</tr>
<tr>
<td>Pseudobagrus Bleeker</td>
<td>38</td>
</tr>
<tr>
<td>Key to Chinese Pseudobagrus</td>
<td>39</td>
</tr>
<tr>
<td>Pseudobagrus vachelli (Richardson)</td>
<td>39</td>
</tr>
<tr>
<td>Pseudobagrus fangi Wu</td>
<td>40</td>
</tr>
<tr>
<td>Pseudobagrus eupogon Boulenger</td>
<td>40</td>
</tr>
<tr>
<td>Pseudobagrus ondon Shaw</td>
<td>40</td>
</tr>
<tr>
<td>Pseudobagrus fulvidraco (Richardson)</td>
<td>40</td>
</tr>
<tr>
<td>Pseudobagrus intermedius Nichols and Pope</td>
<td>41</td>
</tr>
<tr>
<td>Pseudobagrus nitidus Sauvage and Dabry de Thiersant</td>
<td>41</td>
</tr>
<tr>
<td>Pseudobagrus virgatus (Oshima)</td>
<td>41</td>
</tr>
<tr>
<td>Leiocassis Bleeker</td>
<td>42</td>
</tr>
<tr>
<td>Key to Chinese Leiocassis</td>
<td>42</td>
</tr>
<tr>
<td>Subgenus Rhinobagrus Bleeker</td>
<td>43</td>
</tr>
<tr>
<td>Leiocassis dumerili (Bleeker)</td>
<td>43</td>
</tr>
<tr>
<td>Leiocassis hainanensis Tchang</td>
<td>44</td>
</tr>
<tr>
<td>Leiocassis crassirostris Regan</td>
<td>44</td>
</tr>
<tr>
<td>Leiocassis crassilabris crassilabris Günther</td>
<td>44</td>
</tr>
<tr>
<td>Leiocassis crassilabris macrops Nichols</td>
<td>45</td>
</tr>
<tr>
<td>Leiocassis microps Rendahl</td>
<td>45</td>
</tr>
<tr>
<td>Leiocassis brevicaudatus Wu</td>
<td>45</td>
</tr>
<tr>
<td>Leiocassis tensifurcatus Nichols</td>
<td>45</td>
</tr>
<tr>
<td>Subgenus Dermocassis Nichols</td>
<td>46</td>
</tr>
<tr>
<td>Leiocassis medianalis (Regan)</td>
<td>46</td>
</tr>
<tr>
<td>Leiocassis emarginatus Regan</td>
<td>46</td>
</tr>
</tbody>
</table>
CONTENTS

Leiocassis kaifenensis Tchang 46
Leiocassis pratti (Günther) .. 46
Leiocassis similis Nichols .. 47
Leiocassis hirsutus Herre .. 47
Leiocassis albomarginatus Rendahl 47
Leiocassis taeniatus (Günther) 47
Leiocassis truncatus Regan 48
Leiocassis tenuis (Günther) 48
Leiocassis analis Nichols .. 48
Leiocassis lui Tchang and Shih 48
Leiocassis ussuriensis (Dybowski) 49
Leiocassis taphrophilus (Sauvage and Dabry de Thiersant) 49

Genus Hemibagrus Bleeker 49
 Key to Chinese Hemibagrus 50
 Subgenus Macropterobagrus Nichols 50
 Hemibagrus macropterus Bleeker 50
 Hemibagrus elongatus (Günther) 50
Genus Liobagrus Hilgendorf 51
 Key to Chinese Liobagrus 51
 Liobagrus anguillicauda Nichols 51
 Liobagrus styani Regan .. 52
 Liobagrus marginatus (Günther) 52
 Liobagrus nigricauda Regan 52
Genus Glyptosternon McClelland 52
 Key to Chinese Glyptosternon 53
 Glyptosternon conirostre Steindachner 53
 Glyptosternon sinense Regan 53
 Glyptosternon pallozonum Lin 54
 Glyptosternon fokiensis Rendahl 54
 Glyptosternon hainanensis Nichols and Pope 54
 Glyptosternon yunnanensis Tchang 55
Genus Erethistes Müller and Trotschel 55
 Erethistes asperus (McClelland) 55
Genus Exostoma Blyth .. 55
 Key to Chinese Exostoma 56
 Subgenus Euchiloglanis Regan 56
 Exostoma davidi (Sauvage) 56
 Exostoma myzostoma (Norman) 56
 Exostoma kishinouyei (Kimura) 56
 Subgenus Glaridoglanis Norman 57
 Exostoma andersonii Day .. 57
Genus Clarias Scopoli .. 57
 Key to Chinese Clarias ... 57
 Clarias fuscus (Lacépède) 57
 Clarias abbreviatus Cuvier and Valenciennes 58
Family Catostomidae. Suckers 58
<p>| Genus Myxocyprinus Gill | ... | 58 |
| Key to Chinese Myxocyprinus asiaticus | ... | 59 |
| Myxocyprinus asiaticus asiaticus (Bleeker) | ... | 59 |
| Myxocyprinus asiaticus chinensis (Dabry de Thiersant) | ... | 60 |
| Myxocyprinus asiaticus fukiensis Nichols | ... | 60 |
| Family Cyprinidae. Carps | ... | 61 |
| Genus Cyprinus Linnaeus | ... | 61 |
| Key to Chinese Cyprinus | ... | 61 |
| Cyprinus carpio Linnaeus | ... | 61 |
| Cyprinus fossicola Richardson | ... | 62 |
| Cyprinus micristius Regan | ... | 63 |
| Cyprinus pellegrini Tchang | ... | 63 |
| Cyprinus rabaudi Tchang | ... | 63 |
| Genus Carassius Nilsson | ... | 63 |
| Key to Chinese Carassius | ... | 64 |
| Carassius carassius (Linnaeus) | ... | 64 |
| Carassius auratus (Linnaeus) | ... | 64 |
| Genus Carassoides Oshima | ... | 65 |
| Carassoides cantonensis (Heincke) | ... | 65 |
| Genus Procypris Lin | ... | 65 |
| Procypris merus Lin | ... | 66 |
| Genus Cirrhinus Oken | ... | 66 |
| Cirrhinus chinensis Günther | ... | 66 |
| Genus Osteochilus Günther | ... | 66 |
| Osteochilus salsburyi Nichols and Pope | ... | 67 |
| Genus Barbus Cuvier | ... | 67 |
| Key to Chinese Barbus | ... | 68 |
| Subgenus Barbus Cuvier | ... | 69 |
| Barbus pingi (Tchang) | ... | 69 |
| Barbus regani Tchang | ... | 69 |
| Barbus grahami Regan | ... | 70 |
| Barbus normani Tchang | ... | 70 |
| Barbus brevifilis Peters | ... | 70 |
| Barbus zonatus (Lin) | ... | 70 |
| Barbus yunnanensis Regan | ... | 70 |
| Barbus szechwanensis Tchang | ... | 71 |
| Subgenus Barbodes Bleeker | ... | 71 |
| Barbus deauratus Cuvier and Valenciennes | ... | 71 |
| Barbus cogginii Chaudhuri | ... | 71 |
| Barbus gregorii Norman | ... | 71 |
| Barbus margarianus Anderson | ... | 71 |
| Barbus simus Sauvage and Dabry de Thiersant | ... | 71 |
| Subgenus Spinibarbus Oshima | ... | 72 |
| Barbus caldwelli Nichols | ... | 72 |
| Barbus mandarinus (Rendahl) | ... | 72 |
| Barbus nigrodorsalis (Oshima) | ... | 73 |</p>
<table>
<thead>
<tr>
<th>Subgenus</th>
<th>Key to Chinese</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Puntius Hamilton-Buchanan</td>
<td>Barbus sinensis</td>
<td>73</td>
</tr>
<tr>
<td></td>
<td>Barbus denticidatus (Oshima)</td>
<td>74</td>
</tr>
<tr>
<td></td>
<td>Barbus sinensis (Bleeker)</td>
<td>74</td>
</tr>
<tr>
<td>Lissoclychthys Oshima</td>
<td>Barbus semijasciolatus Günther</td>
<td>74</td>
</tr>
<tr>
<td></td>
<td>Barbus Snyderi (Oshima)</td>
<td>75</td>
</tr>
<tr>
<td>Lissoclychthys Oshima</td>
<td>Barbus matsudai (Oshima)</td>
<td>76</td>
</tr>
<tr>
<td></td>
<td>Barbus parallens Nichols</td>
<td>76</td>
</tr>
<tr>
<td></td>
<td>Barbus lissoclychthys Nichols</td>
<td>76</td>
</tr>
<tr>
<td></td>
<td>Barbus hemispinus Nichols</td>
<td>77</td>
</tr>
<tr>
<td></td>
<td>Barbus barbodon Nichols and Pope</td>
<td>77</td>
</tr>
<tr>
<td></td>
<td>Barbus rendahli Lin</td>
<td>77</td>
</tr>
<tr>
<td>Ptintius Hamilton-Buchanan</td>
<td>Barbus semijasciolatus</td>
<td>77</td>
</tr>
<tr>
<td></td>
<td>Barbus Snyderi (Oshima)</td>
<td>77</td>
</tr>
<tr>
<td></td>
<td>Barbus matsudai (Oshima)</td>
<td>78</td>
</tr>
<tr>
<td>Ptintius Hamilton-Buchanan</td>
<td>Barbus parallens Nichols</td>
<td>78</td>
</tr>
<tr>
<td>Ptintius Hamilton-Buchanan</td>
<td>Barbus lissoclychthys Nichols</td>
<td>78</td>
</tr>
<tr>
<td>Ptintius Hamilton-Buchanan</td>
<td>Barbus hemispinus Nichols</td>
<td>78</td>
</tr>
<tr>
<td>Ptintius Hamilton-Buchanan</td>
<td>Barbus barbodon Nichols and Pope</td>
<td>78</td>
</tr>
<tr>
<td>Ptintius Hamilton-Buchanan</td>
<td>Barbus rendahli Lin</td>
<td>78</td>
</tr>
<tr>
<td>Cyclocheilichthys Bleeker</td>
<td>Cydocheilichthys iridescens Nichols and Pope</td>
<td>78</td>
</tr>
<tr>
<td></td>
<td>Cydocheilichthys sinensis* Bleeker</td>
<td>78</td>
</tr>
<tr>
<td>Cyclocheilichthys Bleeker</td>
<td>Crossocheilus monticola Günther</td>
<td>79</td>
</tr>
<tr>
<td></td>
<td>Crossocheilus styani Boulenger</td>
<td>79</td>
</tr>
<tr>
<td>Cyclocheilichthys Bleeker</td>
<td>Crossocheilus</td>
<td>80</td>
</tr>
<tr>
<td></td>
<td>Crossocheilus</td>
<td>80</td>
</tr>
<tr>
<td></td>
<td>Sinibarbus Sauvage</td>
<td>80</td>
</tr>
<tr>
<td></td>
<td>Sinibarbus vittatus Sauvage</td>
<td>80</td>
</tr>
<tr>
<td>Cyclocheilichthys Bleeker</td>
<td>Crossocheilus</td>
<td>80</td>
</tr>
<tr>
<td></td>
<td>Crossocheilus</td>
<td>80</td>
</tr>
<tr>
<td>Cyclocheilichthys Bleeker</td>
<td>Crossocheilus</td>
<td>80</td>
</tr>
<tr>
<td></td>
<td>Crossocheilus</td>
<td>80</td>
</tr>
<tr>
<td>Cyclocheilichthys Bleeker</td>
<td>Crossocheilus</td>
<td>80</td>
</tr>
<tr>
<td></td>
<td>Crossocheilus</td>
<td>80</td>
</tr>
<tr>
<td>Cyclocheilichthys Bleeker</td>
<td>Crossocheilus</td>
<td>80</td>
</tr>
<tr>
<td></td>
<td>Crossocheilus</td>
<td>80</td>
</tr>
<tr>
<td>Cyclocheilichthys Bleeker</td>
<td>Crossocheilus</td>
<td>80</td>
</tr>
<tr>
<td></td>
<td>Crossocheilus</td>
<td>80</td>
</tr>
<tr>
<td>Cyclocheilichthys Bleeker</td>
<td>Crossocheilus</td>
<td>80</td>
</tr>
<tr>
<td></td>
<td>Crossocheilus</td>
<td>80</td>
</tr>
<tr>
<td>Cyclocheilichthys Bleeker</td>
<td>Crossocheilus</td>
<td>80</td>
</tr>
<tr>
<td></td>
<td>Crossocheilus</td>
<td>80</td>
</tr>
<tr>
<td>Cyclocheilichthys Bleeker</td>
<td>Crossocheilus</td>
<td>80</td>
</tr>
<tr>
<td></td>
<td>Crossocheilus</td>
<td>80</td>
</tr>
<tr>
<td>Cyclocheilichthys Bleeker</td>
<td>Crossocheilus</td>
<td>80</td>
</tr>
<tr>
<td></td>
<td>Crossocheilus</td>
<td>80</td>
</tr>
<tr>
<td>Cyclocheilichthys Bleeker</td>
<td>Crossocheilus</td>
<td>80</td>
</tr>
<tr>
<td></td>
<td>Crossocheilus</td>
<td>80</td>
</tr>
<tr>
<td>Cyclocheilichthys Bleeker</td>
<td>Crossocheilus</td>
<td>80</td>
</tr>
<tr>
<td></td>
<td>Crossocheilus</td>
<td>80</td>
</tr>
<tr>
<td>Cyclocheilichthys Bleeker</td>
<td>Crossocheilus</td>
<td>80</td>
</tr>
<tr>
<td></td>
<td>Crossocheilus</td>
<td>80</td>
</tr>
<tr>
<td>Cyclocheilichthys Bleeker</td>
<td>Crossocheilus</td>
<td>80</td>
</tr>
<tr>
<td></td>
<td>Crossocheilus</td>
<td>80</td>
</tr>
<tr>
<td>Cyclocheilichthys Bleeker</td>
<td>Crossocheilus</td>
<td>80</td>
</tr>
<tr>
<td></td>
<td>Crossocheilus</td>
<td>80</td>
</tr>
<tr>
<td>Cyclocheilichthys Bleeker</td>
<td>Crossocheilus</td>
<td>80</td>
</tr>
<tr>
<td></td>
<td>Crossocheilus</td>
<td>80</td>
</tr>
<tr>
<td>Cyclocheilichthys Bleeker</td>
<td>Crossocheilus</td>
<td>80</td>
</tr>
<tr>
<td></td>
<td>Crossocheilus</td>
<td>80</td>
</tr>
<tr>
<td>Cyclocheilichthys Bleeker</td>
<td>Crossocheilus</td>
<td>80</td>
</tr>
<tr>
<td></td>
<td>Crossocheilus</td>
<td>80</td>
</tr>
<tr>
<td>Cyclocheilichthys Bleeker</td>
<td>Crossocheilus</td>
<td>80</td>
</tr>
<tr>
<td></td>
<td>Crossocheilus</td>
<td>80</td>
</tr>
<tr>
<td>Cyclocheilichthys Bleeker</td>
<td>Crossocheilus</td>
<td>80</td>
</tr>
<tr>
<td></td>
<td>Crossocheilus</td>
<td>80</td>
</tr>
<tr>
<td>Cyclocheilichthys Bleeker</td>
<td>Crossocheilus</td>
<td>80</td>
</tr>
<tr>
<td></td>
<td>Crossocheilus</td>
<td>80</td>
</tr>
<tr>
<td>Cyclocheilichthys Bleeker</td>
<td>Crossocheilus</td>
<td>80</td>
</tr>
<tr>
<td></td>
<td>Crossocheilus</td>
<td>80</td>
</tr>
<tr>
<td>Cyclocheilichthys Bleeker</td>
<td>Crossocheilus</td>
<td>80</td>
</tr>
<tr>
<td></td>
<td>Crossocheilus</td>
<td>80</td>
</tr>
<tr>
<td>Cyclocheilichthys Bleeker</td>
<td>Crossocheilus</td>
<td>80</td>
</tr>
<tr>
<td></td>
<td>Crossocheilus</td>
<td>80</td>
</tr>
</tbody>
</table>
| *Cyclocheilichthys* Bleeker | *Crossochei...
Leuciscus waleckii waleckii (Dybowski) .. 85
Leuciscus waleckii sinensis (Rendahl) ... 85
Genus Phoxinus Rafinesque ... 86
Key to Chinese Phoxinus lagowskii ... 86
Phoxinus lagowskii variegatus (Günther) ... 86
Phoxinus lagowskii oxycephalus (Sauvage and Dabry de Thiersant) 86
Genus Aspius Agassiz .. 87
Aspius spilurus Günther .. 87
Genus Elopichthys Bleeker ... 87
Elopichthys bambusa (Richardson) .. 87
Genus Mylopharyngodon Peters .. 89
Mylopharyngodon aethiops (Basilewski) ... 89
Genus Ctenopharyngodon Steindachner .. 90
Ctenopharyngodon idella (Cuvier and Valenciennes) 90
Genus Squaliobarbus Günther ... 90
Key to Chinese Squaliobarbus .. 91
Squaliobarbus curriculus (Richardson) .. 91
Squaliobarbus panwingi Lin .. 91
Genus Ochetobius Günther ... 91
Ochetobius elongatus (Kner) .. 92
Genus Barilius Hamilton-Buchanan .. 92
Barilius interrupta Day ... 92
Genus Atrilinea Chu ... 93
Atrilinea chenchwei (Chu) .. 93
Genus Zacco Jordan and Evermann ... 93
Key to Chinese Zacco ... 94
Zacco asperus Nichols and Pope ... 94
Zacco chengtui Kimura .. 94
Zacco macrophthalmus Kimura .. 95
Zacco acanthogenys (Boulenger) ... 95
Zacco platypus (Temminck and Schlegel) ... 95
Genus Opsariichthys Bleeker ... 96
Key to Chinese Opsariichthys ... 96
Opsariichthys uncirostris chekiannensis Shaw .. 97
Opsariichthys uncirostris bidens Günther .. 97
Opsariichthys uncirostris hainanensis Nichols and Pope 97
Opsariichthys minutus Nichols ... 98
Genus Tanichthys Lin .. 98
Tanichthys albonubes Lin ... 99
Genus Rasbora Bleeker ... 99
Key to Chinese Rasbora .. 99
Rasbora cephalotaenia steineri Nichols and Pope ... 99
Rasbora allos Lin .. 100
Genus Pseudorasbora Bleeker .. 100
Key to Chinese Pseudorasbora ... 100
Pseudorasbora parva altipinna Nichols .. 101
CONTENTS

Pseudorasbora parva depressirostris Nichols .. 101
Pseudorasbora parva parvula Nichols .. 102
Pseudorasbora parva tenuis Nichols .. 103
Pseudorasbora parva fowleri Nichols .. 103
Pseudorasbora parva monstrosa Nichols ... 104

Genus Luciobrama Bleeker
Luciobrama typus Bleeker .. 105

Genus Semilabeo Peters
Semilabeo notabilis Peters .. 106

Genus Ptychidio Myers
Ptychidio jordani Myers .. 107

Genus Labeo Cuvier
Key to Chinese Labeo
Labeo yunnanensis Chaudhuri .. 108
Labeo decorus Peters .. 108
Labeo jordani Oshima .. 108
Labeo melanostigma (Fowler and Bean) .. 108

Genus Tylognathus Heckel
Tylognathus davidis Sauvage ... 109

Genus Paratylognathus Sauvage
Paratylognathus davidis Sauvage .. 110

Genus Pseudogyrinocheilus Fang
Pseudogyrinocheilus prochilus (Sauvage and Dabry de Thiersant) 110

Genus Garra Hamilton-Buchanan
Key to Chinese Garra
Subgenus Garra Hamilton-Buchanan
Garra yunnanensis (Regan) ... 111
Garra orientalis Nichols ... 111
Garra rhynchota Koller ... 111

Subgenus Ageneiogarra Garman
Garra pingi (Tchang) .. 112
Garra imberba Garman ... 112
Garra imberbis (Vinciguerra) .. 113

Genus Discogobio Lin
Discogobio tetrabarbus Lin .. 113

Genus Varicorhinus Rüppell
Key to Chinese Varicorhinus
Subgenus Alti gena Lin
Varicorhinus brevis Lin .. 114
Varicorhinus discognathoides Nichols and Pope ... 115
Varicorhinus pogonijer Lin ... 115

Subgenus Varicorhinus Rüppell
Varicorhinus kreyenbergii (Regan) ... 115
Varicorhinus macrolepis (Bleeker) .. 116
Varicorhinus barbatus (Lin) ... 116
Varicorhinus tampusuiensis (Oshima) .. 116
<table>
<thead>
<tr>
<th>CONTENTS</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Varicorhinus robustus Nichols</td>
<td>116</td>
</tr>
<tr>
<td>Varicorhinus shansiensis Nichols</td>
<td>117</td>
</tr>
<tr>
<td>Varicorhinus mutabilis (Lin)</td>
<td>117</td>
</tr>
<tr>
<td>Subgenus Rectoris Lin</td>
<td>117</td>
</tr>
<tr>
<td>Varicorhinus posehensis (Lin)</td>
<td>117</td>
</tr>
<tr>
<td>Subgenus Sinilabeo Rendahl</td>
<td>117</td>
</tr>
<tr>
<td>Varicorhinus tungting Nichols</td>
<td>118</td>
</tr>
<tr>
<td>Genus Onychostoma Günther</td>
<td>118</td>
</tr>
<tr>
<td>Key to Chinese Onychostoma</td>
<td>119</td>
</tr>
<tr>
<td>Onychostoma laticeps laticeps Günther</td>
<td>119</td>
</tr>
<tr>
<td>Onychostoma laticeps fontouensis Tchang</td>
<td>119</td>
</tr>
<tr>
<td>Onychostoma gerlachi (Peters)</td>
<td>119</td>
</tr>
<tr>
<td>Onychostoma leptura (Boulenger)</td>
<td>119</td>
</tr>
<tr>
<td>Genus Xenocypris Günther</td>
<td>120</td>
</tr>
<tr>
<td>Key to Chinese Xenocypris</td>
<td>120</td>
</tr>
<tr>
<td>Subgenus Xenocypris Günther</td>
<td>121</td>
</tr>
<tr>
<td>Xenocypris argentea Günther</td>
<td>121</td>
</tr>
<tr>
<td>Xenocypris davidii davidii Bleeker</td>
<td>121</td>
</tr>
<tr>
<td>Xenocypris davidii lampertii Popta</td>
<td>121</td>
</tr>
<tr>
<td>Xenocypris davidii insularis Nichols and Pope</td>
<td>122</td>
</tr>
<tr>
<td>Xenocypris macrolepis Bleeker</td>
<td>122</td>
</tr>
<tr>
<td>Xenocypris jangi Tchang</td>
<td>122</td>
</tr>
<tr>
<td>Xenocypris yunnanensis Nichols</td>
<td>123</td>
</tr>
<tr>
<td>Xenocypris suifuensis Kimura</td>
<td>123</td>
</tr>
<tr>
<td>Subgenus Plagiognathops Berg</td>
<td>123</td>
</tr>
<tr>
<td>Xenocypris microlepis Bleeker</td>
<td>123</td>
</tr>
<tr>
<td>Subgenus Distoechodon Peters</td>
<td>124</td>
</tr>
<tr>
<td>Xenocypris tumirostris (Peters)</td>
<td>124</td>
</tr>
<tr>
<td>Xenocypris compressus Nichols</td>
<td>124</td>
</tr>
<tr>
<td>Genus Acanthobrama Heckel</td>
<td>124</td>
</tr>
<tr>
<td>Key to Chinese Acanthobrama</td>
<td>125</td>
</tr>
<tr>
<td>Acanthobrama dumerili Bleeker</td>
<td>125</td>
</tr>
<tr>
<td>Acanthobrama simoni Bleeker</td>
<td>125</td>
</tr>
<tr>
<td>Genus Culticula Abbott</td>
<td>125</td>
</tr>
<tr>
<td>Key to Chinese Culticula</td>
<td>125</td>
</tr>
<tr>
<td>Culticula emmelas Abbott</td>
<td>125</td>
</tr>
<tr>
<td>Culticula tchangi Shaw</td>
<td>126</td>
</tr>
<tr>
<td>Genus Yaoshanicus Lin</td>
<td>126</td>
</tr>
<tr>
<td>Key to Chinese Yaoshanicus</td>
<td>126</td>
</tr>
<tr>
<td>Yaoshanicus normalis (Nichols and Pope)</td>
<td>126</td>
</tr>
<tr>
<td>Yaoshanicus arcus Lin</td>
<td>127</td>
</tr>
<tr>
<td>Genus Aphyocypris Günther</td>
<td>127</td>
</tr>
<tr>
<td>Key to Chinese Aphyocypris</td>
<td>127</td>
</tr>
<tr>
<td>Aphyocypris chinensis chinensis Günther</td>
<td>127</td>
</tr>
<tr>
<td>Aphyocypris chinensis shantung Nichols</td>
<td>128</td>
</tr>
<tr>
<td>Aphyocypris agilis (Nichols)</td>
<td>128</td>
</tr>
</tbody>
</table>
CONTENTS

Aphyocypris kikuchii (Oshima) 129
Genus Hypophthalmichthys Bleeker 129
Key to Chinese Hypophthalmichthys 129
Hypophthalmichthys molitrix (Cuvier and Valenciennes) 129
Hypophthalmichthys nobilis (Richardson) 130
Genus Rasborinus Oshima 130
Key to Chinese Rasborinus takakii 130
Rasborinus takakii fukiensis Nichols 131
Rasborinus takakii hainanensis Nichols and Pope 131
Genus Hemiculterella Warbachowski 132
Key to Chinese Hemiculterella 132
Hemiculterella sauagei Warbachowski 132
Hemiculterella eigenmanni (Jordan and Metz) 132
Hemiculterella tsinanensis (Mori) 132
Hemiculterella engraulis Nichols 133
Hemiculterella setchuanensis (Tchang) 133
Genus Hemiculter Bleeker 133
Key to Chinese Hemiculter 134
Subgenus Hemiculter Bleeker 134
Hemiculter leuciscus (Basilewski) 134
Hemiculter schrencki schrencki Warbachowski 134
Hemiculter schrencki shibatae Mori 135
Hemiculter kneri Warbachowski 135
Hemiculter clupeoides Nichols 135
Subgenus Pseudohemiculter Nichols and Pope 136
Hemiculter hainanensis Nichols and Pope 136
Hemiculter dispar dispar Peters 136
Hemiculter dispar huananensis Tchang 137
Subgenus Hainania Koller 137
Hemiculter serrata (Koller) 137
Genus Toxabramis Günther 137
Key to Chinese Toxabramis 138
Toxabramis swinhonis Günther 138
Toxabramis argentifer Abbott 138
Toxabramis hoffmanni Lin 138
Genus Parapelecus Günther 138
Key to Chinese Parapelecus 139
Parapelecus argenteus Günther 139
Parapelecus fukiensis Nichols 139
Parapelecus machcarius Abbott 139
Parapelecus nicholsi (Fowler) 140
Genus Pseudolaubuca Bleeker 140
Pseudolaubuca sinensis Bleeker 140
Genus Ischikania Jordan and Snyder 140
Key to Chinese Ischikania 141
Subgenus Ischikania Jordan and Snyder 141
CONTENTS

Ischikauia hainanensis Nichols and Pope 141
Ischikauia grahami (Regan) .. 142
Ischikauia polylepis (Regan) 142
Ischikauia alburnops (Regan) 142
Ischikauia andersoni (Regan) 142
Subgenus Rohanus Chu
 Ischikauia transmontana Nichols 142
Genus Erythroculter Berg ... 143
Key to Chinese Erythroculter 143
 Erythroculter erythropterus (Basilewski) 144
 Erythroculter mongolicus (Basilewski) 144
 Erythroculter dabyi (Bleeker) 144
 Erythroculter oxycephalus (Bleeker) 145
 Erythroculter oxycephaloides (Kreyenberg and Pappenheim) 145
 Erythroculter wangi Tchang 145
 Erythroculter aokii (Oshima) 145
 Erythroculter pseudobrevicauda Nichols and Pope 146
Genus Culter Basilewski ... 146
Key to Chinese Culter ... 146
 Culter alburnus Basilewski 147
 Culter kashinensis Shaw 147
 Culter brevicauda Günther 147
 Culter tientsinensis Abbott 147
Genus Megalobrama Dybowsk i 147
Key to Chinese Megalobrama 148
 Key to Chinese Megalobrama macrops 148
 Megalobrama macrops macrops (Günther) 148
 Megalobrama macrops wui (Lin) 149
 Megalobrama kurematsumi (Kimura) 149
 Megalobrama melrosei Nichols and Pope 149
 Megalobrama hoffmanni Herre and Myers 149
 Megalobrama terminalis terminalis (Richardson) 150
 Megalobrama terminalis pelligrini (Tchang) 150
 Megalobrama bramula (Cuvier and Valenciennes) 150
Genus Parabramis Bleeker ... 150
 Parabramis pekinensis (Basilewski) 151
Genus Rhodeus Agassiz ... 151
 Key to Chinese Rhodeus 151
 Rhodeus sinensis Günther 151
 Rhodeus notatus Nichols 152
 Rhodeus spinalis Oshima 152
Genus Pseudoperilampus Bleeker 153
 Key to Chinese Pseudoperilampus 153
 Pseudoperilampus ocellatus Kner 153
 Pseudoperilampus hainanensis Nichols and Pope 153
Genus Paracheilognathus Bleeker 154
<table>
<thead>
<tr>
<th>Key to Chinese Paracheilognathus</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Paracheilognathus imberbis (Günther)</td>
<td>154</td>
</tr>
<tr>
<td>Paracheilognathus peihoensis Fowler</td>
<td>154</td>
</tr>
<tr>
<td>Paracheilognathus bleekeri Berg</td>
<td>155</td>
</tr>
<tr>
<td>Paracheilognathus jeholensis (Mori)</td>
<td>155</td>
</tr>
<tr>
<td>Genus Acheilognathus Bleeker</td>
<td>Page</td>
</tr>
<tr>
<td>Key to Chinese Acheilognathus</td>
<td>155</td>
</tr>
<tr>
<td>Acheilognathus gracilis gracilis Nichols</td>
<td>156</td>
</tr>
<tr>
<td>Acheilognathus gracilis luchowensis Wu</td>
<td>156</td>
</tr>
<tr>
<td>Acheilognathus barbatulus Günther</td>
<td>157</td>
</tr>
<tr>
<td>Acheilognathus barbatus Nichols</td>
<td>157</td>
</tr>
<tr>
<td>Acheilognathus himantegus Günther</td>
<td>157</td>
</tr>
<tr>
<td>Genus Acanthorhodeus Bleeker</td>
<td>158</td>
</tr>
<tr>
<td>Key to Chinese Acanthorhodeus</td>
<td>158</td>
</tr>
<tr>
<td>Acanthorhodeus macropterus Bleeker</td>
<td>158</td>
</tr>
<tr>
<td>Acanthorhodeus dicaeus Rutter</td>
<td>158</td>
</tr>
<tr>
<td>Acanthorhodeus omeiensis Shih and Tchang</td>
<td>159</td>
</tr>
<tr>
<td>Acanthorhodeus guichenoti Bleeker</td>
<td>159</td>
</tr>
<tr>
<td>Acanthorhodeus tonkinensis Vaillant</td>
<td>159</td>
</tr>
<tr>
<td>Acanthorhodeus kypselonotus Bleeker</td>
<td>160</td>
</tr>
<tr>
<td>Acanthorhodeus atranalis Günther</td>
<td>160</td>
</tr>
<tr>
<td>Acanthorhodeus elongatus Regan</td>
<td>160</td>
</tr>
<tr>
<td>Acanthorhodeus taenianalis Günther</td>
<td>160</td>
</tr>
<tr>
<td>Genus Paracanthobrama Bleeker</td>
<td>161</td>
</tr>
<tr>
<td>Paracanthobrama guichenoti Bleeker</td>
<td>161</td>
</tr>
<tr>
<td>Genus Hemibarbus Bleeker</td>
<td>161</td>
</tr>
<tr>
<td>Key to Chinese Hemibarbus</td>
<td>161</td>
</tr>
<tr>
<td>Hemibarbus dissimilis Bleeker</td>
<td>162</td>
</tr>
<tr>
<td>Hemibarbus labeo (Pallas)</td>
<td>162</td>
</tr>
<tr>
<td>Hemibarbus maculatus Bleeker</td>
<td>163</td>
</tr>
<tr>
<td>Hemibarbus shingtsunensis Shaw</td>
<td>163</td>
</tr>
<tr>
<td>Genus Acanthogobio Herzenstein</td>
<td>163</td>
</tr>
<tr>
<td>Acanthogobio guentheri Herzenstein</td>
<td>164</td>
</tr>
<tr>
<td>Genus Leucogobio Günther</td>
<td>164</td>
</tr>
<tr>
<td>Key to Chinese Leucogobio</td>
<td>164</td>
</tr>
<tr>
<td>Subgenus Paraleucogobio Berg</td>
<td>165</td>
</tr>
<tr>
<td>Leucogobio notacanthus (Berg)</td>
<td>165</td>
</tr>
<tr>
<td>Subgenus Leucogobio Günther</td>
<td>165</td>
</tr>
<tr>
<td>Leucogobio taeniellus Nichols</td>
<td>165</td>
</tr>
<tr>
<td>Leucogobio taeniatus Günther</td>
<td>165</td>
</tr>
<tr>
<td>Leucogobio polytaenia polytaenia Nichols</td>
<td>166</td>
</tr>
<tr>
<td>Leucogobio polytaenia tienmusanensis Chu</td>
<td>166</td>
</tr>
<tr>
<td>Leucogobio polytaenia tsinanensis Mori</td>
<td>166</td>
</tr>
<tr>
<td>Leucogobio imberbis Nichols</td>
<td>167</td>
</tr>
<tr>
<td>Leucogobio herzensteini Günther</td>
<td>167</td>
</tr>
<tr>
<td>Genus Gnathopogon Bleeker</td>
<td>168</td>
</tr>
</tbody>
</table>
CONTENTS

<table>
<thead>
<tr>
<th>Key to Chinese Gnathopogon</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gnathopogon intermedius Nichols</td>
<td>168</td>
</tr>
<tr>
<td>Gnathopogon argentatus argentatus (Sauvage and Dabry de Thiersant)</td>
<td>169</td>
</tr>
<tr>
<td>Gnathopogon argentatus punctatus Nichols</td>
<td>169</td>
</tr>
<tr>
<td>Gnathopogon sihuensis (Chu)</td>
<td>170</td>
</tr>
<tr>
<td>Gnathopogon atromaculatus Nichols and Pope</td>
<td>170</td>
</tr>
<tr>
<td>Gnathopogon similis Nichols</td>
<td>171</td>
</tr>
<tr>
<td>Gnathopogon wolterstorffi (Regan)</td>
<td>171</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Genus Gobio Cuvier</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Key to Chinese Gobio</td>
<td>171</td>
</tr>
<tr>
<td>Gobio nitens Günther</td>
<td>172</td>
</tr>
<tr>
<td>Gobio nummifer Boulenger</td>
<td>172</td>
</tr>
<tr>
<td>Gobio soldatovi soldatovi Berg</td>
<td>173</td>
</tr>
<tr>
<td>Gobio soldatovi minutus Nichols</td>
<td>173</td>
</tr>
<tr>
<td>Gobio vaillanti (Sauvage)</td>
<td>173</td>
</tr>
<tr>
<td>Gobio rivuloides Nichols</td>
<td>173</td>
</tr>
<tr>
<td>Gobio coriparoides coriparoides Nichols</td>
<td>174</td>
</tr>
<tr>
<td>Gobio coriparoides tenuicorpus Mori</td>
<td>174</td>
</tr>
<tr>
<td>Gobio longipinnis longipinnis Nichols</td>
<td>174</td>
</tr>
<tr>
<td>Gobio longipinnis roulei (Tchang)</td>
<td>175</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Genus Megagobio Kessler</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Key to Chinese Megagobio</td>
<td>175</td>
</tr>
<tr>
<td>Megagobio nasutus Kessler</td>
<td>175</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Genus Coreius Jordan and Starks</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Key to Chinese Coreius</td>
<td>176</td>
</tr>
<tr>
<td>Coreius cetopsis (Kner)</td>
<td>176</td>
</tr>
<tr>
<td>Coreius zeni Tchang</td>
<td>176</td>
</tr>
<tr>
<td>Coreius septentrionalis (Nichols)</td>
<td>176</td>
</tr>
<tr>
<td>Coreius styani (Günther)</td>
<td>177</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Genus Agenigobio Sauvage</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Key to Chinese Agenigobio</td>
<td>177</td>
</tr>
<tr>
<td>Agenigobio halsoueti Sauvage</td>
<td>178</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Genus Rhinogobio Bleeker</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Key to Chinese Rhinogobio</td>
<td>178</td>
</tr>
<tr>
<td>Rhinogobio cylindricus Günther</td>
<td>178</td>
</tr>
<tr>
<td>Rhinogobio typus Bleeker</td>
<td>179</td>
</tr>
<tr>
<td>Rhinogobio dereimsi Tchang</td>
<td>179</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Genus Abbottina Jordan and Fowler</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Key to Chinese Abbottina</td>
<td>179</td>
</tr>
<tr>
<td>Abbottina rivularis (Basilewski)</td>
<td>179</td>
</tr>
<tr>
<td>Abbottina sinensis (Kner)</td>
<td>180</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Genus Pseudogobio Bleeker</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Key to Chinese Pseudogobio</td>
<td>180</td>
</tr>
<tr>
<td>Pseudogobio kachekensis Oshima</td>
<td>181</td>
</tr>
<tr>
<td>Pseudogobio fukiensis Nichols</td>
<td>181</td>
</tr>
<tr>
<td>Pseudogobio bicolor Nichols</td>
<td>182</td>
</tr>
<tr>
<td>Pseudogobio chinssuensis chinssuensis Nichols</td>
<td>182</td>
</tr>
<tr>
<td>Pseudogobio chinssuensis shangtungensis Mori</td>
<td>183</td>
</tr>
<tr>
<td>Species</td>
<td>Page</td>
</tr>
<tr>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>Pseudogobio chinssuensis kisinglunghanensis* Mori</td>
<td>183</td>
</tr>
<tr>
<td>Pseudogobio obtusirostris Wu and Wang</td>
<td>183</td>
</tr>
<tr>
<td>Pseudogobio chaoi Evermann and Shaw</td>
<td>183</td>
</tr>
<tr>
<td>Pseudogobio suiensis Wu</td>
<td>183</td>
</tr>
<tr>
<td>Pseudogobio tungtingensis Nichols</td>
<td>183</td>
</tr>
<tr>
<td>Pseudogobio exigua (Lin)</td>
<td>184</td>
</tr>
<tr>
<td>Pseudogobio laboideus Nichols and Pope</td>
<td>184</td>
</tr>
<tr>
<td>Pseudogobio andersoni Rendahl</td>
<td>184</td>
</tr>
<tr>
<td>Pseudogobio papillabrus Nichols</td>
<td>185</td>
</tr>
<tr>
<td>Pseudogobio longirostris Mori</td>
<td>185</td>
</tr>
<tr>
<td>Pseudogobio (?) filifer Garman</td>
<td>185</td>
</tr>
<tr>
<td>Genus Saurogobio Bleeker</td>
<td>186</td>
</tr>
<tr>
<td>Key to Chinese Saurogobio</td>
<td>186</td>
</tr>
<tr>
<td>Saurogobio drakei (Abbott)</td>
<td>186</td>
</tr>
<tr>
<td>Saurogobio productus (Peters)</td>
<td>186</td>
</tr>
<tr>
<td>Saurogobio dabryi Bleeker</td>
<td>187</td>
</tr>
<tr>
<td>Saurogobio heterodon (Bleeker)</td>
<td>187</td>
</tr>
<tr>
<td>Saurogobio guichenotii Sauvage and Dabry de Thiersant</td>
<td>187</td>
</tr>
<tr>
<td>Saurogobio dumerilii Bleeker</td>
<td>187</td>
</tr>
<tr>
<td>Genus Fustis Lin</td>
<td>187</td>
</tr>
<tr>
<td>Fustis vivus Lin</td>
<td>188</td>
</tr>
<tr>
<td>Genus Sarcocheilichthys Bleeker</td>
<td>188</td>
</tr>
<tr>
<td>Key to Chinese Sarcocheilichthys</td>
<td>188</td>
</tr>
<tr>
<td>Subgenus Chilogobio Berg</td>
<td>189</td>
</tr>
<tr>
<td>Sarcocheilichthys imberbis (Sauvage and Dabry de Thiersant)</td>
<td>189</td>
</tr>
<tr>
<td>Sarcocheilichthys maculatus (Günther)</td>
<td>190</td>
</tr>
<tr>
<td>Sarcocheilichthys hainanensis Nichols and Pope</td>
<td>190</td>
</tr>
<tr>
<td>Sarcocheilichthys scaphignathus (Nichols)</td>
<td>190</td>
</tr>
<tr>
<td>Sarcocheilichthys nigripinnis nigripinnis (Günther)</td>
<td>190</td>
</tr>
<tr>
<td>Sarcocheilichthys nigripinnis sciistiis (Abbott)</td>
<td>191</td>
</tr>
<tr>
<td>Sarcocheilichthys nigripinnis tungting Nichols and Pope</td>
<td>191</td>
</tr>
<tr>
<td>Subgenus Sarcocheilichthys Bleeker</td>
<td>191</td>
</tr>
<tr>
<td>Sarcocheilichthys kiangsiensis Nichols</td>
<td>191</td>
</tr>
<tr>
<td>Subgenus Barbodon Dybowskii</td>
<td>192</td>
</tr>
<tr>
<td>Sarcocheilichthys sinensis sinensis Bleeker</td>
<td>192</td>
</tr>
<tr>
<td>Sarcocheilichthys sinensis fukiensis Nichols</td>
<td>192</td>
</tr>
<tr>
<td>Sarcocheilichthys parvus Nichols</td>
<td>193</td>
</tr>
<tr>
<td>Family Cobitidae. Loaches</td>
<td>193</td>
</tr>
<tr>
<td>Genus Gobiobotia Kreyenberg</td>
<td>194</td>
</tr>
<tr>
<td>Key to Chinese Gobiobotia</td>
<td>194</td>
</tr>
<tr>
<td>Gobiobotia ichangensis Fang</td>
<td>195</td>
</tr>
<tr>
<td>Gobiobotia pappenheimi Kreyenberg</td>
<td>195</td>
</tr>
<tr>
<td>Gobiobotia boulengeri Tchang</td>
<td>195</td>
</tr>
<tr>
<td>Gobiobotia kiatingensis Fang</td>
<td>196</td>
</tr>
<tr>
<td>Gobiobotia abbreviata Fang and Wang</td>
<td>196</td>
</tr>
<tr>
<td>Gobiobotia longibarba Fang and Wang</td>
<td>196</td>
</tr>
</tbody>
</table>
CONTENTS

Gobiobotia homalopteroidea Rendahl 196
Gobiobotia tungi Fang .. 196

Genus Cobitis Linnaeus .. 196

Key to Chinese Cobitis ... 197
Cobitis taenia dolichorhynchus Nichols 197
Cobitis taenia melanoleuca Nichols 198
Cobitis taenia sinensis Sauvage and Dabry de Thiersant 198
Cobitis macrostigma Dabry de Thiersant 198
Cobitis arenae (Lin) .. 199

Genus Acanthopsis Van Hasselt 199
Acanthopsis lachnostoma Rutter 199

Genus Paralepidocephalus Tchang 200
Paralepidocephalus yui Tchang 200

Genus Botia Gray .. 200

Key to Chinese Botia .. 200
Botia compressicauda Nichols 201
Botia citrauratea Nichols 201
Botia pratti Günther .. 201
Botia fangi Tchang ... 202
Botia purpurea Nichols ... 202
Botia tientainensis Wu .. 202
Botia rubrilabris (Dabry de Thiersant) 202
Botia superciliaris Günther 202

Genus Leptobotia Bleeker 203

Key to Chinese Leptobotia 203
Leptobotia elongata (Bleeker) 203
Leptobotia fasciata (Dabry de Thiersant) 203

Genus Misgurnus Lacépède 204

Key to Chinese Misgurnus 204
Misgurnus anguillicaudatus anguillicaudatus (Cantor) 205
Misgurnus anguillicaudatus tungting Nichols 206
Misgurnus erikssonii Rendahl 206
Misgurnus mizolepis mizolepis Günther 206
Misgurnus mizolepis grangeri Nichols 207
Misgurnus mizolepis fukien Nichols 207
Misgurnus mizolepis punctatus Oshima 207
Misgurnus mizolepis hainan Nichols and Pope 208
Misgurnus mizolepis unicolor Lin 208
Misgurnus mizolepis elongatus Kimura 208
Misgurnus mohoity yunnan Nichols 209
Misgurnus mohoity leopardus Nichols 209
Misgurnus crossochilus Sauvage 209

Genus Paramisgurnus Sauvage 209
Paramisgurnus dabryanus Sauvage 210

Genus Oreonectes Günther 210

Key to Chinese Oreonectes 210
CONTENTS

Oreonectes platycephalus Günther ... 210
Oreonectes yenlingi Lin ... 210
Genus Nemacheilus Van Hasselt ... 210
Key to Chinese Nemacheilus .. 211
Subgenus Nemacheilus Van Hasselt 211
Nemacheilus pulcher Nichols and Pope 211
Subgenus Yunnanilus Nichols .. 212
Nemacheilus nigromaculatus Regan 212
Nemacheilus pleurotaenia Regan ... 212
Nemacheilus salmonides Chaudhuri 212
Genus Lejua Herzenstein .. 212
Key to Chinese Lejua .. 213
Lejua costata (Kessler) .. 213
Lejua andrewsi Fowler ... 213
Genus Barbatula Linck .. 213
Key to Chinese Barbatula .. 214
Subgenus Barbatula Linck .. 215
Barbatula bleekeri (Sauvage and Dabry de Thiersant) 215
Barbatula (?) dabryi (Sauvage) .. 215
Barbatula (?) livida (Sauvage and Dabry de Thiersant) 215
Barbatula (?) variegata (Sauvage and Dabry de Thiersant) 215
Barbatula grahami (Regan) .. 216
Barbatula toni toni (Dybowski) .. 216
Barbatula toni jowleri Nichols .. 216
Barbatula toni posterovenralis Nichols 216
Barbatula yarkandensis sellaefer Nichols 217
Barbatula robusta (Kessler) .. 217
Barbatula stoliczkai (Steindachner) 217
Barbatula cuneicepschatus Shaw and Tchang 218
Subgenus Homatula Nichols .. 218
Barbatula oxygnatha (Regan) .. 218
Barbatula berezowskii (Günther) .. 218
Barbatula potanini (Günther) .. 218
Barbatula incerta Nichols .. 219
Barbatula hingi (Herre) ... 219
Barbatula fasciolata (Nichols and Pope) 219
Barbatula humilis (Lin) .. 219
Genus Homaloptera Van Hasselt .. 220
Key to Chinese Homaloptera ... 220
Subgenus Octonema Martens ... 220
Homaloptera rotundicauda Martens 220
Homaloptera hofmanni (Herre) .. 221
Subgenus Vanmanenia Hora ... 221
Homaloptera stenosoma (Boulenger) 221
Subgenus Sinohomaloptera Fang ... 221
Homaloptera caldwelli Nichols ... 221
Homaloptera kwangsiensis Fang ... 222
Homaloptera yaotanensis yaotanensis (Fang) .. 222
Homaloptera yaotanensis acuticauda (Fang) .. 222
Subgenus Liniparhomaloptera Fang ... 222
Homaloptera disparis (Lin) .. 223
Subgenus Homaloptera Van Hasselt .. 223
Homaloptera sinensis (Sauvage and Dabry de Thiersant) 223
Genus Lepturichthys Regan .. 223
Key to Chinese Lepturichthys fimbriata .. 223
Lepturichthys fimbriata fimbriata (Günther) .. 224
Lepturichthys fimbriata Güntheri Hora ... 224
Lepturichthys fimbriata nicholsi Hora ... 224
Genus Praejormosania Fang .. 224
Key to Chinese Praejormosania .. 225
Praejormosania pingchowensis Fang .. 225
Praejormosania intermedia Fang ... 225
Praejormosania lineata Fang .. 225
Genus Crossostoma Sauvage .. 225
Key to Chinese Crossostoma ... 226
Crossostoma davidi Sauvage .. 226
Crossostoma fascicauda Nichols .. 227
Crossostoma tinkhami Herre ... 227
Crossostoma stigmata Nichols ... 227
Crossostoma fangi Nichols ... 228
Genus Hemimyzon Regan .. 228
Key to Chinese Hemimyzon .. 229
Subgenus Pseudogastromyzon Nichols ... 229
Hemimyzon zebroidus Nichols ... 229
Hemimyzon myersi (Herre) ... 230
Genus Gastromyzon Günther ... 230
Key to Chinese Gastromyzon .. 230
Gastromyzon leveretti leveretti Nichols and Pope 230
Gastromyzon leveretti kweichowensis Fang .. 231
Gastromyzon pingi pingi Fang .. 231
Gastromyzon pingi zebroidus Fang ... 231
Gastromyzon szechuanensis Fang .. 231
Genus Sinogastromyzon Fang .. 232
Key to Chinese Sinogastromyzon ... 232
Sinogastromyzon wui Fang ... 232
Sinogastromyzon szechuanensis Fang .. 233
Sinogastromyzon kiashiensis Fang .. 233
Sinogastromyzon intermedius Fang ... 233
Sinogastromyzon sanhoensis Fang ... 233
Family Cyprinodontidae. Tooth-Carp .. 233
Genus Aplocheilus McClelland ... 234
Key to Chinese Aplocheilus ... 234
Subgenus Oryzias Jordan and Snyder ... 234
Aplocheilus latipes (Temminck and Schlegel) .. 234
CONTENTS

Aplocheilus curvinotus Nichols and Pope 234
Family Hemiramphidae. Halfbeaks .. 235
Genus Hyporhamphus Gill .. 235
Hyporhamphus sinensis (Günther) .. 235
Family Gasterosteidae. Sticklebacks 236
Genus Pygosteus Gill ... 236
Pygosteus punctitius sinensis (Guichenot) 236
Family Ophicephalidae. Snake-Heads 237
Genus Ophicephalus Bloch .. 237
Key to Chinese Ophicephalus .. 237
Ophicephalus argus Cantor .. 238
Ophicephalus maculatus (Lacépède) 238
Ophicephalus striatus Bloch .. 238
Ophicephalus aspilotus Sauvage and Dabry de Thiersant 239
Ophicephalus punctatus Bloch .. 239
Ophicephalus gachua Hamilton-Buchanan 239
Ophicephalus marulius Hamilton-Buchanan 240
Genus Channa Scopoli ... 240
Channa asiatica (Linnaeus) .. 240
Family Osphronemidae. Gouramis and Paradise Fishes 241
Genus Macropodus Lacépède .. 241
Key to Chinese Macropodus .. 241
Macropodus chinensis (Bloch) ... 241
Macropodus viridiauratus Lacépède 242
Genus Osphronemus Lacépède .. 242
Osphronemus goramy Lacépède .. 243
Family Anabantidae. Climbing Perches 243
Genus Anabas Cuvier ... 243
Anabas scandens (Daldorff) ... 243
Family Ambassidae. Ambassids .. 244
Genus Ambassis Cuvier and Valenciennes 244
Ambassis gymnocephalus (Lacépède) 244
Family Serranidae. Sea Basses .. 245
Genus Lates Cuvier and Valenciennes 245
Lates calcarifer (Bloch) ... 245
Genus Lateolabrax Bleeker ... 245
Lateolabrax japonicus (Cuvier and Valenciennes) 246
Genus Siniperca Gill ... 246
Key to Chinese Siniperca .. 246
Subgenus Acroperca Myers ... 247
Siniperca roulei Wu ... 247
Subgenus Siniperca Gill .. 247
Key to Chinese Siniperca scherzeri 247
Siniperca scherzeri scherzeri Steindachner 248
Siniperca scherzeri chui Fang and Chong 248
Siniperca scherzeri kwangsiensis Fang and Chong 248
Siniperca chuantsi (Basilowski) 248
<table>
<thead>
<tr>
<th>Genus</th>
<th>Common Name</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Siniperca chuatsi</td>
<td>(Basilewski)</td>
<td>249</td>
</tr>
<tr>
<td>Siniperca undulata</td>
<td>Fang and Chong</td>
<td>250</td>
</tr>
<tr>
<td>Siniperca obscura</td>
<td>Nichols</td>
<td>250</td>
</tr>
<tr>
<td>Siniperca yunkiansensis</td>
<td>(Lin)</td>
<td>251</td>
</tr>
<tr>
<td>Genus Coreoperca</td>
<td>Herzenstein</td>
<td>251</td>
</tr>
<tr>
<td>Key to Chinese Coreoperca</td>
<td></td>
<td>251</td>
</tr>
<tr>
<td>Coreoperca herzi</td>
<td>Herzenstein</td>
<td>251</td>
</tr>
<tr>
<td>Coreoperca whiteheadi</td>
<td>Boulenger</td>
<td>251</td>
</tr>
<tr>
<td>Family Tetraodontidae</td>
<td>Swell-Fishes</td>
<td>252</td>
</tr>
<tr>
<td>Genus Tetraodon</td>
<td>Linnaeus</td>
<td>252</td>
</tr>
<tr>
<td>Tetraodon ocellatus</td>
<td>Linnaeus</td>
<td>253</td>
</tr>
<tr>
<td>Family Cottidae</td>
<td>Sculpins</td>
<td>253</td>
</tr>
<tr>
<td>Genus Cottus</td>
<td>Linnaeus</td>
<td>253</td>
</tr>
<tr>
<td>Cottus poecilopus</td>
<td>Heckel</td>
<td>253</td>
</tr>
<tr>
<td>Genus Trachidermus</td>
<td>Heckel</td>
<td>254</td>
</tr>
<tr>
<td>Trachidermus fasciatus</td>
<td>Heckel</td>
<td>254</td>
</tr>
<tr>
<td>Family Gobiidae</td>
<td>Gabies</td>
<td>254</td>
</tr>
<tr>
<td>Subfamily Eleotrinae</td>
<td></td>
<td>254</td>
</tr>
<tr>
<td>Genus Eleotris</td>
<td>Gronow</td>
<td>254</td>
</tr>
<tr>
<td>Key to Chinese Fresh-Water Eleotris</td>
<td></td>
<td>254</td>
</tr>
<tr>
<td>Eleotris davidi</td>
<td>Sauvage and Dabry de Thiersant</td>
<td>255</td>
</tr>
<tr>
<td>Eleotris bala</td>
<td>Jordan and Seale</td>
<td>255</td>
</tr>
<tr>
<td>Eleotris oxycephala</td>
<td>Temminck and Schlegel</td>
<td>255</td>
</tr>
<tr>
<td>Eleotris xanthi</td>
<td>Günther</td>
<td>255</td>
</tr>
<tr>
<td>Eleotris fusca</td>
<td>(Bloch and Schneider)</td>
<td>256</td>
</tr>
<tr>
<td>Genus Philypnus</td>
<td>Cuvier and Valenciennes</td>
<td>256</td>
</tr>
<tr>
<td>Key to Chinese Fresh-Water Philypnus</td>
<td></td>
<td>256</td>
</tr>
<tr>
<td>Philypnus chalmersi</td>
<td>Nichols and Pope</td>
<td>256</td>
</tr>
<tr>
<td>Philypnus potamophilus</td>
<td>Günther</td>
<td>257</td>
</tr>
<tr>
<td>Genus Micropercops</td>
<td>Fowler and Bean</td>
<td>257</td>
</tr>
<tr>
<td>Key to Chinese Micropercops</td>
<td></td>
<td>258</td>
</tr>
<tr>
<td>Micropercops cinctus</td>
<td>(Dabry de Thiersant)</td>
<td>258</td>
</tr>
<tr>
<td>Micropercops swinhonis</td>
<td>Günther</td>
<td>258</td>
</tr>
<tr>
<td>Micropercops dabryi dabryi</td>
<td>Fowler and Bean</td>
<td>259</td>
</tr>
<tr>
<td>Micropercops dabryi boralis</td>
<td>Nichols</td>
<td>259</td>
</tr>
<tr>
<td>Subfamily Gobiinae</td>
<td></td>
<td>260</td>
</tr>
<tr>
<td>Genus Gobius</td>
<td>Linnaeus</td>
<td>260</td>
</tr>
<tr>
<td>Key to Chinese Fresh-Water Gobius</td>
<td></td>
<td>260</td>
</tr>
<tr>
<td>Subgenus Glossogobius</td>
<td>Gill</td>
<td>261</td>
</tr>
<tr>
<td>Gobius giuris</td>
<td>Hamilton-Buchanan</td>
<td>261</td>
</tr>
<tr>
<td>Gobius brunneus</td>
<td>Temminck and Schlegel</td>
<td>261</td>
</tr>
<tr>
<td>Gobius caninus</td>
<td>Cuvier and Valenciennes</td>
<td>262</td>
</tr>
<tr>
<td>Gobius grammepomus</td>
<td>Bleeker</td>
<td>262</td>
</tr>
<tr>
<td>Subgenus Rhinogobius</td>
<td>Gill</td>
<td>262</td>
</tr>
<tr>
<td>Gobius cheni</td>
<td>Nichols</td>
<td>262</td>
</tr>
<tr>
<td>Gobius davidii</td>
<td>Sauvage and Dabry de Thiersant</td>
<td>262</td>
</tr>
<tr>
<td>Gobius aestivarea (Mori)</td>
<td></td>
<td>262</td>
</tr>
</tbody>
</table>
CONTENTS

<table>
<thead>
<tr>
<th>Scientific Name</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gobius clifordpopei Nichols</td>
<td>263</td>
</tr>
<tr>
<td>Gobius hadropterus (Jordan and Snyder)</td>
<td>263</td>
</tr>
<tr>
<td>Gobius leavelli (Herre)</td>
<td>263</td>
</tr>
<tr>
<td>Gobius giurinus Rutter</td>
<td>264</td>
</tr>
<tr>
<td>Gobius myxodermus (Herre)</td>
<td>264</td>
</tr>
<tr>
<td>Gobius hainanensis (Oshima)</td>
<td>265</td>
</tr>
<tr>
<td>Subgenus Tamanka Herre</td>
<td>265</td>
</tr>
<tr>
<td>Gobius bivittatus (Herre)</td>
<td>265</td>
</tr>
<tr>
<td>Subgenus Ctenogobius Gill</td>
<td>265</td>
</tr>
<tr>
<td>Gobius clarki (Evermann and Shaw)</td>
<td>265</td>
</tr>
</tbody>
</table>

CHAPTER III.—SUPPLEMENT

Additional Species 266

Genus Hilsa Regan 266

Key to Chinese Hilsa

Hilsa sinensis (Linnaeus) 266

Genus Silurus Linnaeus 266

Silurus wynaadensis Day 266

Genus Pseudobagrus Bleeker 266

Pseudobagrus wui Miao 267

Pseudobagrus changi Miao 267

Genus Leiocassis Bleeker 267

Leiocassis sinyanensis Fu 267

Genus Liobagrus Hilgendorf 267

Liobagrus kingi Tchang 267

Genus Pseudecheneis Blyth 267

Pseudecheneis sulcatus (McClelland) 268

Genus Barbus Cuvier 268

Barbus (Lissochilichthys) wenchowensis (K. F. Wang) 268

Genus Hemiculterella Warpachowski 268

Hemiculterella wui (K. F. Wang) 268

Hemiculterella angustus (Kimura) 268

Genus Hemiculter Bleeker 269

Hemiculter jabouillei Chevey 269

Genus Acheilognathus Bleeker 269

Acheilognathus chi Miao 269

Acheilognathus lanchiensis (Herre and Lin) 269

Genus Abbottina Jordan and Fowler 269

Abbottina tajangensis (K. F. Wang) 269

Genus Oreonectes Günther 270

Oreonectes sayu Herre and Lin 270

Genus Barbatula Linck 270

Barbatula kungessana (Kessler) 270

Barbatula pappenheimi (Fang) 270

Genus Homaloptera Van Hasselt 270

Subgenus Paraprototnyzon Pellegrin and Fang 270

Homaloptera multifasciata (Pellegrin and Fang) 271
<table>
<thead>
<tr>
<th>CONTENTS</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Genus Ophicephalus Bloch</td>
<td>PAGE</td>
</tr>
<tr>
<td>Ophicephalus argus kimurai (Shih)</td>
<td>271</td>
</tr>
<tr>
<td>Genus Siniperca Gill</td>
<td>271</td>
</tr>
<tr>
<td>Siniperca kichuani Shih</td>
<td>271</td>
</tr>
<tr>
<td>Genus Gobius Linnaeus</td>
<td>271</td>
</tr>
<tr>
<td>Subgenus Rhinogobius Gill</td>
<td>271</td>
</tr>
<tr>
<td>Gobius whiteyi (Herre)</td>
<td>271</td>
</tr>
<tr>
<td>Gobius duospilus (Herre)</td>
<td>272</td>
</tr>
<tr>
<td>Subgenus Tamanka Herre</td>
<td>272</td>
</tr>
<tr>
<td>Gobius sinensis (Herre)</td>
<td>272</td>
</tr>
<tr>
<td>Subgenus Acanthogobius Gill</td>
<td>272</td>
</tr>
<tr>
<td>Gobius onnaturus Richardson</td>
<td>272</td>
</tr>
<tr>
<td>Synonyms, Changes, and Comment</td>
<td>272</td>
</tr>
<tr>
<td>Salangichthys hyalocranius (Abbott)</td>
<td>273</td>
</tr>
<tr>
<td>Subgenus Reganisalanx Fang</td>
<td>273</td>
</tr>
<tr>
<td>Salanx normani (Fang)</td>
<td>273</td>
</tr>
<tr>
<td>Subgenus Salanx Cuvier</td>
<td>273</td>
</tr>
<tr>
<td>Salanx cuvieri Cuvier and Valenciennes</td>
<td>273</td>
</tr>
<tr>
<td>Anguilla mauritiana Bennett</td>
<td>273</td>
</tr>
<tr>
<td>Pseudobagrus nitidus Sauvage and Dabry de Thiersant</td>
<td>273</td>
</tr>
<tr>
<td>Hemibagrus guttatus (Lacépède)</td>
<td>273</td>
</tr>
<tr>
<td>Barbus nigrodorsalis (Oshima)</td>
<td>274</td>
</tr>
<tr>
<td>Barbus (Lissochilichthys) breyenbergii (Regan)</td>
<td>274</td>
</tr>
<tr>
<td>Zacco platypus (Temminck and Schlegel)</td>
<td>274</td>
</tr>
<tr>
<td>Tanichthys albonubes Lin</td>
<td>274</td>
</tr>
<tr>
<td>Varicorhinus robustus Nichols</td>
<td>274</td>
</tr>
<tr>
<td>Hemiculter dispar dispar Peters</td>
<td>274</td>
</tr>
<tr>
<td>Rhodeus sinensis Günther</td>
<td>274</td>
</tr>
<tr>
<td>Rhodeus notatus Nichols</td>
<td>274</td>
</tr>
<tr>
<td>Leucogobio polytaenia tienmusanensis Chu</td>
<td>275</td>
</tr>
<tr>
<td>Gobio nummifer Boulenger</td>
<td>275</td>
</tr>
<tr>
<td>Leptobotia fasciata (Dabry de Thiersant)</td>
<td>275</td>
</tr>
<tr>
<td>Misgurnus mizolepis mizolepis Günther</td>
<td>275</td>
</tr>
<tr>
<td>Subgenus Paramisgurnus Sauvage</td>
<td>275</td>
</tr>
<tr>
<td>Misgurnus dabryanus (Sauvage)</td>
<td>275</td>
</tr>
<tr>
<td>Subgenus Mesomisgurnus Fang</td>
<td>275</td>
</tr>
<tr>
<td>Misgurnus (Mesomisgurnus) bipartitus (Sauvage and Dabry de Thiersant)</td>
<td>275</td>
</tr>
<tr>
<td>Misgurnus (Mesomisgurnus) lividus (Sauvage and Dabry de Thiersant)</td>
<td>276</td>
</tr>
<tr>
<td>Lejua costata (Kessler)</td>
<td>276</td>
</tr>
<tr>
<td>Crossostoma stigmata Nichols</td>
<td>276</td>
</tr>
<tr>
<td>Aplocheilus curvinotus Nichols and Pope</td>
<td>276</td>
</tr>
<tr>
<td>Macropodus viridiauratus Lacépède</td>
<td>276</td>
</tr>
<tr>
<td>Subgenus Coreosiniperca Fang and Chong</td>
<td>276</td>
</tr>
<tr>
<td>Siniperca scherzeri chui Fang and Chong</td>
<td>276</td>
</tr>
</tbody>
</table>

| **Bibliography** | 277 |
| **Index** | 295 |
TEXT FIGURES

The scale mark on text figures is one inch, except where marked as millimeters in a few cases.

<table>
<thead>
<tr>
<th>FIGURE</th>
<th>DESCRIPTION</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Acipenser dabryanus Duméril. 318 mm. standard length</td>
<td>16</td>
</tr>
<tr>
<td>2.</td>
<td>Fluha alba xanthognatha (Richardson). 395 mm. total length</td>
<td>28</td>
</tr>
<tr>
<td>3.</td>
<td>Mastacembelus armatus undulatus (McClelland). 160 mm. without caudal</td>
<td>29</td>
</tr>
<tr>
<td>4.</td>
<td>Anguilla sinensis McClelland. 440 mm. without caudal</td>
<td>31</td>
</tr>
<tr>
<td>5.</td>
<td>Parasilurns cochinchinensis (Cuvier and Valenciennes). 145 mm. without caudal</td>
<td>35</td>
</tr>
<tr>
<td>6.</td>
<td>Pseudobagrus intermedius Nichols and Pope. Type. 106 mm. without caudal</td>
<td>41</td>
</tr>
<tr>
<td>7.</td>
<td>Leiocassis virgatus (Oshima). 95 mm. without caudal</td>
<td>41</td>
</tr>
<tr>
<td>8.</td>
<td>Leiocassis crassilabris macrops Nichols. 100 mm. standard length</td>
<td>45</td>
</tr>
<tr>
<td>9.</td>
<td>Leiocassis similis Nichols. Type. 119 mm. standard length</td>
<td>47</td>
</tr>
<tr>
<td>10.</td>
<td>Leiocassis analis Nichols. Type. 101 mm. standard length</td>
<td>48</td>
</tr>
<tr>
<td>11.</td>
<td>Leiocassis anguillicauda Nichols. 75 mm. standard length</td>
<td>52</td>
</tr>
<tr>
<td>12.</td>
<td>Glyptosternon hainanensis Nichols and Pope. Type. 55 mm. without caudal</td>
<td>55</td>
</tr>
<tr>
<td>13.</td>
<td>Clarias fuscinus (Lacépède). 76 mm. without caudal</td>
<td>58</td>
</tr>
<tr>
<td>14.</td>
<td>Myxocyprinus asiaticus asiaticus (Bleeker)</td>
<td>59</td>
</tr>
<tr>
<td>15.</td>
<td>Myxocyprinus asiaticus asiaticus (Bleeker)</td>
<td>59</td>
</tr>
<tr>
<td>16.</td>
<td>Myxocyprinus asiaticus asiaticus (Bleeker)</td>
<td>59</td>
</tr>
<tr>
<td>17.</td>
<td>Myxocyprinus asiaticus fukiensis Nichols. Type. 36 mm. standard length</td>
<td>60</td>
</tr>
<tr>
<td>18.</td>
<td>Cyprinus carpio Linnaeus. 122 mm. without caudal</td>
<td>62</td>
</tr>
<tr>
<td>19.</td>
<td>Carassius auratus (Linnaeus). 83 mm. without caudal</td>
<td>64</td>
</tr>
<tr>
<td>20.</td>
<td>Osteochilus salsburyi Nichols and Pope. Type. 85 mm. without caudal</td>
<td>67</td>
</tr>
<tr>
<td>21.</td>
<td>Barbus baldwelli Nichols. Type. 100 mm. standard length</td>
<td>72</td>
</tr>
<tr>
<td>22.</td>
<td>Barbus nigrodonalis (Oshima). 115 mm. without caudal</td>
<td>73</td>
</tr>
<tr>
<td>23.</td>
<td>Barbus sinensis denticulatus (Oshima). 85 mm. without caudal</td>
<td>74</td>
</tr>
<tr>
<td>24.</td>
<td>Barbus semijasciolatus Günther. 34 mm. without caudal</td>
<td>74</td>
</tr>
<tr>
<td>25.</td>
<td>Barbus parallels Nichols. Cotype. About 75 mm. standard length</td>
<td>76</td>
</tr>
<tr>
<td>26.</td>
<td>Barbus hemispinus Nichols. Type. 64 mm. standard length</td>
<td>77</td>
</tr>
<tr>
<td>27.</td>
<td>Barbus barbodon Nichols and Pope. Type. 193 mm. without caudal</td>
<td>78</td>
</tr>
<tr>
<td>28.</td>
<td>Cyclocheilichthys iridescent Nichols and Pope. Type. 102 mm. without caudal</td>
<td>79</td>
</tr>
<tr>
<td>29.</td>
<td>Elopichthys bambusa (Richardson). 198 mm. standard length</td>
<td>88</td>
</tr>
<tr>
<td>30.</td>
<td>Diagrammatic sketch of the jaws of Opsarichthys uncirostris hainanensis Nichols and Pope (upper) and Elopichthys bambusa (Richardson) (lower)</td>
<td>88</td>
</tr>
<tr>
<td>31.</td>
<td>Zacco asperus Nichols and Pope. Type. 106 mm. without caudal</td>
<td>94</td>
</tr>
<tr>
<td>32.</td>
<td>Zacco platypus (Temminck and Schlegel). Fukien</td>
<td>95</td>
</tr>
<tr>
<td>FIGURE</td>
<td>TEXT FIGURES</td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>-------------</td>
<td></td>
</tr>
<tr>
<td>33.—</td>
<td>Opsariichthys uncirostris hainauensis Nichols and Pope. Type. 115 mm. without caudal</td>
<td>PAGE 97</td>
</tr>
<tr>
<td>34.—</td>
<td>Opsariichthys minutus Nichols. Type. 37 mm. standard length</td>
<td>98</td>
</tr>
<tr>
<td>35.—</td>
<td>Rasbora cephalotaenia steineri Nichols and Pope. Type. 65 mm. without caudal</td>
<td>100</td>
</tr>
<tr>
<td>36.—</td>
<td>Pseudorasbora parva altipinna Nichols. Type. 55 mm. standard length</td>
<td>101</td>
</tr>
<tr>
<td>37.—</td>
<td>Pseudorasbora parva depressirostris Nichols. Type. 49 mm. standard length</td>
<td>102</td>
</tr>
<tr>
<td>38.—</td>
<td>Pseudorasbora parva parvula Nichols. Type. 55 mm. standard length</td>
<td>103</td>
</tr>
<tr>
<td>39.—</td>
<td>Pseudorasbora parva tenuis Nichols. Type. 41 mm. standard length</td>
<td>104</td>
</tr>
<tr>
<td>40.—</td>
<td>Pseudorasbora parva fowleri Nichols. After Fowler</td>
<td>105</td>
</tr>
<tr>
<td>41.—</td>
<td>Pseudorasbora parva monstrosa Nichols. Type. 62 mm. standard length</td>
<td>106</td>
</tr>
<tr>
<td>42.—</td>
<td>Luciobrama typus Bleeker</td>
<td>107</td>
</tr>
<tr>
<td>43.—</td>
<td>Labeo melanostigma (Fowler and Bean). Type of Labeo collaris Nichols and Pope. 202 mm. without caudal</td>
<td>109</td>
</tr>
<tr>
<td>44.—</td>
<td>Garra orientalis Nichols. Type. 75 mm. standard length</td>
<td>111</td>
</tr>
<tr>
<td>45.—</td>
<td>Garra rhynchota Koller. Type of Garra schismatorhyncha Nichols and Pope. 108 mm. without caudal</td>
<td>112</td>
</tr>
<tr>
<td>46.—</td>
<td>Garra imberbis (Vinciguerra). After Vinciguerra</td>
<td>113</td>
</tr>
<tr>
<td>47.—</td>
<td>Varicorhinus discognathoides Nichols and Pope. Type. 225 mm. without caudal</td>
<td>115</td>
</tr>
<tr>
<td>48.—</td>
<td>Varicorhinus robustus Nichols. Type. 103 mm. standard length</td>
<td>116</td>
</tr>
<tr>
<td>49.—</td>
<td>Varicorhinus shansiensis Nichols. Type. 174 mm. standard length</td>
<td>117</td>
</tr>
<tr>
<td>50.—</td>
<td>Varicorhinus tungting Nichols. Type. 126 mm. standard length</td>
<td>118</td>
</tr>
<tr>
<td>51.—</td>
<td>Onychostoma leptura (Boulenger). 135 mm. without caudal</td>
<td>120</td>
</tr>
<tr>
<td>52.—</td>
<td>Xenocypris davi di insularis Nichols and Pope. Type. 213 mm. without caudal</td>
<td>122</td>
</tr>
<tr>
<td>53.—</td>
<td>Xenocypris yun nanensis Nichols. Type. 123 mm. standard length</td>
<td>123</td>
</tr>
<tr>
<td>54.—</td>
<td>Xenocypris compressus Nichols. Type. 103 mm. standard length</td>
<td>124</td>
</tr>
<tr>
<td>55.—</td>
<td>Yaoshanicus normalis (Nichols and Pope). Type. 64 mm. without caudal</td>
<td>126</td>
</tr>
<tr>
<td>56.—</td>
<td>Aphyocypris chinensis shantung Nichols. Type. 46 mm. standard length</td>
<td>128</td>
</tr>
<tr>
<td>57.—</td>
<td>Aphyocypris agilis (Nichols). Type. 41 mm. standard length</td>
<td>129</td>
</tr>
<tr>
<td>58.—</td>
<td>Rasborinus takakii fukiensis Nichols. Type. 69 mm. standard length</td>
<td>131</td>
</tr>
<tr>
<td>59.—</td>
<td>Rasborinus takakii hainauensis Nichols and Pope. Type. 95 mm. without caudal</td>
<td>131</td>
</tr>
<tr>
<td>60.—</td>
<td>Hemiculterella engraulis Nichols. Type. 148 mm. standard length</td>
<td>133</td>
</tr>
<tr>
<td>61.—</td>
<td>Hemiculter clupeoides Nichols. Type. 127 mm. standard length</td>
<td>135</td>
</tr>
<tr>
<td>62.—</td>
<td>Hemiculter hainauensis Nichols and Pope. Type. 115 mm. without caudal</td>
<td>136</td>
</tr>
<tr>
<td>63.—</td>
<td>Hemiculter dispar dispar Peters. (Barilius hainauensis Boulenger, after Boulenger.)</td>
<td>136</td>
</tr>
<tr>
<td>64.—</td>
<td>Hemiculter serrata (Koller). Type of Hemiculter serracanthus Nichols and Pope. 113 mm. without caudal</td>
<td>137</td>
</tr>
<tr>
<td>65.—</td>
<td>Parapelecus fukiensis Nichols. Type. 95 mm. standard length</td>
<td>139</td>
</tr>
<tr>
<td>66.—</td>
<td>Parapelecus nicholsi (Fowler). After Fowler</td>
<td>140</td>
</tr>
<tr>
<td>67.—</td>
<td>Ischikvia hainauensis Nichols and Pope. Type. 71 mm. without caudal</td>
<td>141</td>
</tr>
<tr>
<td>68.—</td>
<td>Ischikvia alburnops (Regan). Type of Hemiculter andrewsi Nichols</td>
<td>142</td>
</tr>
<tr>
<td>69.—</td>
<td>Ischikvia transmontana Nichols. Type. 100 mm. standard length</td>
<td>143</td>
</tr>
<tr>
<td>70.—</td>
<td>Erythroculter pseudobrevicauda Nichols and Pope. Type. 170 mm. without caudal</td>
<td>146</td>
</tr>
<tr>
<td>71.—</td>
<td>Megalobrama metrosei Nichols and Pope. Type. 66 mm. without caudal</td>
<td>149</td>
</tr>
<tr>
<td>72.—</td>
<td>Rhodeus notatus Nichols. Type. 33 mm. standard length</td>
<td>152</td>
</tr>
<tr>
<td>73.—</td>
<td>Pseudoperilampus hainauensis Nichols and Pope. Type. 39 mm. without caudal</td>
<td>154</td>
</tr>
<tr>
<td>74.—</td>
<td>Acheilognathus gracilis gracilis Nichols. 44 mm. standard length</td>
<td>156</td>
</tr>
</tbody>
</table>
TEXT FIGURES

FIGURE

75.—Acheilognathus barbatus Nichols. 40 mm. standard length

76.—Acanthorhodeus tonkinensis Vaillant. 77 mm. without caudal

77.—Hemibarbus labo (Pallas). 131 mm. without caudal

78.—Leucogobio taeniellus Nichols. Type. 55 mm. standard length

79.—Leucogobio polytaenia Nichols. Type. 76 mm. standard length

80.—Leucogobio polytaenia tiananensis Mori. Type of Leucogobio polytaenia microbarbus Nichols

81.—Leucogobio imberbis Nichols. Type. 68 mm. standard length

82.—Gnathopogon intermedius Nichols. Type. 65 mm. standard length

83.—Gnathopogon argenteus punctatus Nichols. Type. 46 mm. standard length

84.—Gnathopogon atromaculatus Nichols and Pope. Type. 54 mm. standard length

85.—Gnathopogon similis Nichols. Type. 58 mm. standard length

86.—Gobio rivuloides Nichols. 126 mm. standard length

87.—Gobio cirrhiparoides cirrhiparoides Nichols. Type. 77 mm. standard length

88.—Gobio longipinnis longipinnis Nichols. Type. 95 mm. standard length

89.—Coreius septentrionalis (Nichols). Type. 240 mm. standard length

90.—Pseudogobio jukiensis Nichols. Type. 49 mm. standard length

91.—Pseudogobio bicolor Nichols. Type. 60 mm. standard length

92.—Pseudogobio chinssuensis chinssuensis Nichols. Type. 50 mm. standard length

93.—Pseudogobio tungtingensis Nichols. Type. 52 mm. standard length

94.—Pseudogobio laboides Nichols and Pope. Type. 90 mm. without caudal

95.—Pseudogobio papillatus Nichols. Type. 119 mm. standard length

96.—Sarcocheilichthys hainanensis Nichols and Pope. Type. 62 mm. without caudal

97.—Sarcocheilichthys nigripinnis tungting Nichols and Pope. 80 mm. standard length

98.—Sarcocheilichthys kiangsiensis Nichols. Type. 129 mm. standard length

99.—Sarcocheilichthys sinensis jukiensis Nichols. Type. 90 mm. standard length

100.—Sarcocheilichthys parvus Nichols. Type. 57 mm. standard length

101.—Cobitis taenia dolichorynchus Nichols. 61 mm. without caudal

102.—Cobitis taenia melanolamba Nichols. Type. About 70 mm. standard length

103.—Cobitis taenia sinensis Sauvage and Dabry de Thiersant (upper) and Cobitis macrostigma Dabry de Thiersant (lower) compared

104.—Botia compressicauda Nichols. Type. 91 mm. standard length

105.—Botia rubrilabris (Dabry de Thiersant). 65 mm. without caudal. Tungting Lake

106.—Misgurnus anguillicaudatus tungting Nichols. Type. 89 mm. standard length

107.—Misgurnus mizolepis grangeri Nichols. Type. 117 mm. standard length

108.—Misgurnus mizolepis jukiensis Nichols. Type. 127 mm. standard length

109.—Misgurnus mizolepis hainan Nichols and Pope. Type. 83 mm. without caudal

110.—Misgurnus mohoiy yunnan Nichols. Type. 133 mm. standard length

111.—Misgurnus mohoiy leopardus Nichols. Type. 105 mm. standard length

112.—Nemacheilus pulcher Nichols and Pope. Type. 42 mm. without caudal

113.—Lehua costata (Kesseler). Type of Lehua andrewsi Fowler. After Fowler. (See page 276.)

114.—Barbatula toni fowleri Nichols. Type. 85 mm. standard length

115.—Barbatula toni posteroventralis Nichols. Type. 66 mm. standard length

116.—Barbatula yarkandensis selseifera Nichols. Type. 73 mm. standard length

117.—Barbatula incerta Nichols. Type. 63 mm. standard length
FIGURE	TEXT FIGURES
118.— *Barbatula fasciola* (Nichols and Pope). 60 mm. without caudal | 219
119.— *Homaloptera caldwelli* Nichols. Type. 48 mm. standard length | 221
120.— *Crossostoma davidii* Sauvage | 226
121.— *Crossostoma fascicauda* Nichols. Type. 81 mm. standard length | 227
122.— *Crossostoma stignata* Nichols. Type. 53 mm. standard length | 228
123.— *Crossostoma jangi* Nichols. Cotype. 54 mm. standard length | 228
124.— *Crossostoma davidi* Sauvage | 228
125.— *Crossostoma jascicauda* Nichols. Type. 81 mm. standard length | 228
126.— *Crossostoma stigmata* Nichols. Type. 53 mm. standard length | 228
127.— *Hemimyzon zebroidus* Nichols. Type. 63 mm. standard length | 229
128.— *Gastromyzon leveretti leveretti* Nichols and Pope. Type. 50 mm. without caudal | 231
129.— *Gastromyzon leveretti* Hamilton-Buchanan. 100 mm. without caudal | 239
130.— *Channa asiatica* (Linnaeus). 143 mm. without caudal | 240
131.— *Macropodus viridiauratus* Lacépède. 36 mm. without caudal | 242
132.— *Siniperca roulei* Wu. Type of *Siniperca elongata* Nichols | 247
133.— *Siniperca scherzeri scherzeri* Steindachner. Tungting Lake | 248
134.— *Siniperca chuatsi* (Basilewski). 110 mm. standard length | 249
135.— *Siniperca obscura* Nichols. Type. 81 mm. standard length | 250
136.— *Coreoperca whiteheadi* Boulenger. 97 mm. without caudal | 252
137.— *Philypnus chalmersi* Nichols and Pope. Type. 102 mm. without caudal | 256
138.— *Philypnus potamophilus* (Günther). 135 mm. standard length | 257
139.— *Micropercops swinhonis* (Günther). 50 mm. standard length | 258
140.— *Micropercops dabryi borealis* Nichols. Type. 44 mm. standard length | 259
141.— *Gobius giuris* Hamilton-Buchanan. 145 mm. standard length | 261
142.— *Gobius cliffordpopei* Nichols. Type. 34 mm. standard length | 263
143.— *Gobius leavelli* (Herre). 38 mm. without caudal | 264
PLATES

I.—Fig. 1. Misgurnus mizolepis hainan Nichols and Pope. Type. 83 mm. standard length. Nodoa, Hainan.

Fig. 2. Nemacheilus pulcher Nichols and Pope. Type. 42 mm. standard length. Nodoa, Hainan.

Fig. 3. Sarcogobio philae Nichols and Pope. Type. 62 mm. standard length. Nodoa, Hainan.

Fig. 4. Youshanicus normalis (Nichols and Pope). Type. 64 mm. standard length. Nodoa, Hainan.

II.—Fig. 1. Flota alba cinerea (Richardson). 470 mm. total length. Tungting Lake.

Fig. 2. Mastacembelus sinensis (Bleeker). 190 mm. standard length. Tungting Lake.

Fig. 3. Mastacembelus armatus undulatus (McClelland). 160 mm. standard length. Nodoa, Hainan.

III.—Fig. 1. Clarias fuscus (Lacépède). 77 mm. standard length. Nodoa, Hainan.

Fig. 2. Hemibagrus macropterus Bleeker. 77 mm. standard length. Tungting Lake.

Fig. 3. Pseudobagrus fulvidraco (Richardson). 80 mm. standard length. Tungting Lake.

IV.—Fig. 1. Barbus nigrodorsalis (Oshima). 115 mm. standard length. Nodoa, Hainan.

Fig. 2. Erythroculter dabryi (Bleeker). 117 mm. standard length. Tungting Lake.

Fig. 3. Parabramis pekinensis (Basilewski). 85 mm. standard length. Tungting Lake.

Fig. 4. Hemiculter clupeoides Nichols. Type. 127 mm. standard length. Tungting Lake.

V.—Fig. 1. Barbus semijasciolatus Günther. 34 mm. standard length. Nodoa, Hainan.

Fig. 2. Rasbora cephalotaenia steineri Nichols and Pope. Type. 65 mm. standard length. Nodoa, Hainan. (Barbel an error.)

Fig. 3. Ischikavia hainanensis Nichols and Pope. 43 mm. standard length. Nodoa, Hainan.

Fig. 4. Pseudoperiampus hainanensis Nichols and Pope. Type. 39 mm. standard length. Nodoa, Hainan.

VI.—Fig. 1. Acanthorhodeus guichenoti Bleeker. 73 mm. standard length. Tungting Lake.

Fig. 2. Sarcocheilichthys sinensis sinensis Bleeker. 120 mm. standard length. Tungting Lake.

xxxv
Fig. 3. Hemibarbus maculatus Bleeker. 135 mm. standard length. Tungting Lake

VII.—Figs. 1 and 2. Barbatula yarkandensis sellaefer Nichols. Type. 73 mm. standard length. Chin-ssu, Shansi.

Figs. 3 and 4. Barbatula toni posteroventralis Nichols. Type. 66 mm. standard length. Chin-ssu, Shansi.

VIII.—Fig. 1. Gobiobotia pappenheimi Kreyenberg. 39 mm. standard length. Tungting Lake.

Fig. 2. Lejua costata (Kessler). Male. 42 mm. standard length. Chin-ssu, Shansi.

Fig. 3. Cobitis taenia dolichorhynchos Nichols. 61 mm. standard length. Nodoa, Hainan.

Fig. 4. Lepturichthys fimbriata nicholsi Hora. 59 mm. standard length. Tungting Lake.

IX.—Fig. 1. Barbatula stoliczkai (Steindachner). 78 mm. standard length. Mai Tai Chao, Shansi.

Fig. 2. Misgurnus mizolepis mizolepis Günther. 167 mm. standard length. Tungting Lake.

Fig. 3. Cobitis taenia sinensis Sauvage and Dabry de Thiersant. 47 mm. standard length. Tungting Lake.

Fig. 4. Gobius cliffordpopei Nichols. Type. 34 mm. standard length. Tungting Lake.

X.—Fig. 1. Coreoperca whiteheadi Boulenger. 68 mm. standard length. Nodoa, Hainan.

Fig. 2. Ophicephalus maculatus (Lacépède). 110 mm. standard length. Nodoa, Hainan.

Fig. 3. Ophicephalus gachua Hamilton-Buchanan. 50 mm. standard length. Nodoa, Hainan.

Fig. 4. Philypnus chalmersi Nichols and Pope. 58 mm. standard length. Nodoa, Hainan.

Fig. 5. Philypnus potamophilus (Günther). 115 mm. standard length. Tungting Lake.
CHAPTER I
INTRODUCTION
FAUNAL DISCUSSION

Different writers approach the broad and indefinite subject of zoogeography from different angles. There are various sound basic concepts according to which one may orient the material of faunal discussion, and when these are poorly defined confusion frequently results. The faunal area is an area characterized by a certain fauna or association of animals. The writer places primary emphasis on the fauna rather than the area, bearing in mind that they are two different things, but at the same time defines the fauna in terms of its geographic limits or boundaries, that is, in terms of the faunal area.

Where two faunas come together, they may be sharply defined the one from the other, they may interdigitate, usually on some physiographic basis, or they may blend and mix over a relatively wide belt. It is possible, using one or another criterion, to draw a geographic line between the two, but at times it is preferable to recognize a transition belt belonging neither exclusively to one nor the other, but partly to both. By the first procedure it is possible to classify faunally every geographic point, but the last makes the unit fauna concept more definite and tangible. The writer uses the one or the other, depending on the aspect of the matter under discussion.

It is, of course, obvious that faunal areas will run right across political boundaries, except in cases where these may correspond with such natural boundaries as chance to be of faunal significance. Most faunal lists and studies are, however, made for a constituted national, state, or local area. Definite, tangible, arbitrary limits set in advance are a great advantage in such work, and an equal convenience for those who will later refer to it. At the same time it is most satisfactory to treat an area which is, as far as may be, faunally homogeneous, and it is with this in mind that the boundaries of the present work have been set as those of China proper. Westward of these boundaries one finds the unlike fishes of high central Asia; northward a different fauna lies across the deserts, and the American Mu-
seum of Natural History has also received very scant material from thence, whereas recent Russian ichthyologists have studied the fauna rather thoroughly and satisfactorily.

Every species of animal has a somewhat different range. Every group of animals has a different center of abundance, of dispersal, and is separable into faunas which do not correspond in detail with those of any other group. On the other hand, the factors of physiographic and climatic uniformity and divergence, past and present, primary causes in differentiating one fauna from another, have frequently acted on different groups in much the same way, leading to a sufficiently close approximation of the major faunas of one group to those of another so that the same faunal terminology may be approximately applied to each, or diverse groups make up the fauna in a broader sense. It is the somewhat parallel correspondence between the ranges of different species which makes of the fauna an entity anyway, not merely an abstract concept.

To emphasize this correspondence and make the fauna more tangible, we draw limits about the area which it dominates and in so doing define the faunal area. This puts us in a position to analyze the fauna, which is to a considerable extent a matter of studying the details which do not correspond. We find in Chinese fresh waters, for instance, a *Tetraodon* and other fishes with obvious marine affinities. They are an integral part of the fauna as defined, yet a foreign or marine element therein. Similarly species with high central Asiatic affinities are a foreign element, and the place we assign to the Chinese or any other fauna in a general classification of the fish faunas of the world depends on the balance between such different elements. Most taxonomic groups of fishes have geographic or physiographic centers of abundance, and the classification of faunas corresponds more or less with one which might be based on the dominance of the different groups.

The whole subject is an involved and somewhat complicated one. To some students it seems highly subjective and rather meaningless. But when one has worked out and determined faunal lines on the map on one basis or another, and later finds numerous unsuspected details wherein the animals on one side of the line differ from those on the other, as not infrequently occurs, it seems safe to conclude that they have a real meaning. This is also excellent verification for the correctness with which the lines have been drawn.

ORIENTATION OF THE CHINESE FISH FAUNA

The fishes of the world fall into three natural faunal groups: deep-sea, shore, and fresh-water fishes. The writer has elsewhere (1928, Amer. Mus. Novitates, No. 319, pp. 6–7) drawn up a faunal analysis of fresh-water fishes essentially as follows:
INTRODUCTION

FRESH-WATER FISHES

I. Peripheral
 1. Boreal
 2. Austral
 3. Insular and Australian
 A. Australian
 B. Insular
 a. Madagascan
 b. West Indian
 c. Oceanic
 2. Austral
 A. African
 a. East and South African
 b. Nile and West African
 B. Neotropical
 a. Middle American
 b. South American

 B. High Asiatic
 C. Indian and Oriental
 a. Indian
 b. Chinese
 x. Temperate
 y. Subtropical

The continental fauna is dominated by the Ostariophysii (carp-catfish-charac- cin group). It occupies continental Eurasia, Africa, and the Americas, with the exception of a rather vague northern circumpolar area, and the southern tips of South America and Africa. The peripheral fauna is made up of elements with better marked affinities to salt-water groups. It occupies a vague northern circumpolar area (trouts and pikes), the southern tips of South America and Africa (Galaxias), Australia and the islands of the world in general.

The typically continental Chinese sub-fauna is widely separated from the southern or Austral division of the continental both by space and in kind. To the southwest through Indo-China it merges into the equivalent Indian sub-fauna. Just where to draw the line between the two and the nature of their contact would have to be determined by a study of extensive collections from intermediate areas. It is bounded on the west by the high Asiatic and on the north by the Holarctic, the two major divisions of the northern continental foreign to it. Coastwise, of course, it is bounded by the realm of shore fishes. A faunal study of the estuaries or transition zone between Chinese fresh-water and marine shore fishes would have a particular interest, due to the faunal strength and comparatively pure continental nature (freedom from peripheral elements) of the Chinese fresh-water fish fauna. Attention has been too much occupied with study and description of fresh-water fishes to approach this subject.

The fish fauna of high central Asia is very different from that of China, although carps and loaches dominate it to the same extent. Carps related to Schizothorax and loaches related to Barbatula are present in great variety; a few peculiar
INTRODUCTION

5
types and many minor variations occur, as compared with the multiplicity of types found in China. These highland fishes enter the western provinces more or less in the hills and are also found here and there farther into China, but seem to be comparatively few in species even in Szechwan, where the fishes, of the larger rivers at least, are very like those of central China. The high Asiatic and Chinese faunas presumably interdigitate on a basis of physiography and ecology, mostly west of the boundaries of China proper. Careful collecting correlated with altitude along the western borders may show peninsulas and islands of the former in China and substantiate casual Chinese records for high Asiatic or Indian species, which are now open to question.

Northward the Chinese fauna is separated from the Holarctic by a desert barrier or series of such barriers. Only in Manchuria is there any considerable mixture of the two.

From the above it will appear that China proper is more or less of a unit faunal area. As such it may doubtless be subdivided into smaller sub-areas. Collections made by the American Museum of Natural History Asiatic Expeditions show rather clearly that in the east there is a faunal line separating south from central China, a southern from a north-central Chinese sub-fauna. This line corresponds more or less to that between the temperate and subtropical zones. It would presumably be of greater importance than it is for fresh-water fishes, were it not that deserts to the north form a natural barrier, to the south of which the Chinese fauna as a whole has been able to expand freely, which has checked invasion by Palaeartic forms from the north. The north-central and south Chinese faunas are very much alike, but species or races in the one are frequently replaced by allied representative species or races in the other.

Fukien belongs rather with the southern than with the north-central faunal area and is to some extent a transition belt between the two, with peculiarities of such transition belts (Nichols, 1923, Science, LVIII, pp. 153-155). In spite of its variability, it may be best to list it as a unit sub-area, but collections examined from elsewhere in south China are too meager to determine this point. For that matter, our south Chinese sub-fauna quite certainly crosses political boundaries to the southwest, and adequate extralimital material may prove it to cover quite as large an area without as within such boundaries.

Fishes of the Yangtze Valley lowlands are sufficiently characteristic to suggest making of this a unit sub-area. Due to favorable conditions, fish life is here exceedingly varied and abundant, and it seems also to be something of an evolutionary center and to have given rise to various adaptive or specialized forms. Fishes in the distant Amur River (some of them at least) are, however, closely related to their representatives in the Yangtze, and the writer is inclined to look
on these lowlands as merely a very extensive ecological niche dominating central China. The ecological association is an unsatisfactory minor factor from which to build faunas or faunal areas (Nichols, 1928, Condor, XXX, pp. 315, 316).

The fishes of Yunnan again are quite unlike those of eastern China and raise the question of transition belt versus unit sub-area as do those of Fukien. The American Museum has very scanty collections from this western province.

To sum up, we are in a position to separate Chinese fresh-water fishes definitely into north-central and southern sub-faunas which have a standard climatic zonal basis, and to recommend further study of the faunal complexity of this interesting area.

SPECULATION ON THE HISTORY OF THE OSTARIOPHYSI

(Nichols, 1930, Copeia, No. 4, pp. 148–151)

Carp-like fishes dominate the fauna of China to such an extent that in a provisional check list drawn up in 1928 (Nichols, 1928, Bull. Amer. Mus. Nat. Hist., LVIII, pp. 1–62), 263 of the 374 species recognized (70 per cent) were carps and loaches (with one sucker), and 11 per cent of the remainder were catfishes, so that only 19 per cent belonged to non-ostariophysine groups. Comparison of Chinese carps with the familiar American ones has led to speculation as to the history and distribution of this branch of the Ostariophys, which correlates with similar consideration of the more tropical catfish and characin branches dating from 1917, when Ludlow Griscom and the writer reported on an extensive collection of African fishes (Nichols and Griscom, 1917, Bull. Amer. Mus. Nat. Hist., XXXVII, pp. 653–756).

Carps are fundamentally non-predaceous, feeding on small animals or even vegetable matter, and are without teeth in the mouth. To take the place of the missing oral dentition, they are provided with well-developed, variously specialized teeth on the pharyngeal bones (of the throat). In the carps proper these are few in number and definite in arrangement, differing in number, arrangement, and character in different genera, and to a lesser extent in different species. In the suckers the pharyngeal teeth are more numerous, and in a more or less comb-like series.

Loss of oral dentition would have been a rational adaptative change in the suckers, whereas various of the modern active free swimming carps could, it seems, make good use of such teeth did they possess them. This is particularly true of certain predaceous forms that have developed in China, probably correlated with the long-time protection of that area by a desert system (the Gobi) from invasion by such northern predators as pike and trout. There is, for instance, the genus *Opsariichthys* with crooked, interlocking edges to the strong, toothless jaws. It is,
INTRODUCTION

then, a reasonable assumption, and one generally held, that the suckers are more primitive than, and more or less ancestral to, the true carps.

The suckers are now North American, except that one northern species (*Catostomus catostomus*) also occurs in Siberia, and that there is a specialized sucker (*Myxocyprinus*) in the valleys of China. This interesting fish was formerly united generically with similar forms of the Mississippi Valley, but as the theoretical probability of any such specialized cyprinoid having crossed between Asia and America is small, the present-day view that the resemblance here is a parallelism seems most rational. One may suppose the suckers to have run their course in China, have left but this single peculiar representative behind, and have there been superseded more or less by the present-day gudgeons, a division of the true carps. In America the group is still relatively young, with various genera and many species (Nichols, 1925, Natural History, XXV, p. 349).

This view would make of China a recent center of differentiation and distribution for carp-like fishes. It probably is this modern center. The true carps are here not only very abundant but more varied than elsewhere, more advanced in evolution or radial differentiation, more deeply cleft. Thus the breams with a single primitive genus in North America, and a couple allied to it in Europe, here make a convenient subfamily with a number of genera, some of them rich in species. The gudgeons, which seem not to have reached Africa or America and are represented by a few species in Europe, make a similar convenient subfamily with unlike genera and many species. *Zacco* and *Opsariichthys* clearly differ genetically, whereas the closely allied and somewhat more primitive *Barilius* shows no comparable variation across southern Asia and Africa.

It is obvious that carps have recently entered Africa from the northeast. In that continent they are little varied and form a minor part of the fresh-water fish fauna. Few genera are represented, and these are related to numerous and more varied forms occurring in southern Asia. For instance, the genus *Barbus* is represented by a large number of species, particularly in east and south Africa, but these are comparatively undifferentiated, whereas their Asiatic and East Indian allies are separated into numerous well-marked subgenera, to which the modern tendency is to give full generic rank. Not so many species have invaded the strong West African or Congo fauna with its many specialized fishes of older groups.

Carp-like fishes do not enter the neotropical or Australian regions. They are the dominant fresh-water fishes of the Northern Hemisphere. Their present distribution is obviously recent, from the north, from an Asiatic center, apparently China. The differentiation and occurrence of the loaches parallel that of the carps but are more restricted. Southwestward they have reached Abyssinia. Fragmentary remains of a supposed loach are recorded by Cope from a fresh-water Upper
Tertiary formation in Idaho, but their identification was probably an error. The group does not occur in America, and evidence of its ever having crossed to the New World is inadequate. Because of their many barbels, minute scales, and other characters, it would be excusable to consider loaches archaic with relationship to both carps and catfishes, but they are probably a secondary offshoot of the true carps. Tangible evidence of this is furnished in China by a puzzling fish, *Gobio-botia*, which combines characters of a loach and of a gudgeon.

To turn to catfishes and characins, the latter group is confined to the southern continents (South and Middle America, and Africa), and the former is most dominant and diversified in the same areas, although with a general continental distribution. There can be little doubt that both these groups are older than the carps, and whereas tangible evidence bearing on their distribution may be lacking, it is most reasonable to suppose that each invaded its present range from the north, where both have since been more or less superseded by the carps (Nichols and Griscom, 1917, Bull. Amer. Mus. Nat. Hist., XXXVII, pp. 736–738). The presence of characins in Middle America is presumably a secondary and recent northward movement of South American forms.

As to which are the older, catfishes or characins, fossil evidence is quite negligible, as it is for this entire group of Ostariophysi, except as it shows them present only in the Tertiary, and much as they are today. Distributional evidence is confusing. Nichols and Griscom (1917, *op. cit.*) consider that the distribution of the catfishes was the earlier, basing this opinion on their greater diversification in Africa and South America. From the radial diversity of catfishes there, it would seem that they may well have been the first modern “Continental” fishes to reach South America. On the other hand, if gymnotids be considered a characin offshoot, the development of this peculiar group is evidence to the contrary. Boulenger's (1904, Cambridge Natural History, p. 574) opinion that the characins are the most primitive ostariophysine fishes seems sound. Structurally, catfishes are more specialized than characins, and ancestral Ostariophysi should have been characin-like pre-characins, even if modern catfishes are older, and their distribution preceded that of the characins of today. In any event some interesting and perhaps significant comparisons may be drawn between the development of these two groups in Africa and South America. There is nothing in Africa to compare with the whole series of South American armored catfish. In South America there are no other older armored fishes which might have competed with such a trend; in Africa we have the heavily scaled polypterids. In South America we find the ostariophysine gymnotids which parallel the more primitive and presumably older non-ostariophysine mormyrids of Africa. So catfishes in one direction and characins in another seem to have had their evolutionary potentialities blocked in Africa by older groups which are absent in South America. The ostariophysine potentiality
of producing an electric species gives us the electric gymnotid eel in South America, and could there have been gymnotids in Africa there might have been one there also; as it is, an African electric catfish has been evolved.

At a superficial glance, the systematic ichthyologist sees certain resemblances between catfishes and characins in Africa and in South America, which fade on closer study, and he gets the impression that the evolutionary diversification of both groups in the respective continents has been entirely independent, as it would have been with an invasion of primitive forms from the north prior to such diversification. These fishes seem to the writer to furnish evidence against any land bridge or other connection between the two continents in Tertiary times.

The fossil evidence on the Ostariophysi is too scant to tell us much of their history or distribution, and none of it is pre-Tertiary. The group seems to have been present pretty much throughout the Tertiary, and the opening of that period very likely found it essentially as today with its three main sub-groups already differentiated. The writer's concept of evolutionary dynamics favors the view that it is not in changes correlated with environmental change that significant new adaptations arise, but as evolutionary experiments in one direction or another in a wide, favorable, and stable environment where a given form is sufficiently numerous and well established for competition to be keen and of long duration between the individuals which comprise it, not merely between one form and another, or a form and the environment as a whole. A given species quickly expands numerically to its saturation point in a given environment, but by splitting into different species, each with somewhat different habits and adaptations, it may continue to expand. This would seem to be at least one important factor in the origin of species. It is not unreasonable to suppose that between Mesozoic and Cenozoic life there was a long period of stable conditions with few uplifts or depressions, a period of which the fossil record is essentially lacking, a true epi-Mesozoic interval. Such a period would have been characterized by mature drainage systems where a group of fresh-water fishes, the Ostariophysi, might well have been evolved, and the carps arisen as toothless suckers.

The ancestors of the Ostariophysi are unknown, and the writer has made no special study to justify speculation as to the relationships of the group to more primitive fishes. It was probably always a fresh-water group. Largely on the basis of its membership in modern fresh-water fish faunas, these may be separated into Continental (Ostariophysi dominant) and Peripheral (whose members have marine affinities) (Nichols, 1928, Amer. Mus. Novitates, No. 319, pp. 6–7).

It is interesting to note that the carps, although abundant in the Indies, do not reach the Australian region. Fresh-water forms of catfish do occur there, but these are related to the exceptional marine catfish genera, *Plotosus* and *Arius*, hence to be expected.
The family Cyprinidae (carps) are conveniently divided into several series, sometimes given subfamily rank. At the suggestion of Doctor William K. Gregory, the characters, adaptations, and habitats of these series, and of carp-like fishes in general, have been arranged in tabular form.

<table>
<thead>
<tr>
<th>Group</th>
<th>Characters</th>
<th>Adaptations</th>
<th>Preference</th>
<th>Habitat</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carp-like fishes</td>
<td>Pharyngeal teeth, none in mouth</td>
<td>Bottom</td>
<td>Fresh water</td>
<td>Continental fresh waters except Australia and South America</td>
</tr>
<tr>
<td>Suckers</td>
<td>Sucking mouth</td>
<td>Bottom</td>
<td>Mature rivers</td>
<td>North America, Siberia, one in China</td>
</tr>
<tr>
<td>Carps</td>
<td>Standardized teeth, normal mouth</td>
<td>Free swimming</td>
<td>Lakes and swift water</td>
<td>Continental fresh waters except Australia and South America</td>
</tr>
<tr>
<td>Cyprininae (barbs)</td>
<td>Standardized; barbels; full set of teeth</td>
<td>Comparative inactivity</td>
<td>Sluggish water</td>
<td>Eurasia and Africa</td>
</tr>
<tr>
<td>Xenocyprininae</td>
<td>Cross-mouth</td>
<td>Bottom, and secondarily free swimming</td>
<td>Various</td>
<td>Fully represented in Asia, and bottom forms in Africa</td>
</tr>
<tr>
<td>Leuciscinae (minnows)</td>
<td>Slender, no barbels</td>
<td>Free swimming</td>
<td>Clear lakes and streams</td>
<td>Northern continents (especially Europe and North America)</td>
</tr>
<tr>
<td>Abramidinae (breams)</td>
<td>As above, compressed, sometimes deep-bodied, belly keeled</td>
<td>Mid-water</td>
<td>Lakes</td>
<td>Northern continents (especially Eurasia)</td>
</tr>
<tr>
<td>Rhodeinae</td>
<td>Teeth reduced, deep body, small size, spawning habits</td>
<td>Specialized</td>
<td>Narrow waters</td>
<td>Eurasia (especially China)</td>
</tr>
<tr>
<td>Gobioinae (gudgeons)</td>
<td>More or less elongate, with inferior mouth</td>
<td>Bottom</td>
<td>Mature rivers</td>
<td>Temperate Asia and Europe</td>
</tr>
<tr>
<td>Loaches</td>
<td>Numerous barbels; reduced scales; encapsuled air bladder</td>
<td>Primarily bottom</td>
<td>Various adaptations to various speeds and loads of running water</td>
<td>Eurasia (especially China)</td>
</tr>
</tbody>
</table>
INTRODUCTION

PLAN OF THE PRESENT WORK

In listing the fresh-water fishes of China, brief comparative descriptions have been given of the genera and species, with keys to the species when several occur in a genus. Wherever possible the species descriptions are based on specimens actually examined, and as fishes vary considerably with size, the range of lengths of those on which the descriptions are based is given.

In addition to the original reference to each species, other names clearly referable to it have been included in the synonymy. It should be noted that where the author’s name is separated from the species name by a comma, the reference is not an original reference and implies merely that the citation is a synonym, not that the name he uses is, as it may be a misidentification.

DOUBTFUL SPECIES REFERENCES

In the past, various fresh-water fishes have been imperfectly described from China (sometimes from Chinese pictures) which it is not possible to identify with any degree of certainty, though doubtless all or almost all were based on species here recognized. There are also numerous more or less recent Chinese references to species which occur in other regions, for the most part based on misidentification of Chinese material with related extralimital forms. Very likely a good many Indian species actually do occur in the western borders of China, but the status as Chinese of various of those so listed requires confirmation. From these and other sources of error, an alphabetical list of names, which will be met with in the literature of Chinese fresh-water fishes but which the writer considers are not entitled to further consideration here in our present state of knowledge of that subject, has been drawn up, as follows:

-Acehara hakonensis
-Acrossochilus formosanus
-Ameiurus (Pimelodus) guttatus
-Aoria cavasius
-cornula
-Aspidobagrus gulio
-Aspiolucius merzbacheri
-Bagrus (Pimelodus) bouderius
-Barbus apogon
-chola
-huguenini

melanopterus
-mosal
-sarana
-stigma
-tor
-Capoeta fundulus
-Chaca hamiltoni
-Channa formosana
-Cobitichthys dichachrous
-polynema
-Cobitis poecilopleura
THE FRESH-WATER FISHES OF CHINA

Coilia ectenes
 grayii
 mystus
 rendahli
Cottus pollux
Crossostoma lacustre
Cyprinus chola
 catio
 tor
Diplophysa kungessana
Exostoma labiatum
Gasterosteus aculeatus
Gnathopogon biwae
 gracilis
 iiijmae
 tsuchigae
Gobio gobio
Gymnocypris dobula
Gymnostomus moliterella
Hemibagrus limbatus
Hemibarbus barbus
Hemiculter akoensis
Lampetra fluviatilis
 planeri
Leiocassis adiposalis
 brashnokowi
 brevianalis
Lepisosteus sinensis
Leuciscus stigma
Misgurnus dichacrous
 maculatus
 polynema
 spilurus
Moroco chuanchicus
Nemachilus mongolicus
 sternurus
 zaidamensis
Odontolabrax typus
Ompok bimaculatus
 canio
Oncorhynchus leptosomus
Ophicephalus iris
 jovis
 lucius
 miliaris
 ocellatus
 tadianus
Oreinus richardsonii
Pimelodus cavasius
 cornula
 gulio
Pseudolaubuca sinensis
Rasbora daniconius
Rhodeus atremius
 kurumeus
Rita manillensis
 sacerdatum
Rohita macrochir
Rohitee belangeri
 catio
 microlepis
Schizopygopsis malacanthus
 microcephalus
 przewalskii
 stoliczkae
Schizothorax dolichonema
 kessleri
 richardsonii
INTRODUCTION

Silurus attu
 bimaculatus
 canio
Systomus microlepis
Trichogaster leeri

Wallago attu
 Xenocypris homospilotus
 plena
 sungariensis

Too much confusion still exists between various related species of Chinese fishes to map their respective ranges accurately, and this has not been attempted. The localities of material examined have been listed throughout, the locality from most of the references in the synonymy has been given, and some locality references courteously furnished by Doctor N. Gist Gee of Peking are included.

Not a great deal of data on the habits and manner of occurrence of Chinese fresh-water fishes is available. Some has been quoted from the literature, and wherever Mr. Pope has made interesting field observations these have been inserted over his name.

Several fresh-water fishes are extensively cultivated by the Chinese. We may mention Cyprinus carpio (the carp), the genus Hypophthalmichthys, and Labeo jordani. This doubtless complicates the ranges of various species and sometimes causes confusion between artificial forms and natural races. A much more detailed knowledge of this fish culture than is available, would be advantageous (Nichols, in Andrews, R. C., 1932, Natural History of Central Asia, I, pp. 596–598).

Writing of the fresh-water fish industry of South China Professor William E. Hoffmann says (1929, Lingnan Sci. Jour., Canton, VIII, pp. 167–168):

“Pond-fish culture seems to have originated in China, apparently about 2000 B.C. From China pond-fish culture has been introduced into other countries and, in recent times, greatly improved. In China the present-day methods are much the same as those in use hundreds of years ago. The five kinds of fish commonly cultured, frequently in the same pond, are Cyprinus carpio L., Ctenopharyngodon idellus, Hypophthalmichthys nobilis, H. molitrix, and a fifth species not yet identified [presumably Labeo jordani].

“The type of pond as well as the management of the same is variable and depends upon the source of the water supply, whether or not plant crops are alternated with fish crops, and other factors. The fry, except of Cyprinus carpio L., are secured from the rivers, kept for a time in special rearing ponds, and then sold as ‘stock fish’ to the fish farmers who raise large fish for the market. The number and size of fish used in stocking a pond depend upon the size of the pond, the food supply, and the size of market fish desired. . . . Feeding methods are also variable. The food used is determined usually by availability and cheapness and in the silk
district, for instance, consists chiefly of the by-products of silkworm rearing. Night-soil, various animal manures, grass, by-products of the silk industry, and materials coming from peanut oil making, bean oil manufacture, wine making, and from the rice mills, are the chief foods.

"Water crops commonly grown in fish ponds are water chestnuts, Caladium, and lotus. The fish are commonly harvested once each year, but in certain places some fish are taken out each day, while under certain conditions the fish are harvested but once in two years. The fish are usually caught and marketed by the fish farmers themselves but there are also certain people who make a business of catching and marketing fish for others. Fish markets consist of one or more commission houses depending upon the size of the market. The largest fish market in Canton is very interesting. It opens about 2:00 A.M. and closes about 8:00 or 9:00 A.M. when all fish have been sold. As much as $24,000 worth of fish may change hands in one morning during the height of the season. The annual pond-fish production of Kwangtung Province is very great but it is impossible to get accurate figures on the same. With more scientific methods, based on experimental studies, the production could undoubtedly be very much increased."

Almost every fresh-water fish, large or small, is utilized for food by the Chinese. According to Mr. Pope, a simple fish conservation custom or belief is quite prevalent among them. When a given piece of water has become seriously depleted, it is rumored that the reason the fishing there has fallen off is that the spirits of that particular water have in some manner been offended. It is considered bad luck and becomes bad form to fish there any more, and no one does so for a while. Later, with the passage of time, now and then a hardy individual may try his luck, but says nothing about it for fear of public disapprobation. When, however, such a one chances to make a good catch, it is a sign that the spirits are again friendly; he spreads the glad tidings and fishing is resumed.
CHAPTER II
SYSTEMATIC ACCOUNT OF THE FRESH-WATER
FISHES OF CHINA

Family ACIPENSERIDAE
STURGEONS

The sturgeons are large fresh-water or anadromous fishes of north temperate regions. They are shark-like in various ways, such as having the mouth on the under side of the head, and a heterocercal caudal fin, with attenuated tail bent upward and extending into its long upper lobe. They are without true scales. Primitive fishes related to the sturgeons were dominant during Palaeozoic times, held on during the Mesozoic era, and are represented today by a few scattered remnants. Sturgeons are excellent food fish and have a very large number of small eggs from which caviar is made. Two species, both of the genus *Acipenser*, are known from China. Chinese records of *Huso dauricus* (Georgi) are questionable.

Genus Acipenser Linnaeus

Fresh-water and anadromous sturgeons, with gill membranes attached to the isthmus, not forming a fold across it. Barbels round in cross section. Mouth comparatively small, transverse. Snout and peduncle not notably depressed. Snout more or less elongate, extending beyond the inferior mouth which is surrounded with barbels. Body without scales, armed with series of bony scutes, and smaller nodules between.

Key to Chinese Acipenser

Seventeen dorsal and 36 to 41 lateral shields; skin entirely naked; snout decidedly longer than $\frac{1}{2}$ head (in examples of 12 to 15 inches) ... *sinensis*

Nine to 12 dorsal and 33 to 35 lateral shields; snout about equal to $\frac{1}{2}$ head (in examples of 12 to 15 inches) ... *dabryanus*
Acipenser sinensis Gray

Locality of Material:—Specimen examined from near Canton.

Description:—Head in length to base of caudal, about 3; depth in head, 2.4; snout, 1.7; eye in snout, 8 (specimen 390 mm. total length). Dorsal rays, 45 or 50; anal, about 40; scutes, 37 to 41.

Acipenser dabryanus Duméril

Figure 1

Locality of Material:—Shanghai (fide Gee).

Specimen examined from Tungting Lake, Hunan.

Description:—Head in length to base of caudal, 3.1; depth (greatest at shoulder) in head, 2.5; snout, about 2; eye in snout, 6.5. Dorsal rays, about 60; anal, about 40; scutes (lateral row), 35 (specimen 318 mm. to base of caudal).

Remarks:—We obtained only one small sturgeon [Acipenser dabryanus] at Tungting Lake, called “sung-huang-yü.” As it was the only one we got word of at either Pien-Shan or Yochow, these fish appear to be uncommon in the immediate vicinity. A big one was reported seen at the Port, 4 miles beyond Yochow. There are said to be two kinds here, and both to attain a great size, some 1500 lbs., and that the one we got has the longer nose of the two (C. H. Pope, field notes).

This may be a misidentification, as a specimen from near Canton, here called Acipenser sinensis, has a longer snout; or there may be a third species in Tungting Lake.

Genus Huso Brandt and Ratzeburg

Huso Brandt and Ratzeburg, 1833, Medizinische Zoologie, II, p. 3. Type: Acipenser huso Linnaeus.

Large Eurasian sturgeons, differing from Acipenser in having the gill membranes united in a free fold across the isthmus, the barbels more or less flattened, and a larger mouth.

Huso dauricus (Georgi)

Acipenser dauricus Georgi, 1775, Reise im Russischen Reich, I, p. 352. Amur River, etc.

SYSTEMATIC ACCOUNT

Description:—Head in length to base of caudal, 3.3; depth in head, 2; snout, 2.4; eye in snout, 6.5 (from figure of a young fish). Dorsal rays, 46 to 54; anal, 28 to 36; scutes (lateral row), 36 to 46.

Remarks:—This sturgeon has occasionally been recorded from China and the records later discredited. Assuming there has been no misidentification in Shaw's recent record, it is at least potentially Chinese.

Family POLYODONTIDAE

PADDLE FISHES

There are two living representatives of this peculiar family of primitive fishes related to the sturgeons, one found in the valley of the Yangtze, the other of the lower Mississippi.

Genus Psephurus Günther

Large, smooth-skinned, scaleless ganoids, with the upper jaw prolonged into a peculiar horizontally flattened paddle. Caudal strongly heterocercal. A single species, Chinese, differs from the related American *Polyodon* by comparatively short gill rakers in moderate number.

Psephurus gladius (Martens)

Locality of Material:—Shanghai (*fide* Gee).

Description:—Depth in length to base of caudal, 10.3; head, 1.6; snout in head, 1.5; eye in snout, 3.0 (small specimen 175 mm. long to base of caudal). Dorsal rays, about 70; anal, about 65; no scutes or scales.

Remarks:—"This fish is valued for food, like the sturgeon, and may reach a length of about 7,000 mm." (Ping, 1931, p. 190).

Family ELOPIDAE

TARPONS

Genus Megalops Lacépède

Compressed, large-eyed, herring-like fishes of moderate size, with a bony plate between the arms of the lower jaw; the last ray of the dorsal fin produced in
a filament; scales large, firm, silvery, and lateral line present. A widely distributed species on the shores of the Indian and adjacent Pacific oceans, entering fresh water.

Mouth large, opening more or less obliquely upward, the lower jaw projecting. Gill membranes entirely separate; pseudobranchiae absent.

Megalops cyprinoides (Broussonet)

Locality of Material:—Hainan (Oshima, 1926, p. 2).

Description:—Depth in length to base of caudal, about 3.5; head, about 3.5; eye in head, 3.2 to 3.5. Dorsal rays, 19 to 21; anal, 24 to 27; scales, 37 to 42.

Family CLUPEIDAE

HERRINGS

Herrings are small or moderate-sized, silvery, mostly marine fishes with a single soft-rayed dorsal fin placed in the middle of the back, and a forked caudal fin. Their mouths are large, teeth almost or quite absent, and gill rakers long and fine, forming a sieve which enables them to feed on relatively small plankton. Their bodies are usually compressed, and ventral line keeled. They commonly swim in schools at or near the surface.

Various herrings occasionally enter rivers from the sea, but the fortuitous occurrence of such species in fresh waters along the Chinese coast does not entitle them to consideration here. Other species are anadromous, that is, regularly enter fresh water to spawn. As far as available data go, there is only one Chinese herring, perhaps belonging to this latter category, which must be placed in our list of fresh-water fishes.

Genus Hilsa Regan

Herrings of the shores of the Indian Ocean, entering rivers. With the normal herring series of keeled scutes on the belly; gill rakers normal; ventral fin 8-rayed; last dorsal ray not prolonged; scales moderately large. No teeth on jaws or inside mouth, minute, deciduous or otherwise.

Hilsa reevesii (Richardson)

Description:—Depth in length to base of caudal, 2.9 to 3.3; head, 3 to 3.6;
eye in head, 5 to 9 (specimens 150 to 550 mm. long). Dorsal rays, 17 or 18; anal, 18 or 19; scales, 42 to 45.

Remarks:—“This fish appears in the rivers during late spring and early summer for laying eggs. It is quite abundant in the Yangtze River at those times, even in Chungking, Szechuan, a thousand miles or farther from the sea. The flesh of this fish is excellent and very famous in China” (Wang, K. F., 1935, p. 2).

Family ENGRAULIDAE
ANCHOVIES

Genus Coilia Gray

Small, anchovy-like, typically estuarine fishes of southern Asia, the Indies, and the Orient, with the posterior portion of the body long and tapering; the anal very long, confluent with a small, pointed caudal. Variable, a number of rather ill-defined species recognized.

This genus is found in both salt and fresh water. We assume that only one or two Chinese species belong in fresh water.

Key to Chinese Fresh-Water Coilia

Maxillary extending to below root of pectorals; scales, about 60 nasus
Maxillary extending about to gill cleft; scales, about 75 brachygnathus

Coilia nasus Temminck and Schlegel

Coilia rendahli, Chu, 1931, ibid., p. 16. Fresh-water references.

Coilia ectenes, Chu, 1931, ibid., p. 16. Fresh-water references.

Coilia playfairii, Chu, 1931, ibid., p. 17. Fresh-water references.

Locality of Material:—Shanghai, Ningpo, Pei Ho, and Tientsin (fide Gee). Specimens examined from Anhwei and near Canton.

Description:—Head in length to base of caudal, rather less than 7; eye in head, 4.5 to 6. Dorsal rays, 13; anal, 85 to 100; scales, about 60.

Coilia brachygnathus Kreyenberg and Pappenheim

Locality of Material:—Specimens examined from Tungting Lake, Hunan.

Description:—Depth in length to base of caudal, 6; head, 5.8; eye in head, 4.2 (specimen of 81 mm. standard length). Dorsal rays, 13 to 14; anal, 95 to 101; scales, about 75.

Remarks:— Called “mao-hua-yü” at Tungting Lake, where it plays an important part in the economics of fishing, and is caught in vast numbers in special nets. Countless thousands were taken off Huping by the fishermen of the neighboring island, Bien Shan, and there dried on racks. Early one morning two boats employed in their capture worked together with a net at least 100 yards long. The boats were maneuvered so that the net was set across the current and gradually worked round into a circular position. It was then slowly drawn in and from every foot of it the fishes were flipped into the boat. Small and large alike are used. Many are dried in the sand which is later washed off. Large areas of the island’s beach were covered with these fish drying in the sun (C. H. Pope, field notes).

Family SALMONIDAE

SALMONS

The salmons and trouts are characteristic, active, more or less predaceous fishes of the north. They are notably absent from our area of China proper, their invasion thereof seemingly having been blocked by extensive persistent desert areas, and almost the only satisfactory record of occurrence is for the oriental genus Plecoglossus. It is not improbable that other forms occasionally get into Chinese fresh waters through Manchuria or coastwise (for fishes of this family run into the sea more or less), and that there are in China streams favorable for their artificial introduction as game fish.

Genus Plecoglossus Temminck and Schlegel

Plecoglossus Temminck and Schlegel, 1846, in Siebold, Fauna Japonica, Pisces, p. 229. Type: Plecoglossus altivelis Temminck and Schlegel.

Plecoglossus altivelis Temminck and Schlegel

Locality of Material:—North China (Reeves, 1927, p. 4).

Description:—Trout-like fishes of Japan and Formosa, also recorded from North China, notable for the peculiar small teeth on the maxillaries and mandibles. These are movable, seated in a fold of skin; lamelliform, broad, truncated, lamellated, and serrated. Body covered with very small scales. Cleft of the mouth wide.
Premaxillaries with a few small, conical, pointed teeth; each mandible terminating in a small knob. A small adipose fin present; caudal well forked.

Depth in length to base of caudal, 4.5 to 5; head, 4.5; eye in head, about 5.8 (specimens about 100 to 180 mm. long). Dorsal rays, 12; anal, 16; scales, 140.

Remarks:—"This fish has been recorded from Yalu River (Mori, 1927), Ming River (Wu, 1931) and Chefoo (Wang, 1933). In the collections of the Biological Laboratory of the Science Society of China, there are some specimens of a considerable size, collected from Yen Tang Shan and Ping Yang in Chekiang Province. In the latter locality the brooks flowing into Ngao-Kiang are visited annually by the present species of fish in a considerable number. The fishes which have been dried under sun-light are known as Hiang-Yu or Sian-Yu, they are delicious and usually in high price" (Wu, 1934, p. 91).

"This fish appears in the mountain streams of Chekiang in April or May and goes back to the sea in August or September. The flesh of this fish is a delicate food to the natives" (Wang, K. F., 1935, p. 2).

Genus Brachymystax Günther

A fine-scaled, small-mouthed trout, usually with dark and red spots. The lower jaw is shorter than the upper, squarish at the end, and the maxillary reaches about to under the middle of the eye. Well-developed teeth on jaws, vomer, and palatines, those on vomer and palatines forming a continuous horseshoe-shaped band. A single species in Siberian and Manchurian rivers.

Brachymystax lenok (Pallas)

Description:—Depth in length to base of caudal, about 4.6 or 4.7; head, 4.4 or 4.5; eye in head, about 6 (large specimen of between 500 and 600 mm. standard length). Dorsal rays, 12 to 14; anal, 11 to 13; scales, 132 to 175.

Remarks:—No specimens collected, but Dr. Andrews photographed trout which were beyond reasonable doubt of this species caught in 1919 in a mountain stream a few miles north of Hsing-lung-shan in extreme northern Hopei.

It is not unlikely that this fish was of natural and general distribution in the mountains of Jehol and northeastern Hopei before these were deforested (C. H. Pope, field notes).

However, we find no mention of it in the Liao Ho drainage, and that of the Amur-Sungari, where it occurs, is some 300 or 400 miles to the north or east.
THE FRESH-WATER FISHES OF CHINA

Genus Hucho Günther

Large-mouthed, fine-scaled, black-spotted trout. Mouth oblique, terminal, maxillary in adult to posterior border of eye or beyond; vomer relatively short and wide with a few teeth on the sides but none on the basal part. Anal short. A few species in northern Asia.

Huco bleekeri Kimura

Description:—Depth in length to base of caudal, about 6; head, 3.8 or 3.9; eye in head, 5.2 or 5.3 (specimen 280 mm. total length). Dorsal rays, 14 or 15; anal, 10 or 11; scales, 145 to 150.

Family SALANGIDAE

SALANGIDS

Small, translucent, trout-like fishes of fresh and salt waters of the Orient. Their mouth and dentition are very variable, and they have been divided into several genera, perhaps best recognized as subgenera.

Genus Salangichthys Bleeker

Small, elongate, free swimming, translucent, trout-like, typically estuarine fishes of China and Japan, with the dorsal fin placed far behind the ventrals; teeth subequal, or without large canines. Body scaleless, or with fine deciduous scales. Cleft of the mouth rather wide. Anal rather long, a small adipose present, and the caudal forked. Pseudobranchiae well developed. Head less elongate, depressed, and pointed than in _Salanx_, and the maxillary reaching the anterior border of the eye; teeth in jaws small, subequal.

One or two related species, sometimes exceedingly abundant, and taken en masse for food. The most divergent salangoids, probably entitled to generic rank.

Key to Chinese Salangichthys

No fleshy appendage at the tip of the lower jaw; origin of anal appreciably behind last dorsal ray ... _hyalocranius_

A fleshy appendage at the tip of the lower jaw. Origin of anal immediately behind last dorsal ray ... _anderssoni_
SYSTEMATIC ACCOUNT

Subgenus Protosalanx Regan

Salangichthys hyalocranius (Abbott)

Salanx hyalocranius Abbott, 1901, Proc. U. S. Nat. Mus., XXIII, p. 490, Fig. Tientsin.

Locality of Material:—Specimens examined from Tunghing Lake, Hunan; Foochow; Canton.

Description:—Depth in length, 8.55 to 13; head, 5.25 to 5.7; eye in head, 5 to 6 (specimens 55 to 130 mm. long). Dorsal rays, 14 to 18; anal, 26 to 32; scales small, deciduous, little evident.

Remarks:—Called "yin-yü" at Tunghing Lake, where it is more or less confused with somewhat larger Salanx. It is so transparent that when alive in clear water the eye, which is surrounded with silver, is about the only part of the fish visible. It is common, and to be distinguished among the other small fry of any large full basket, but often carefully picked out and sold in numbers by itself, being prized as a delicacy by the Chinese and served at feasts (C. H. Pope, field notes).

Subgenus Paraprotosalanx Fang

Paraprotosalanx Fang, 1934, Sinensia, IV, p. 246, Fig. 3. Type: Protosalanx anderssoni Rendahl.

Salangichthys anderssoni (Rendahl)

Paraprotosalanx anderssoni, Fang, 1934, Sinensia, IV, p. 246, Figs. 4–6.

Description:—Head in length to base of caudal, 5.6; eye in head, about 6.3 (specimen 79 mm. long). Anal rays, 29.

Genus Salanx Cuvier

Salanx Cuvier, 1817, Règne Animal, II, p. 185. Type: Salanx cuvieri Cuvier and Valenciennes.

Small, elongate, free swimming, translucent, trout-like, typically estuarine fishes of China and Japan, with the dorsal fin placed far behind the ventrals; large canine teeth variously developed; maxillary not reaching eye.

Body scaleless, or with fine deciduous scales. Cleft of the mouth wide. Anal rather long, a small adipose present, and the caudal forked. Pseudobranchiae well developed. Head elongate and depressed, terminating in a long, flat, pointed snout.
Several divergent groups of one or more species have been described as genera and may be recognized as subgenera.

Key to Chinese Salanx

1. Premaxillaries subnormal; lower jaw slightly projecting. Dorsal fin partly above the anal; tongue toothless; one series of teeth on each side of the palate; a pair of canines near the symphysis of the lower jaw; premaxillary teeth somewhat enlarged, strongly recurved (*Hemisalanx*) ... **prognathus**

 Premaxillaries forming an anterior triangular expansion; lower jaw not projecting; a single series of teeth on each side of the palate; one or more anterior canines in the lower jaw, perforating the roof of the mouth behind the premaxillary expansion; premaxillary teeth strong, recurved, set rather far apart ... **see 2**

2. Dorsal fin entirely in advance of the anal; tongue with a single series of teeth; lower jaw ending in a short fleshy appendage (*Leucosoma*) **chinensis**

 Dorsal fin wholly or partly above the anal; tongue toothless **see 3**

3. Lower jaw ending in a short fleshy appendage (*Salanx*) **see 4**

 Lower jaw ending in a distinct, more or less movable presymphysial bone, with a double series of teeth (*Parasalanx*) **see 5**

4. Snout subequal to postorbital part of head .. **brachyrostralis**

 Snout shorter than postorbital part of head **angusticeps**

5. Head nearly 4 times as long as broad; snout little longer than postorbital; origin of ventral equidistant from base of pectoral and origin of anal, which is below that of dorsal. Depth, 16; dorsal, 14; anal, 28 **see 6**

 Head nearly 3 times as long as broad; snout shorter than or as long as postorbital; origin of anal decidedly behind that of dorsal **see 7**

6. Origin of ventral equidistant from head and origin of anal **see 8**

 Origin of ventral not as above .. **gracilimimus**

7. Snout as long as postorbital; origin of anal below 8th or 9th dorsal rays.

 Depth, 18; dorsal, 12; anal, 27 ... **longianalis**

 Snout considerably shorter than postorbital; origin of anal below 5th to 7th dorsal rays. Depth, about 12 to 16; dorsal, 12 to 13; anal, 28 to 32 **see 2**

Plate I

Fig. 1. *Misgurnus mizolepis hainan* Nichols and Pope. Type. 83 mm. standard length. *Nodoa*, Hainan.

Fig. 2. *Nemacheilus pulcher* Nichols and Pope. Type. 42 mm. standard length. *Nodoa*, Hainan.

Fig. 3. *Sarcocheilichthys hainanensis* Nichols and Pope. Type. 62 mm. standard length. *Nodoa*, Hainan.

Fig. 4. *Yaoshanicus normalis* (Nichols and Pope). Type. 64 mm. standard length. *Nodoa*, Hainan.
8. Origin of ventral nearer anal than base of pectoral; that of dorsal about 3
 times as distant from tip of snout as from base of caudal; that of anal below
 2d to 4th dorsal rays. Depth, 11 to 19 (or 20.5); dorsal, 11 to 15; anal, 26
to 32 ... acuticeps
Origin of ventral equidistant from preopercle and origin of anal; that of dorsal
about 1½ times as distant from tip of snout as from base of caudal; that of
anal below 3d dorsal ray. Depth, 17; dorsal, 14; anal, 27 annitae

Subgenus Hemisalanx Regan

Salanx prognathus (Regan)

Description:—Depth in length, 14; head, 6.5 (specimen 122 mm. long). Dorsal rays, 13; anal, 26; scales small, deciduous, little evident.

Subgenus Leucosoma Gray

Salanx chinensis (Osbeck)

Albula chinensis Osbeck, 1765, Reise Ostindien, China, p. 309. China.

Locality of Material:—Specimens examined from Fukien.

Description:—Depth in length to base of caudal, 10; head, 4; eye in head, 10.4 (specimen of 133 mm. standard length; 7.5, specimen of 80 mm.). Dorsal rays, 10 to 12; anal, 28 to 31; scales small, deciduous, little evident.

Subgenus Salanx Cuvier

Salanx Cuvier, 1817, Règne Animal, II, p. 185. Type: Salanx cuvieri Cuvier and Valenciennes.

Salanx cuvieri Cuvier and Valenciennes

Locality of Material:—Specimens examined from Tungting Lake, Hunan.

Description:—Depth in length to base of caudal, 14.7; head, 4.6; eye in head, 8.2 (specimen of 147 mm. standard length). Dorsal rays, 13 to 14; anal, 26 to 28; scales small, deciduous, little evident. Snout subequal to postorbital part of head.
Salanx brachyrostralis Fang

Description:—Depth in length to base of caudal, 13.1 to 14.4; head, 5.14 to 5.27; eye in head, 8.2 to 10.7. Dorsal, 12 to 13; anal, 26. Anal origin under middle of dorsal. Snout shorter than postorbital part of head.

Subgenus *Parasalanx* Regan

Salanx gracillimus (Regan)

Description:—Depth in length, 18; head, 5.8 (specimen 120 mm. long). Dorsal rays, 12; anal, 27; scales small, deciduous, little evident.

Salanx annitae (van Dam)

Description:—Depth in length, 17; head, 6; eye in head, nearly 8 (specimen 134 mm. long). Dorsal rays, 14; anal, 27.

Remarks:—The recognized species of *Salanx* are better defined than the nominal species of *Coilia*, and are all included here, although it is perhaps equally uncertain how many of them are of regular occurrence in fresh water.

Salanx acuticeps Regan

Locality of Material:—Canton, Swatow, Amoy, Foochow, and Wenchow; Formosa (Fang, 1934.1, p. 262).

Specimens (so identified) examined from Canton.

Description:—Depth in length, 11 to 19 (or 20.5); head, 5.4; eye in head, 7 (specimen 113 mm. long). Dorsal rays, 11 to 15; anal, 26 to 32.

Salanx longianalis (Regan)

Description:—Depth in length, 13 to 15; head, 5.5 (specimens 110 to 125 mm. long). Dorsal rays, 12 to 13; anal, 28 to 32; scales small, deciduous, little evident.
SYSTEMATIC ACCOUNT

Salanx angusticeps (Regan)

Description:—Depth in length, 16; head, 5.2 (specimen 153 mm. long). Dorsal rays, 14; anal, 28; scales small, deciduous, little evident.

Family MONOPTERIDAE
SYMBRANCH EELS

Genus Fluta Bloch and Schneider

Fluta Bloch and Schneider, 1801, Syst. Ichthyologiae, p. 525. Type: Monoplerus javanensis Lacépède, conspecific with Fluta alba (Ziew).

Slender, scaleless, almost finless eels of southern Asia and the East Indies. The gill openings are narrow and joined on the under surface of the head to form a single cleft. One wide ranging species from the Indies through the Orient in fresh waters but also entering the sea, separable into a few poorly defined races.

Body more or less cylindrical; tail compressed, tapering to a slender point, much shorter than trunk. The only fins are a low keel, above and below, on the tail. Lower jaw slightly included; eye small, beneath the skin, placed over the mouth.

Fluta alba (Ziew)

Muraena alba Ziew, 1793, Nova Acta Acad. Sci. Petropolitanae, VII, p. 299, Pl. vii, fig. 2. No locality; assumed to be from Asiatic Russia.

Most recent authors consider this fish the same throughout its wide range, but in considerable Chinese material examined by the writer, that from South China is differentiable from the rest.

KEY TO CHINESE Fluta alba

Tail shorter, 2.5 to 3.3 (average, 2.9) in length to vent. Eye smaller, 1.7 to 3 (average, 2.3) in snout. Rarely or never boldly spotted or blotched with blackish. Nape more gibbous xanthognatha

Tail longer, about 2.6 in length to vent. Eye larger, 1.5 to 2.5 (average, 1.9) in snout. Frequently boldly spotted or blotched with blackish. Nape less gibbous cinerea

Fluta alba xanthognatha (Richardson)

Figure 2

Locality of Material:—Specimens examined from Fukien; Canton; Hainan Island; up to 452 mm. long.

Fluta alba xanthognatha (Richardson). 395 mm. total length.

Description:—Head in length to vent, 8.1 to 10.3 (average, 9.5), with tendency to increased head length with increased size; depth in head, 2.2 (174 mm. specimen); eye in snout, about 2 at length of 200 mm.; about 3 at 400 mm. A low keel along 3/4 of the upper and 3/8 of the lower edge of tail posteriorly.

Fluta alba cinerea (Richardson)

Plate II, figure 1

Locality of Material:—Specimens examined from Yunnan; Szechwan; Shansi; Tungting Lake, Hunan; up to 470 mm. long.

Description:—Head in length to vent, 8.5; depth in head, 2 (470 mm. specimen); eye in snout, about 1.5 at length of 300 mm.; about 2 at 400 mm. A low keel along most of the upper edge of tail posteriorly, and a shorter, less-developed keel below.

Remarks:—This eel, called "huang-shan" at Tungting Lake, was apparently not common there in the winter of 1921-1922, as we secured only two specimens, one bought on the Yochow streets. It is said to attain a weight of over a pound and to be quite common at certain seasons, seldom occurring in numbers in the Lake, but rather in the water-holes round about (C. H. Pope, field notes).
SYSTEMATIC ACCOUNT

Family MASTACEMBELIDAE

SPINY EELS

Genus Mastacembelus Scopoli

Compressed, eel-like fishes with pointed, more or less proboscis-like snout; many small sharp spines along the back and a concealed spine on the preorbital. A number of species in the fresh waters of southern Asia, the Indies, and Africa.

Pectoral rounded. Soft dorsal and anal fins continuous around the tail. Body covered with fine scales. Two or three spines before the anal, and one or more preopercular spines.

KEY TO CHINESE Mastacembelus

Two spines before the anal. Depth, 8 to 11.5 in length. Back dark; a dark band from snout through eye to nape; vertical fins dark, edged with whitish undulatus

Three spines before the anal. Depth, 9.5 to 12 in length. Back usually pale; dorsal and caudal reticulate sinensis

Mastacembelus armatus (Lacépède)

Macrognathus armatus Lacépède, 1800, Hist. Nat. Poissons, II, p. 286. No locality; assumed to be India.

Mastacembelus armatus undulatus (McClelland)

Figure 3 and Plate II, figure 3

Locality of Material:—Specimens examined from Hainan Island; up to 520 mm. in standard length.

Fig. 3. Mastacembelus armatus undulatus (McClelland). 160 mm. without caudal.

Description:—Depth in length to base of caudal, 8.6; head, 5.4; eye in head, 8 (in a 160 mm. specimen). Apparently becomes more slender with age, depth of a 295-mm. (standard length) specimen, 8.4; 367-mm. specimen, 9.7; 520-mm. specimen, 11.5. Dorsal rays XXXIII—about 75; anal, II, about 75; scales minute.
Mastacembelus sinensis (Bleeker)

Plate II, figure 2

Bdellorhynchus aculeatus, Reeves, *loc. cit.*

Locality of Material:—Ningpo and Shanghai (*fide* Gee).

Specimens examined from TunTing Lake, Hunan; Anhwei; Kiangsi; Shantung; up to 190 mm. standard length.

Description:—Depth in length to base of caudal, 11.6; head, 5.8; eye in head, 7.4 (in a 190-mm. specimen). Dorsal rays, XXXI—about 60; anal, II—I, about 60; scales minute.

Remarks:—The spiny eel is called “t’zu-ni-ch’iu” at TunTing Lake, and appears to be rather scarce in the lake. Only a few specimens were seen (not more than 10) all winter. Apparently it is never sold in numbers here. A few very small ones were picked out of the baskets of small fish in the streets of Yochow (C. H. Pope, field notes).

Family ANGUILLIDAE

TRUE EELS

Genus Anguilla Shaw

The true eels are distinguished from their relatives by the presence of small, embedded, linear scales placed in groups, those of one group at right angles to those of adjoining groups. Found in all temperate and warm coastal waters of the Northern Hemisphere with the exception of the west coast of America, indifferently coastal or fresh water, retiring to the deeps of ocean basins under the warm water of the open sea to spawn; and with a flat, translucent, pelagic, larval stage.

Body more or less cylindrical, tail compressed. Mouth large, the lower jaw projecting, teeth strong. Eye well developed, placed well forward, over the corner of the mouth. Pectoral well developed, rounded. Vertical fins well developed, the dorsal originating on the back, well behind the head, continuous around the tail with the anal. Ventrals absent.
SYSTEMATIC ACCOUNT

Key to Chinese Anguilla

1. Distance between verticals from dorsal and anal origins equal to or less than length of head. Plain colored, paler below, fins dark edged posteriorly see 2
 Distance between verticals from dorsal and anal origins equal to or greater than length of head. Body and fins spotted mauritiana

2. Distance between verticals from dorsal and anal origins about equal to head.
 Length of pectoral about ½ that of head, or a little less sinensis
 Distance between verticals from dorsal and anal origins less than length of head.
 Length of pectoral about ½ that of head or less japonica

Anguilla sinensis McClelland

Figure 4

? Anguilla macroptera McClelland, 1844, ibid., p. 407, Pl. xxv, fig. 1.
Anguilla remifera Jordan and Evermann, 1902, Proc. U. S. Nat. Mus., XXV, p. 325, Fig. 7. Hokoto, Formosa.

Locality of Material:—Specimen examined from Hainan Island; standard length 440 mm.

Description:—Head in length to base of caudal, 7.9; tail, 1.7; depth in head, 2; eye in snout, 3 (specimen 440 mm. standard length). Dorsal and anal rays numerous; scales minute, embedded, linear, in groups placed at about right angles to one another.

Remarks:—Chinese specimens of plain-colored Anguilla vary considerably in proportions and presumably represent more than one form. Examination of the type figure of Anguilla sinensis (McClelland, 1844) leaves little doubt that Anguilla remifera is the same and close to if distinguishable from Anguilla japonica. Two specimens about 425 mm. long from Tungting Lake combine the proportions of the two, one of these having horizontal distance between dorsal and anal origins in head, 1, pectoral, 3; the other, this distance, 1.5, pectoral, 2.2.

Fig. 4. Anguilla sinensis McClelland. 440 mm. without caudal.
THE FRESH-WATER FISHES OF CHINA

The name *sinensis* seems to have been used by some authors for a more aberrant form in which the horizontal distance between dorsal and anal origins is less in relation to the length of head. A specimen about 345 mm. long from Tungting Lake has this measurement 2.5 in head and one of 175 mm. from Yenping, Fukien, 2.1. These oriental eels are in need of revision based on more careful studies and with reference to off-shore spawning grounds. One might reasonably expect that there would be a group spawning in the South China Sea, more or less isolated and differentiable from another spawning in the Pacific.

Anguilla japonica Temminck and Schlegel

Locality of Material:—Specimens examined from Tungting Lake, Hunan; Fukien, Canton; largest, 622 mm. standard length.

Description:—Depth in head, 2.6 to 2.1; head in length to base of caudal, 8.6 to 7.6; tail, 1.6 to 1.7; eye in snout, 2.3 to 2.6 (specimens 325 to 400 mm. standard length). Dorsal and anal rays numerous; scales minute, embedded, linear, in groups placed at about right angles to one another.

Remarks:—Called "pai-shan" at Tungting Lake, where it occurs only now and then in the market, in no great quantity, nor of large size. Specimens seen were a little under two feet in length, dark, dull green above and white below (C. H. Pope, field notes).

To judge from our collections this is the predominant form of Chinese eel, wherein the ratio between the horizontal distance from dorsal to anal origins, and length of head, is fairly constant. Thus in a series of 22 specimens with approximate standard lengths of 118 to 395 mm., from Yenping, Fukien, 11 of less than 200 mm. have this distance in head, 1.1 to 1.5, average, 1.3; 11 of more than 200 mm. have it 1.3 to 1.7, average, 1.5; and 4 from Tungting Lake, Hunan, 326 to 390 mm. long, have it 1.3 to 1.6, average, 1.45.

Anguilla mauritiana Bennett

Locality of Material:—East Indian oceans and archipelagoes in general. Hainan (Oshima, 1926, p. 4).

Specimens examined from Fukien.

Description:—Depth in head, 2.7; head in length to base of caudal, 6.9; tail, 1.7; eye in snout, 2 (in a specimen of 263 mm. total length). Dorsal and anal rays
numerous; scales minute, embedded, linear, in groups placed at about right angles to one another.

Family SILURIDAE

CATFISHES

The catfishes are a continental fresh-water family, whereof a few genera have become marine. These have established allied genera and species in the Australian region and in Madagascar and elsewhere which are truly fresh-water fishes, but not in China. Estuarine species of or allied to *Plotosus* and *Arius* which may occur in China are not included in this work.

Genus *Parasilurus* Bleeker

Flat-headed, compressed-bodied, Eurasian catfishes with a very long anal fin, a very small, anterior, spineless dorsal, and no adipose. Four barbels only (a pair of maxillary and of mandibular). Few species, three or four in China. Common.

Anal with 60 to 85 rays, contiguous or connected with the caudal, which is rounded or truncate. Pectoral with a spine. Eye placed above the angle of the mouth, which is large. Teeth in jaws, and in a transverse uninterrupted band on the vomer.

Key to Chinese *Parasilurus*

1. Lower jaw projecting .. see 2
 Lower jaw included. Depth, less than 6. Maxillary barbels twice head or more, reaching about to front of anal ...
 Jaws equal. Depth, more than 6. Ventrals present or absent, absent in the
 type ...
 2. Anal with 50 rays. Maxillary barbels very long, reaching base of anal, 5 times
 the length of the mandibular barbels .. cinereus
 Anal with 71 to 73 rays. Maxillary barbels extending to base of pectoral or
 beyond; mandibular barbels nearly ½ as long. Ventral rays, 10
 Anal with 73 to 78 rays; depth, 6 to 9.2 anomalus
 Anal with 76 to 82 rays. Maxillary barbels reaching past the base but not to
 the tip of the pectorals; mandibular barbels about ½ as long. Depth, about 5
 3. Anal with about 73 rays, dorsal with 4. Maxillary barbels reaching the ends
 of the pectorals; mandibular barbels ½ as long. Ventral rays, 12. Depth,
 about 6 ... cinereus
 Anal with 73 to 78 rays, dorsal with 5. Depth, about 6
 Anal with 73 to 77 rays, dorsal with 5. Depth, 8.8 to 9.2
THE FRESH-WATER FISHES OF CHINA

Parasilurus cinereus (Dabry de Thiersant)

Description:—Close to *Parasilurus asotus*. Dorsal rays, 7; anal, about 50.

Parasilurus mento (Regan)

Locality of Material:—Specimens examined from Yunnan.

Description:—Depth in length, 5.25 to 5.5; head, 4 to 4.33; eye in head, 7.5 to 9.5 (in specimens of 115 to 215 mm. total length). Dorsal rays, 4; anal, 71 to 73.

Parasilurus grahami (Regan)

Description:—Depth in length, 6; head, 5; eye in head, 8 (in a specimen of 260 mm. total length). Dorsal rays, 4; anal, 73.

Parasilurus asotus (Linnaeus)

Parasilurus asotus asotus (Linnaeus)

Locality of Material:—Tientsin; Ningpo; Shanghai; Chinwangtao (*fide* Gee).

Specimens examined from Shansi; Tungting Lake, Hunan; Anhwei; Kiangsi; Fukien; up to 370 mm. standard length.

Description:—Depth in length to base of caudal, 5; head, 4.2; eye in head, 7 (in a specimen of 135 mm. standard length). Dorsal rays, 4 to 6; anal, 76 to 82.

Remarks:—Called "nien-yü" at Tungting Lake where it is by far the commonest of two common catfishes of great size sold in the market. The large specimens, several feet long, are sold in sections. It is to be seen everywhere for sale, large and small alike, the latter in great numbers; large baskets of them, about a foot long, in the Yochow streets.

The color of this fish varies from a uniform dark carpet green to a uniform dirty, milky white. Sometimes the dark green is mottled with lighter spots, which is probably a color change each individual is capable of making, as fish of both colors may be seen in the same basket. However, all the very large ones seen were yellow (*C. H. Pope, field notes*).
Parasilurus asotus bedfordi (Regan)

Description:—Depth in length, 6; head, 4.5 to 5.5; eye in head, 7.5 to 9 (in specimens of 130 to 275 mm. total length). Dorsal rays, 5; anal, 73 to 78.

Parasilurus asotus longus Wu

Locality of Material:—Specimen examined from the Min River.
Description:—Depth in length to base of caudal, 8.8 to 9.2; head, 4.6 to 4.9; eye in head, 8 to 8.9 (in specimens 250 to 265 mm. long). Dorsal rays, 5; anal, 73 to 77.

Parasilurus cochinchenensis (Cuvier and Valenciennes)

Figure 5

Locality of Material:—Specimens examined from Hainan Island; Fukien; up to 185 mm. standard length.

Fig. 5. Parasilurus cochinchenensis (Cuvier and Valenciennes). 145 mm. without caudal.

Description:—Depth in length to base of caudal, 4.7; head, 5.6; eye in head, 7.5 (in a specimen of 125 mm. standard length). Dorsal rays, 4 or 5; anal, 62 to 66.

Parasilurus anomalus (Herre)

Herkotsella anomalala Herre, 1933, Hong Kong Nat., IV, p. 179. Hong Kong. Type of Herkotsella Herre.

Description:—Depth in length, 7.2 to 7.8; head, 5.8 to 6; eye in head, 6.7 to 7.3 (specimens 108 to 164 mm. long). Dorsal rays, 4; anal, 62.
THE FRESH-WATER FISHES OF CHINA

Genus Silurodon Kner

A large-mouthed siluroid catfish with small dorsal fin, no adipose, and 3 pairs of barbels, a maxillary pair and 2 pairs on the lower jaw. The anal is very long (about 90 rays) adnate to the small caudal, and the eye is without a free rim. Lower jaw projecting. There are 3 or 4 rows of rather long, sharp teeth in each jaw, and a crescentic band on the vomer. Ventral with 12 rays.

Silurodon hexanema Kner

Silurodon hexanema Kner, 1867, Reise “Novara,” Zool., I, Fische, p. 305, Pl. xii, fig. 2. Probably Shanghai.

Description:—Head in length to base of caudal, about 4; depth in head, 2; eye, more than 7 (specimen about 160 mm. long). Dorsal rays, 5; anal, 90.

Remarks:—Based on a specimen preserved in the same glass container with Pseudobagrus fulvidraco, and thought to have come from the vicinity of Shanghai.

Genus Aoria Jordan

Standardized, free swimming catfishes of moderate size, with forked caudal fin, and rather short anal of less than 20 rays. A number of species in southern Asia and the East Indies. Questionably separable from Pseudobagrus.

Eye with a free rim. Dorsal with a spiae and 7 branched rays. A well-developed adipose fin, long or of moderate length, free behind. Pectoral with a strong, serrate spine. Four pairs of barbels; one pair at the posterior nostrils, which are remote from the anterior. Teeth in a continuous band on the vomer. Lower jaw somewhat included.

Macrones [Aoria] sinensis Bleeker (1873.5, p. 153) from China is unidentifiable as it is based on an insufficient description. Aoria cavasius, Chu (1931.6, p. 76) and Aoria cornula, Chu (loc. cit.), species of the western borders, are questionably Chinese.

Key to Chinese Aoria

Brownish, a silvery or dark lateral band, a dark spot on the upper part of the dorsal and dark streak on each caudal lobe. Maxillary barbel reaching middle of pectoral. Adipose not longer than high. Depth, 3 to 4...

argentivittata

Blotched with dusky, especially below the dorsal, a pale band across the nape. Tips of barbels slender, the maxillary barbel reaching margin of opercle only.

Tips of barbels slender, the maxillary barbel reaching margin of opercle only.

Dorsal base, 1.3 to 1.9 in length of adipose. Depth, 3.8 to 4.3...

henryi

No round black blotches. Depth, 7.5 to 8...

seenghala
Two round black blotches: one on shoulder, one on peduncle. Maxillary barbel reaching anal. Adipose long and low .. pulcher

Aoria argentiivittata (Regan)

Description:—Depth in length, 3.5; head, 4; eye in head, 3. Dorsal rays, I, 7; anal, 14 or 15.

Aoria henryi Herre

Description:—Depth in length, 3.8 to 4.3; head, 3.2 to 3.8; eye in head (evidently an error), 2 to 2.2 (specimens 68 to 91 mm. long). Dorsal rays, I, 7; anal, 18 to 20.

Upper surface of head partially covered with skin, supra-occipital process mostly exposed; pectoral spine equal to or slightly shorter than dorsal spine; dorsal and adipose separated by a distance much greater than dorsal base.

Remarks:—This may be a *Pseudobagrus* close to *P. affinis*, which its description does not fit.

Aoria seenghala (Sykes)

Description:—Depth in length, 7.5 to 8; head, 4.5; eye in head, 7 to 8. Anal rays, 11 to 12.

Aoria pulcher (Chaudhuri)

Macrones pulcher Chaudhuri, 1911, Rec. Indian Mus., Calcutta, VI, p. 20, Pl. 1, fig. 4. Bhamo, close to the Yunnan border.

Description:—Depth in length to base of caudal, 3.8; head, 3 to 3.6; eye in head, 3.8 to 4.3 (specimens 60 to 67 mm. in total length). Dorsal rays, I, 7; anal, 12.

Genus Cranoglanis Peters

A standardized, free swimming Chinese catfish with a rough bony plate on top of the head; fine teeth on the jaws, but none on the palate; resembles *Pseudobagrus*.

Head narrowed forward, depressed, the mouth small, lower jaw included. Four pairs of barbels, one pair at the posterior nostrils, which are remote from the
THE FRESH-WATER FISHES OF CHINA

anterior. Dorsal short, with about 6 branched rays and a spine. Adipose short, free behind; anal rather long, with more than 30 branched rays; caudal deeply forked. Eye rather large, with a free rim.

KEY TO CHINESE Cranoglanis

Depth, 5 or 6; anal, about 36; pectoral spine weakly serrate
Cranoglanis sinensis

Depth, 3 or 4; anal, 37 to 41; dorsal and pectoral spines with moderately large teeth ...
Cranoglanis multiradiatus

Cranoglanis sinensis Peters

Cranoglanis sinensis Peters, 1880, Monatsber. Akad. Wiss. Berlin, p. 1030, Fig. 1. Hong Kong.

Description:—Depth in length to base of caudal, 5.3; head, 3.8; eye in head, 4.5 (specimen 280 mm. long). Dorsal rays, I, 6; anal, 36; no scales.

“In 1880 Dr. Peters of Berlin described as new a number of fishes sent him from Hong Kong by a Dr. Gerlach. Although many people have made collections at Hong Kong during the intervening years, most of these species have not been seen since. As they were all fresh-water fishes it was self evident that they did not come from Hong Kong, which is a mountainous rock without streams except a few rills and torrents, and is surrounded by salt water. As given by Peters the species were as follows: Cranoglanis sinensis; Barbus brevifilis; Barbus gerlachi; Hemiculter dispar; Labeo decorus; Pseudogobio productus; and Semilabeo notabilis. While collecting at Wuchow, Kwangsi Province, in February, 1934, I was able to secure specimens of all the species described by Peters. There is no doubt in my mind that all his specimens were actually caught at Wuchow.

“Cranoglanis sinensis Peters is a very peculiar cat-fish that occurs in abundance in the West River and its tributary the Fu River, at Wuchow. It does not attain a large size, probably not more than 5 pounds” (Herre, 1934.3, p. 327).

Cranoglanis multiradiatus (Koller)

Description:—Depth in length to base of caudal, 3.7 to 3.8; head, 3.7 to 3.8; eye in head, almost 6 (specimens of 280 to 300 mm. total length). Dorsal rays, I, 5 to 6; anal, 37 to 41; no scales.

Genus Pseudobagrus Bleeker

Standardized, free swimming catfishes of moderate size, with forked caudal
fin; eye moderate or rather large, with more or less of a free rim. Abundant and represented by numerous species in southern and eastern Asia.

Dorsal rather short, with a spine and 5 to 7 branched rays; anal somewhat longer, with some 20 or more rays altogether; a well-developed short adipose fin, free behind; pectoral with a strong, serrate spine. Four pairs of barbels; one pair at the posterior nostrils, which are remote from the anterior. Teeth on jaws, and in a continuous transverse crescentic band on the vomer.

SYSTEMATIC ACCOUNT

1. Upper surface of head almost or completely smooth, covered with skin. Maxillary barbel about as long as head, or a little longer. Anal rays, 20 to 24.

1. "vachellii" see 2

1. "fulvidraco" see 4

2. Dorsal spine longer than pectoral spine. Depth in length to base of caudal, 4.2 (specimen 125 mm. standard length). Pectoral spine smooth in front.

2. "vachellii" see 3

2. "intermedius" see 4

3. Depth, 5.2 (specimen about 200 mm.). Anal rays, 23.

3. "fangi" see 3

3. "nitidus" see 4

4. Maxillary barbel as long or longer than head. Pectoral spine finely serrate in front.

4. "vachellii" see 4

4. "fulvidraco" see 5

5. Barbels very slender. Pectoral spine finely serrate in front. Depth in length to base of caudal, 4.4 (specimen 106 mm. standard length). Anal rays, about 20.

5. "intermedius" see 5

5. "nitidus" see 5

Key to Chinese Pseudobagrus

1. Upper surface of head almost or completely smooth, covered with skin. Maxillary barbel about as long as head, or a little longer. Anal rays, 20 to 24

1. "vachellii" see 2

1. "fulvidraco" see 4

2. Dorsal spine longer than pectoral spine. Depth in length to base of caudal, 4.2 (specimen 125 mm. standard length). Pectoral spine smooth in front

2. "vachellii" see 3

2. "intermedius" see 4

3. Depth, 5.2 (specimen about 200 mm.). Anal rays, 23

3. "fangi" see 3

3. "nitidus" see 4

4. Maxillary barbel as long or longer than head. Pectoral spine finely serrate in front. Anal rays, about 19

4. "vachellii" see 4

4. "fulvidraco" see 5

5. "intermedius" see 5

5. "nitidus" see 5

Pseudobagrus vachellii (Richardson)

Pseudobagrus chinensis Wu, 1930, ibid., p. 53, Fig. 4. Szechwan.

Locality of Material:—Ningpo (fide Gee).

Specimens examined from Tungting Lake, Hunan; Fukien; up to 235 mm. standard length.

Description:—Depth in length to base of caudal, 4.2 (4.5 in larger fish); head, 4; eye in head, 5 (specimen of 125 mm. standard length; smaller specimens have a larger eye). Dorsal rays, I, 7; anal, 24.
Pseudobagrus fangi Wu

Pseudobagrus fangi Wu, 1930, *Sinensia*, I, p. 84, Fig. 8. Kiating.

Description:—Depth in length to base of caudal, 5.2; head, 4.8; eye in head, 5 (specimen of 210 mm., total length). Dorsal, I, 7; anal, 23.

Remarks:—This species has a rather long adipose and rounded snout suggesting forms placed in *Leiocassis*. It is close to *Pseudobagrus eupogon*, and both may be indistinguishable from *P. vachelli*, which is a widely distributed and variable form.

Pseudobagrus eupogon Boulenger

Description:—Depth in length to base of caudal, 6; head, 5 (specimen of 250 mm.). Dorsal rays, I, 7; anal, 22.

Pseudobagrus ondon Shaw

Description:—Depth in length to base of caudal, 7; head, 4.3; eye in head, 4.5 (specimen of 77 mm. standard length). Dorsal rays, I, 7; anal, 20.

Pseudobagrus fulvidraco (Richardson)

Plate III, figure 3

Locality of Material:—Shanghai; Canton (*fide* Gee).

Specimens examined from Chihli; Shansi; Tungting Lake, Hunan; Anhwei; Fukien; up to 170 mm. standard length.

Description:—Depth in length to base of caudal, 5.4; head, 3.9; eye in head, 3.8 (specimen of 80 mm. standard length). Dorsal rays, I, 6 to 7; anal, 19.

Remarks:—This is one of several kinds of small related catfishes called “huang-ku-yü” by the lake fishermen at Tungting Lake. It is to be distinguished by its long barbels and chunky build; is very common and sold in great numbers,

PLATE II

Fig. 1. *Fluta alba cinerea* (Richardson). 470 mm. total length. Tungting Lake.

Fig. 2. *Mastacembelus sinensis* (Bleeker). 190 mm. standard length. Tungting Lake.

Fig. 3. *Mastacembelus armatus undulatus* (McClelland). 160 mm. standard length. Nodoa, Hainan.
being larger than the others, probably reaching a length of 10 inches. Baskets and baskets of them are to be seen for sale at almost any time, and it thus has a definite though no great economic importance (C. H. Pope, field notes).

Pseudobagrus intermedius Nichols and Pope

Figure 6

Pseudobagrus intermedius Nichols and Pope, 1927, Bull. Amer. Mus. Nat. Hist., LIV, p. 331, Fig. 5. Hainan.

Description:—Depth in length to base of caudal, 4.4; head, 3.4; eye in head, 5.4 (specimen of 106 mm. standard length). Dorsal rays, I, 7; anal, 20.

![Fig. 6. Pseudobagrus intermedius Nichols and Pope. Type. 106 mm. without caudal.](image)

Pseudobagrus nitidus Sauvage and Dabry de Thiersant

Locality of Material:—Specimens examined from Tungting Lake, Hunan; Min River.

Description:—Depth in length to base of caudal, 5.4; head, 4; eye in head, 4 (specimen of 105 mm. standard length). Dorsal rays, I, 7; anal, 25.

Pseudobagrus virgatus (Oshima)

Figure 7

![Fig. 7. Pseudobagrus virgatus (Oshima). 95 mm. without caudal.](image)
Locality of Material:—Specimens examined from Hainan.

Description:—Depth in length to base of caudal, 3.3; head, 3.9; eye in head, 3.8 (specimen of 95 mm. standard length). Dorsal rays, I, 7; anal, 16.

Genus Leiocassis Bleeker

Moderate or large-sized, varied catfishes closely related to Pseudobagrus, with a rather long, low adipose, the eye either small or more or less covered by skin (without a free rim). Abundant and represented by numerous species in southern and eastern Asia and the East Indies.

Dorsal rather short, with a spine and 5 to 7 branched rays; anal with 15 to 22 rays altogether; pectoral with a strong, serrate spine. Four pairs of barbels; one pair at the posterior nostrils, which are remote from the anterior.

The subgenus Leiocassis is extralimital. The subgenus Rhinobagrus is characterized by small eye, expanded snout, and forked caudal; the subgenus Dermocassis by eye without a free rim, caudal rounded, truncate or emarginate. The last two subgenera, in China, are connected by intermediate species, and the series of forms here referred to Leiocassis is not sharply separated from those referred to Pseudobagrus, recognition of the genus being largely a matter of convenience.

Key to Chinese Leiocassis

1. Caudal well forked. Snout more or less elongate or swollen (Rhinobagrus)...
 Caudal emarginate, truncate or rounded. Snout not elongate or swollen (Dermocassis) .. see 2

2. Bones of top of the head not exposed. Dorsal spine with slight serrations or weakly barbed behind ... see 5
 Bones of top of the head more or less exposed and striate. Anal, 16 to 17 dumerili
 Upper surface of head roughened, with a median longitudinal groove. Anal, 10 to 11 .. hainanensis
 3. Depth in standard length, less than 6 see 4
 Depth in standard length, more than 6 tenuifurcatus

4. Eye in head, 5.5 to 6.5 (specimens 70 and 100 mm. length). Dorsal spine smooth or with slight serrations behind .. crassirostris
 Eye in head, 5.5 (specimen 74 mm. standard length). Dorsal spine weakly barbed behind. Dorsal spine in head, 1.3 to 1.4; pectoral spine, 1.5 crassilabris
 Eye in head, 4 (specimen 100 mm. standard length). Dorsal spine in head, 1.5; pectoral spine, 1.7 .. macrops
 Eye in head, 8.6 or 8.7 (specimen 94 mm. standard length). Dorsal spine in head, 1.7 or 1.8; pectoral spine, 2 or 2.1 microps
 Eye in head, 4.6 (specimen 110 mm. total length). Dorsal spine in head, 1.4; pectoral spine, 1.4. Caudal shallowly but sharply forked. Maxillary barbel extending to slightly beyond eye brevicaudatus
SYSTEMATIC ACCOUNT

5. Caudal distinctly emarginate or notched. Dorsal spine without appreciable serration see 6

Caudal subtruncated to rounded (sometimes notched in *ussuriensis*)

6. Depth in length to base of caudal, 4.5 to 5.5. Bases of vertical fins dark; distal portions of dorsal and caudal and center of anal slightly dusky. Anal, 20 see 9

Depth in length to base of caudal, less than 4. Head and back with a conspicuous nap of fibrillae ... medianalis

Depth in length to base of caudal, 6 or more ... pratti

7. Anal rays, 19. The nasal barbel does not reach beyond and the maxillary barbel reaches somewhat beyond the orbit see 10

Anal rays, 16 to 18. The nasal barbel reaches posterior border of eye; the maxillary barbel reaches operculum ... similis

Anal rays, 17. The nasal barbel reaches posterior border of eye; the maxillary barbel a little farther back emarginatus

analis

8. Eye in head, 5.5 to 6 (at about 100 mm. length) see 11

Eye in head, 11 (at about 300 mm. length) kaifcnensis

9. Dorsal spine low, about 2 in head

Dorsal spine higher, less than 2 in head.......................... see 12

10. Peduncle more than twice as long as deep. A broad dark lateral band, at least posteriorly truncatus

Peduncle less than twice as long as deep. No noticeable dark lateral band morii

11. Depth greater (5 or less in standard length at 100 mm.; 5.9 or less at 200 mm.). Eye smaller (7 in head at 100 mm.; 8.5 at 200 mm.) see 13

Depth less (6.6 in standard length at 132 mm.; 8 in length at 260 mm.). Eye larger (5.5 in head at 132 mm.; 7 at 260 mm.). Anal rays, 20 to 22 ... tenuis

analis

12. Anal rays, about 23 .. see 14

Anal rays, about 18 .. taphrophilus

13. Depth in length, less than 5 at 150 mm.

Depth in length, more than 5 at 150 mm.

14. Mouth inferior, transverse ..

Upper jaw extending little beyond the lower ...

Subgenus *Rhinobagrus* Bleeker

Leiocassis dumerili (Bleeker)

Locality of Material:—Ningpo; probably Hong Kong (*fide* Gee).

1 *L. albomarginatus* Rendahl, 1928, Anhwei, comes here. Caudal with a broad white margin; depth, 4.2 to 5; eye, 5.3 to 6.8 (at 49 to 90 mm. standard length).
Specimens examined from Tungting Lake, Hunan; Min River; up to 230 mm. standard length.

Description:—Depth in length to base of caudal, 4.6 to 4.9; head, 3.5 to 3.6; eye very small, about 10 (specimens of 95 and 220 mm. standard length). Dorsal rays, I, 7; anal, 16 to 17.

Remarks:—This big, long-snouted, grape-colored catfish is called "hui-t’ou" at Tungting Lake, where it reaches a great size and is often sold in pieces. The young are caught in numbers by the shrimp fishermen, and on the whole the fish is very common, and of considerable economic importance (C. H. Pope, field notes).

Leiocassis hainanensis Tchang

Description:—Depth in length to base of caudal, 6 to 6.4; head, 3.7 to 4; eye in head, 6 (at 185 mm., specimens 130 to 185 mm. standard length). Dorsal rays, I, 7; anal, 10 to 11.

Caudal well forked; snout much depressed, projecting; a long, narrow fronticular on dorsal surface of interorbital; maxillary barbel long, nearly reaching ventral origin; adipose normally long. Said to be allied to Leiocassis armatus (Day) from India.

Leiocassis crassirostris Regan

Description:—Depth in length, 5.5; head, 4 to 4.3; eye, 5.5 to 6.5 (specimens of 70 to 140 mm.). Dorsal, I, 7; anal, 18.

Leiocassis crassilabris Günther

Leiocassis crassilabris crassilabris Günther

Locality of Material:—Specimens examined from Tungting Lake, Hunan; Hokou, Kiangsi; Kienning and Yenping, Fukien; up to 152 mm. in standard length. Those from Kiangsi and Fukien approach macrops.

Description:—Depth in length to base of caudal, 4.2 to 4; head, 3.7 to 3.9; eye in head, 5 to 5.9 (specimens of 74 to 152 mm. standard length; eye, 6, in a specimen of about 180 mm. total length). Dorsal rays, I, 7; anal, 16 to 18.
SYSTEMATIC ACCOUNT

Leiocassis crassilabris macrops Nichols

Figure 8

Leiocassis crassilabris macrops Nichols, 1926, Amer. Mus. Novitates, No. 214, p. 2, Fig. 2. Near Yenping, Fukien.

Locality of Material:—Specimens examined from Hokou, Kiangsi; Chungan Hsien and near Yenping, Fukien; largest, 160 mm. standard length.

Description:—Depth in length to base of caudal, 3.8 to 3.9; head, 3.7 to 4; eye in head, 4 (specimens of 99 and 100 mm. standard length; depth, 4.8, and eye, 5.2, at 160 mm.). Dorsal rays, I, 7; anal, 17.

Leiocassis microps Rendahl

Description:—Depth in length to base of caudal, 4.9 or 5; head, 3.6 or 3.7; eye in head, 8.6 or 8.7 (specimen 94 mm. standard length). Dorsal rays, I, 7; anal, 17.

Leiocassis brevicaudatus Wu

Leiocassis brevicaudatus Wu, 1930, Sinensia, I, p. 81, Fig. 7. Chungking, Szechwan.

Description:—Depth in length to base of caudal, 5.7; head, 4.1; eye in head, 4.6 (specimen 110 mm. total length). Dorsal, I, 7; anal, 18.

Leiocassis tenuifurcatus Nichols

Figure 9

Description:—Depth in length to base of caudal, 7.7; head, 5; eye in head, 5 (specimen of 155 mm. standard length). Dorsal, I, 7; anal, 18.

Remarks:—This species bears a general resemblance to Leiocassis (Dermocassis) tenuis, except for its forked caudal.

Subgenus Dermocassis Nichols

Leiocassis medianalis (Regan)

Locality of Material:—Specimens examined from Yunnan.

Description:—Depth in length to base of caudal, 4.9; head, 3.8; eye in head, 6.5 (specimen of 115 mm. standard length). Dorsal rays, I, 7; anal, 20.

Leiocassis emarginatus Regan

Description:—Depth in length to base of caudal, 6 to 6.5; head, 4 to 4.3; eye in head, 5.5 to 6 (specimens of 80 to 115 mm. total length). Dorsal rays, I, 7; anal, 16 to 18.

Leiocassis kaifenensis Tchang

Description:—Depth in length to base of caudal, 7.2; head, 4.7; eye in head, 11 (specimen 280 mm. standard length). Dorsal rays, I, 6; anal, 18.

Dorsal spine smooth, 1.5 in head; pectoral, 1.8. Nasal barbel to posterior border of eye; maxillary barbel to operculum. Caudal moderately emarginate, middle rays about 1/2 of the longest. Allied to L. pratti but deeper, and questionably distinct from L. emarginatus.

Leiocassis pratti (Günther)

Macrones pratti Günther, 1892, in Pratt, Snows of Tibet, p. 245, Pl. i, fig. B. Szechwan.
Description:—Depth in length to base of caudal, 9; head, about 5; eye in head, 7 (specimen about 206 mm. long). Dorsal rays, I, 6; anal, 19.

Leiocassis similis Nichols

Figure 10

Leiocassis similis Nichols, 1926, Amer. Mus. Novitates, No. 214, p. 1, Fig. 1. Fukien.

Description:—Depth in length to base of caudal, 6; head, 4.4; eye in head, 5 (specimen of 119 mm. standard length). Dorsal rays, I, 7; anal, 17.

Leiocassis hirsutus Herre

Description:—Depth in length, 3.3 to 3.6; head, 3.9; eye in head, about 8.5 (specimens 230 and 280 mm. long). Dorsal rays, I, 7; anal, 18.

Leiocassis albomarginatus Rendahl

Description:—Depth in length to base of caudal, 4.2 to 5; head, 3.6 to 3.9; eye in head, 5.3 to 6.8 (specimens 49 to 90 mm. standard length). Dorsal rays, I, 7; anal, 19 or 20.

Leiocassis taeniatus (Günther)

Locality of Material:—Ningpo (*fide* Gee).

Specimens examined from Fukien; largest, 190 mm. standard length.

Description:—Depth in length to base of caudal, 6 to 6.7; head, 5 to 4.7; eye in head, 6 to 7 (specimens of about 125 and 190 mm. standard length, respectively). Dorsal rays, I, 6 to 7; anal, 18 to 20.
Remarks:—Specimens of this species, and *Leiocassis tenuis* in particular, of the subgenus *Dermocassis* in general, and doubtless of various other catfishes are more slender as they become larger. Their eyes, however, become relatively smaller with increased size of the fish, as is usual.

Leiocassis truncatus Regan

Description:— Depth in length, 5.5 to 6; head, 4 to 4.3; eye, 5 to 6 (specimens of 75 to 130 mm.). Dorsal rays, I, 7; anal, 18 to 20.

Leiocassis tenuis (Günther)

Locality of Material:— Specimens examined from Chungan Hsien, Kienning, and near Yenping, Fukien; up to 235 mm. standard length.

Description:— Depth in length to base of caudal, 6.6 to 8; head, 3.8 to 5; eye in head, 5.5 to 7 (in specimens of 132 and about 220 mm. standard length, respectively). Dorsal, I, 7; anal, 20 to 22.

Leiocassis analis Nichols

Figure 11

Leiocassis analis Nichols, 1930, Amer. Mus. Novitates, No. 440, p. 4, Fig. 3. Hokou, northeastern Kiangsi.

Description:— Depth in length to base of caudal, 5; head, 4.4; eye in head, 7 (specimen 101 mm. standard length). Dorsal rays, I, 7; anal, 23 or 24.

Leiocassis lui Tchang and Shih

Description:— Depth in length to base of caudal, 4.6; head, 4; eye in head, 7; dorsal and pectoral spines, 1.5 (specimen 140 mm. standard length). Dorsal rays,
I, 6; anal, 17. Dorsal spine serrate, caudal truncate. Questionably distinct from *taphrophilus* and *ussuriensis*.

Leiocassis *ussuriensis* (Dybowski)

Locality of Material:—Specimens examined from Shansi; Tungting Lake, Hunan; up to 240 mm. standard length.

Description:—Depth in length to base of caudal, 5.9; head, 4.8; eye in head, 8.5 (specimen of 200 mm. standard length). Dorsal rays, I, 7; anal, 18.

Leiocassis _taphrophilus_ (Sauvage and Dabry de Thiersant)

Locality of Material:—Ningpo (fide Gee).

Specimens examined from Hokou, Kiangsi.

Description:—Depth in length to base of caudal, 4.9 to 5.5; head, 4 to 4.5; eye in head, 6.6 to 7.2 (specimens 76 to 121 mm. standard length). Dorsal, I, 7; anal, 17.

Remarks:—We were somewhat puzzled in the identification of this classical species until three small specimens from Hokou were examined which seem to be referable to it. They have a rather small adipose for _Leiocassis_, and further suggest the young of _Pseudobagrus_ in a faint pattern consisting of a pale collar and obscure dark blotches on the sides. Dorsal spine almost smooth; pectoral spine barbed behind and granular in front. Maxillary barbel reaching to middle or margin of opercle; nasal barbel to past eye or edge of preopercle. Orbital rim with an imperfect fold, pronounced below.

Genus _Hemibagrus_ Bleeker

A genus of East Indian catfishes, allied to _Pseudobagrus_, etc., with two Chinese species, representing the subgenus _Macropterobagrus_, one of which is common and widely distributed in China, whereas the other reaches its southern border.

Eight barbels in 4 pairs, one of which is situated at the posterior nostrils, which are remote from the anterior. Dorsal short, dorsal and pectoral with strong spines.
Key to Chinese *Hemibagrus*

Depth in standard length, about 8; adipose (longer), less than 2.5; dorsal and pectoral spines in head, 2 to 2.3 *macropterus*

Depth in standard length, 6 or 7; adipose (shorter), more than 2.5; dorsal and pectoral spines in head, about 1.7; color more silvery *elongatus*

Subgenus *Macropterobagrus* Nichols

Distinguished by elongate body and depressed head, very long adipose fin occupying practically the entire distance between dorsal and caudal, and weakly forked caudal fin.

Hemibagrus macropterus Bleeker

Plate III, figure 2

Locality of Material:—Specimens examined from Tungting Lake, Hunan; Anhwei; Hokou, Kiangsi; up to 440 mm. standard length.

Description:—Depth in length to base of caudal, 8; head, 4; eye in head, 4 (specimen of 77 mm. standard length). Dorsal rays, I, 7; anal, about 13.

Remarks:—Called “hui-yii” at Tungting Lake, where it is apparently one of the rarer catfish of the lake, not often seen for sale on the streets of Yochow. The boats of the shrimp fishermen now and then yielded a small specimen. It is, as a rule, uniformly dark colored (C. H. Pope, field notes).

Hemibagrus elongatus (Günther)

Locality of Material:—Specimen examined from Kwangtung.

Description:—Depth in length to base of caudal, 6 to 6.4; head, 4 (specimens 185 mm. and more standard length). Dorsal rays, I, 7; anal, 12 to 14.

Remarks:—This species differs from the similar catfishes listed by Weber and de Beaufort (1913, II, pp. 335–365) as described by them. It is possible that Günther’s locality, “Singapore,” is in error.
SYSTEMATIC ACCOUNT

“Sometime in the ‘nineties’ Steindachner described a catfish from Hong Kong under the name of Macrones chinensis, and for many years it too was not seen. In recent years a few specimens were obtained at Canton. This fish is abundant in the Fu River and West River at Wuchow. It becomes more than a meter long and reaches a weight, according to the fishermen, of over 50 pounds. I saw several which weighed over 30 pounds apiece. When there is a surplus in the local market it is shipped to Canton, more rarely to Hong Kong if a steamer is available” (Herre, 1934.3, p. 327).

Genus Liobagrus Hilgendorf

Small, more or less elongate, Asiatic catfishes with the adipose long, low, keel-like, continuous with the rounded or truncate caudal; body, and especially fins with the exception of the caudal, covered with lax skin. Not common, the species scattered, with more or less restricted ranges, usually in hilly country.

Dorsal small, placed far forward over the pectoral; dorsal and pectoral with small pungent spines, more or less concealed. Anal rather short (about 16 rays or less). Eye small, superolateral, without free rim. Barbels 8, one pair at the posterior nostrils, which are remote from the anterior.

KEY TO CHINESE Liobagrus

1. Lower jaw included ... see 2
 Jaws equal or lower the longer .. see 3
2. Dorsal rays, I, 6 to 7; anal, 16. Body and fins rather uniform grayish; end of caudal somewhat darker, its margin pale ... anguillicauda
 Dorsal rays, I, 5; anal, 18. Grayish with small pale spots on the sides; fins broadly edged with white .. styani
3. Adipose long and low, about as long as the anal, separated by a notch from the precurrent base of caudal. Fins dark basally, broadly margined with white .. marginatus
 Adipose short, fully united to the precurrent base of caudal, than which it is higher. Adipose dusky with a pale edge and whitish spot in its axil; caudal black with 2 whitish spots and a pale edge nigricauda

Liobagrus anguillicauda Nichols

Figure 12

Liobagrus anguillicauda Nichols, 1926, Amer. Mus. Novitates, No. 224, p. 1, Fig. 1. Chungan Hsien, northwestern Fukien.

Description:—Depth in length to base of caudal, 5.4 to 4.8; head, 4.4 to 5 (specimens 72 to 85 mm. standard length); eye in head, 9 (specimen 75 mm. standard). Dorsal rays, I, 6 or 7; anal, 16.
Fig. 12. Liobagrus anguillicauda Nichols. Type. 75 mm. standard length.

Remarks:—Plentiful at Chungan Hsien, the only locality where the Asiatic Expeditions of the American Museum of Natural History found catfish of this genus.

Liobagrus styani Regan

Description:—Depth in length to base of caudal, 6 to 7; head, 5 (specimens of 70 and 85 mm.). Dorsal rays, I, 5; anal, 18.

Liobagrus marginatus (Günther)

Amblyceps marginatus Günther, 1892, in Pratt, Snows of Tibet, p. 245, Pl. II, fig. A. Szechwan.

Description:—Depth in length to base of caudal, about 6; head, 4 (specimen of about 93 mm. standard length); eye very small. Dorsal rays, I, 6; anal, 15.

Liobagrus nigricauda Regan

Locality of Material:—Specimens examined from Yunnan.

Description:—Depth in length to base of caudal, 4.6; head, 3.4; eye in head, 7 (specimen 79 mm. standard length). Dorsal rays, about I, 7; anal, about 15.

Genus Glyptosternon McClelland

Small, standardized, bottom catfishes with the eye small, more or less superolateral, without a free rim; the anal short; the basal portion of the maxillary barbel furnished with a conspicuous membranous flap, adnate to the side of the snout; bones of the top of the head covered with smooth skin, though the nape may be rugose, striate.
SYSTEMATIC ACCOUNT

Mouth inferior, transverse. Four pairs of barbels, one of these between the nostrils, which are close together, well forward. Gill membranes narrowly joined to the isthmus. Dorsal, which is short, and pectoral each with a strong, serrate spine. Adipose well developed, usually short; caudal forked; anal usually with about 10 rays.

A genus of southern Asia and the East Indies, locally not uncommon in China, where four or five closely related species are recognized from different localities.

Key to Chinese Glyptosternon

1. Moderately slender or deep bodied (depth, less than 6.5 in length); anal moderate (9 to 12) .. see 2
 Very slender (depth, more than 7.5 in length); anal short (5 to 7) .. yunnanensis

2. Relatively slender (depth in length to base of caudal, 4.7 to 5.8) with a slender peduncle (its least depth, 3.6 to 4 in head). Pectoral and caudal large (the pectoral spine, 1.1 to 1.4 in head). Anal rays, 10 to 12. Dark bands between adipose and anal and across end of peduncle sometimes present. (Specimens examined of 37 to 71 mm. standard length.) .. sinense
 Slender (depth, 6.2), with a moderate peduncle (its depth, 3 in head), and very small eye (17 in head); white bands on lateral line and midline of back between dorsals .. pallozonum
 Deeper (depth, 3.6 to 4.6), with a deeper peduncle (its least depth, 2.3 to 2.8) .. see 3

3. Anal rays, 11 or 12. Dorsal and pectoral spines about equal (about 1.4 in head).
 Brownish yellow, fins stained with black .. conirostre
 Anal rays, 9 or 10. Pectoral and caudal usually small (the pectoral spine, [1.2]
 1.5 to 1.7 in head). Dark bands between adipose and anal, and across end of peduncle usually indicated. (Specimens examined of 41 to 81 mm. standard length.) .. fokiensis
 Anal rays, 10 or 11. Pectoral and caudal larger, pectoral spine decidedly longer
 than the dorsal (1.2 to 1.3 in head). Fins more patterned than body, or in
 above species, dorsal and anal at least with dark cross bands. (Specimens exami-
 ned of 55 to 61 mm. standard length.) .. hainanensis

Glyptosternon conirostre Steindachner

Glyptosternum conirostrum, Günther, 1892, in Pratt, Snows of Tibet, p. 245. Mountain streams running into the Min River, Szechwan.

Description:—Depth in length to base of caudal, about 4.5; head, about 4.2;
eye small. Dorsal rays, I, 6; anal, 11 to 12.

Remarks:—Günther's identification of this species from Szechwan has been questioned.

Glyptosternon sinense Regan

Locality of Material:—Specimens examined from Tungting Lake, Hunan.

Description:—Depth in length to base of caudal, 4.7 to 5.8; head, about 3.5 or 3.6; eye in head, 8.5 to 10 (specimens 37 to 71 mm. standard length). Dorsal rays, I, 6 or 7; anal, 10 to 12.

Noticeably lower naped, more slender peduncled, with longer pectorals and caudal than *Glyptosternon fokiensis*.

Remarks:—Called "shih-yü" at Tungting Lake, where small individuals, banded yellow and black in color, were very commonly caught by, and to be seen in the bottom of every shrimp fisherman's boat. No large specimen was seen, but my local man said it attains a length of a foot and at that size retreats to the rocks for shelter (C. H. Pope, field notes).

Glyptosternon pallozonum Lin

Description:—Depth in length, 6.2; head, 3.7; eye in head, 17 (specimen 62 mm. standard length). Dorsal rays, I, 7; anal, 10. Pectoral spine in head, 1.6; dorsal spine shorter (fig.).

Glyptosternon fokiensis Rendahl

Locality of Material:—Specimens examined from Yungtai Hsien and Chungan Hsien, Fukien; Hokou, Kiangsi.

Description:—Depth in length to base of caudal, 3.6 to 4.6; head, 3.3 to 3.7; eye in head, 7.5 to 9.6 (specimens 41 to 81 mm. standard length). Dorsal rays, I, 6; anal, 9 or 10.

Remarks:—A deeper, more round-headed fish than *Glyptosternon sinense*, variable. Hokou and Chungan Hsien material examined has the anal uniformly 10, and Chungan Hsien material is slender, with the peduncle slightly less deep and the pectoral spine longer, thus approaching *G. sinense* (depth, 4.6 to 5.5; depth, peduncle in head, 2.5 to 2.9; pectoral spine, 1.3 to 1.5). It may be that the Chinese forms of this genus intergrade and should be considered races.

Glyptosternon hainanensis Nichols and Pope

Figure 13

Locality of Material:—Specimens examined from Hainan; largest, 61 mm. standard length.

Description:—Depth in length to base of caudal, 4.6; head, 3.7; eye in head,
Glyptosternon hainanensis Nichols and Pope. Type. 55 mm. without caudal.

8.8 (specimen 55 mm. standard length; depth, 4.2 in specimen of 61 mm.). Dorsal rays, I, 6; anal, 10 or 11.

Glyptosternon yunnanensis Tchang

Description:—Depth in length to base of caudal, 7.7 to 12; head, 4.1 to 4.8; eye in head, 8.5 (at 115 mm., specimens 55 to 115 mm. standard length). Dorsal rays, I, 6; anal, 5 to 7.

The figure shows depth of peduncle in head, about 4; a long low adipose; and somewhat lunate caudal, dark basally and subterminally with a pale band across its center.

Genus Erethistes Müller and Troschel

Small, bottom catfishes of southern Asia, questionably separable from *Glyptosternon*. Essentially as in that genus except that the bones on the top of the head are exposed, rough striate. A few species, one described from China.

Erethistes asperus (McClelland)

Description:—Depth in length to base of caudal, about 3.7; head, about 3; eye in head, about 6 (from fig.). Dorsal rays, I, 6; anal, about 8. Dorsal and pectoral spines heavily barbed; fins more or less banded in color.

Genus Exostoma Blyth

Small, mountain catfishes of southern Asia, with ventrals inserted below the end of the small dorsal; gill openings very small, not extending on the lower surface of the head; anterior and posterior nostrils close together; mouth inferior, the lips reflected and spread continuously round the mouth to form a broad flat sucker.
Adipose fin long; dorsal with a weak or rudimentary spine and 6 rays; anal short. Barbels 6 (3 pairs), 2 at the nostrils, 2 at the maxillaries, and 2 below the mandible. Head depressed, covered with soft skin above; eyes small. Teeth in 2 separate patches above, and below; palate without teeth. Caudal fin forked; pectorals horizontal, without adhesive apparatus between them.

Key to Chinese Exostoma

1. Teeth all pointed. Pectoral with 13 to 14 branched rays
 see 2
 Teeth compressed, truncate or notched. Pectoral with 11 branched rays
 andersonii

2. Width of mouth, 2.5 to 3 in length of head; caudal peduncle, less than 2.5 times as long as deep
 davidi
 Width of mouth, less than 2.5 in length of head; caudal peduncle, 3 times as long as deep
 myzostoma

Subgenus Euchiloglanis Regan

Exostoma davidi (Sauvage)

Description:—Depth in length, 5 to 6.5; head, 4.1 to 4.6; eye very small (specimens 125 to 155 mm. long). Dorsal rays, I, 6; anal, 6.

Exostoma myzostoma (Norman)

Description:—Depth in length, 7 to 8; head, 4 to 4.5; eye very small (specimens 75 to 125 mm. long). Dorsal rays, I, 6; anal, 5 or 6.

Exostoma kishinouyei (Kimura)

Description:—Depth in length to base of caudal, 6.5; head, 3.7; eye in head, 20 (specimen 148 mm. standard length). Dorsal rays, I, 6; anal, 6.

1 *Exostoma kishinouyei* probably comes here. Nasal barbel long, reaching eye, versus short, not nearly reaching eye in *myzostoma*, which it is said to resemble otherwise.

PLATE III

Fig. 1. Clarias fuscus (Lacépède). 77 mm. standard length. Nodoa, Hainan.

Fig. 2. Hemibagrus macropterus Bleeker. 77 mm. standard length. Tungting Lake.

Fig. 3. Pseudobagrus fulvidraco (Richardson). 80 mm. standard length. Tungting Lake.
Origin of dorsal about equidistant from end of snout and middle of anal base (fig.).

Subgenus Glaridoglanis Norman

Exostoma andersonii Day

Description:—Depth in total length, 7; head, 5; eye very small. Dorsal rays, I, 6; anal, 7 or 8.

Genus Clarias Scopoli

More or less elongate, Old World, fresh-water catfishes, with a spineless, elongate, rayed dorsal extending the length of the back, longer than the anal which is also long; caudal truncate or rounded. Abundant in the tropics, many closely related species in Africa, most Chinese records referable to a single form, widely distributed in the Orient.

Top and sides of the head bony. Four pairs of barbels, one at the posterior nostrils. Mouth wide, transverse, slightly inferior. Gill membranes narrowly united, free from the isthmus. Pectoral with a strong spine.

Key to Chinese Clarias

Depth in total length, more than 5 ... fuscus
Depth in total length, about 5 ... abbreviatus

Clarias fuscus (Lacépède)

Figure 14 and Plate III, figure 1

Locality of Material:—Specimens examined from Yunnan; Chungan Hsien, Fuching Hsien, Kienning, and Yenping, Fukiên; near Canton; Hainan Island; up to 260 mm. standard length.

Description:—Depth in length to base of caudal, 5.4; head (to end of bony covering on side), 3.8; eye in head, 9 (specimen of 96 mm. standard length). Dorsal rays, 59 to 65; anal, 44 to 50.
Clarias abbreviatus Cuvier and Valenciennes

Description:—Depth in total length, 5. Dorsal rays, 62; anal, 32.

Family CATOSTOMIDAE
SUCKERS

The suckers are closely related and almost certainly ancestral to the carps. They have a toothless mouth and a comb-like row of teeth on the pharyngeal bones of the throat, correlated with their bottom feeding “sucker” habits. In the carps the pharyngeal teeth are reduced in number and more specialized. Various free swimming, sometimes predaceous members of the carp family could, it would seem, make good use of jaw teeth, but such have never been re-acquired by any carp-like fishes.

Suckers are a numerous and varied group in North America, but in Asia, aside from one or two far northern forms, are represented by a single specialized species in the valley of China. They have presumably been superseded in China by the more modern carps, which are there very abundant and diversified, that is to say, China is in a later evolutionary stage as regards carp-like fishes than North America.

Genus Myxocyprinus Gill

Myxocyprinus Gill, 1878, Johnson's Cyclopaedia, p. 1574. Type: Carpiodes asiaticus Bleeker.

Rather large suckers found in central China, with back compressed and elevated; dorsal long and high, running the length of the back; color blackish or boldly marked. A single species with recognizable local races.

Myxocyprinus asiaticus (Bleeker)

Remarks:—Fang (1934.2, pp. 329-337) concludes that this species is subject
to great individual, age, and other variation, and that its alleged races are untenable.

Key to Chinese Myxocyprinus asiaticus

Dorsal rays, about 52; anal, 12; scales, 53 *asiaticus*
Dorsal rays, about 57; anal, 14; scales, 55 *chinensis*
Dorsal rays, 52 to 56; anal, 13 to 14; scales, 47 to 49 *fukiensis*

Myxocyprinus asiaticus asiaticus (Bleeker)

Figures 15, 16

![Fig. 15. *Myxocyprinus asiaticus asiaticus* (Bleeker).](image)

![Fig. 16. *Myxocyprinus asiaticus asiaticus* (Bleeker).](image)
Locality of Material:—Specimens examined from Anhwei.

Description:—Depth in length to base of caudal, 2.4; head, 4.6; eye in head, 6 (specimen 220 mm. standard length). Dorsal rays, 52; anal, 12; scales, 53.

Myxocyprinus asiaticus chinensis (Dabry de Thiersant)

Locality of Material:—Specimens examined from Tungting Lake, Hunan.

Description:—Depth in length to base of caudal, 2.3; head, 4.2; eye in head, 5.5 (specimen of 200 mm. standard length). Dorsal rays, 57; anal, 14; scales, 55.

Remarks:—Called “huo-shao-pien” at Tungting Lake, where it is rather scarce and was not seen every day nor certainly every week. When fresh its sides may have a brilliant red color (C. H. Pope, field notes).

Myxocyprinus asiaticus fukiensis Nichols

Figure 17

Locality of Material:—Specimens examined from Yenping, Fukien; up to 100 mm. standard length.

Description:—Depth in length to base of caudal, 2.5 to 2.7; head, 3.6 to 4.4; eye in head, 3 to 3.9 (specimens 36 to 100 mm. standard length). Dorsal rays, 52 to 56; anal, 13 or 14; scales, 47 to 49.
SYSTEMATIC ACCOUNT

Remarks:—There seem to be slight differences of contour and color correlated with the technical characters on which the three races of *Myxocyprinus asiaticus* here recognized are separable. These races are not well defined, however, and with more material for comparison may not prove recognizable. One of eight specimens examined from Yenping, which measures 90 mm. in standard length, is aberrant, with depth, 2.2; dorsal, 51; anal, 14; scales, 52.

Family **CYPRINIDAE**

CARPS

Genus *Cyprinus* Linnaeus

Rather sluggish, heavy-bodied, free swimming, Eurasian carps of moderate or large size, feral elsewhere in temperate regions. This genus comprises the carp proper, its many domesticated varieties, and two or three allied forms of doubtful status.

Dorsal and anal each with a serrate bony spine. Dorsal with rarely less than 14 branched rays; anal with 5 or 6, its origin anterior to the vertical from the end of the dorsal. Usually 2 pairs of barbels. Pharyngeal teeth in 3 rows.

Upper jaw protractile. Gill membranes attached to the isthmus. Gill rakers not fused. Eye placed in or above the axis of the body.

Key to Chinese Cyprinus

1. Dorsal soft rays, 16 to 22 ... micristius
 Dorsal soft rays fewer (about 11) .. micristius
2. Two pairs of barbels present ... see 3
 No barbels. Mouth large, oblique, maxillary to under front of eye pellegrini
3. Scales, 32 or 33 ... fossicola
 Scales, 35 to 39 ... carpio
 Scales, about 45 ... rabaudi

Cyprinus carpio Linnaeus

Figure 18

Locality of Material:—Chihli (*fide* Gee).

Specimens examined from Tungting Lake, Hunan; Shantung; Swatow; Fu-kien; near Canton; Hainan.

Description:—Depth in length to base of caudal, 3; head, 3.2; eye in head,
4.3 (specimen 120 mm. standard length). Dorsal rays, II, 17 to 22; anal, II, 5; scales, 35 to 39.

Domestic varieties occur with very large scales or lacking scales. The common hybrid between *Cyprinus carpio* and *Carassius carassius* or *auratus* has the barbels of *Cyprinus*, but smaller; teeth in 2 rows (4, 1, or 2); dorsal soft rays, 17 to 20; scales, 30 to 38.

![Fig. 18. Cyprinus carpio Linnaeus. 122 mm. without caudal.](image)

Remarks:—Called "li-yü" at Tungting Lake, where it attains a large size, from 3 to 5 feet long, and is perhaps of the greatest economic importance of any lake fish. The fishermen catch it in great numbers for the Yochow market; dozens may be seen for sale in a single day. The passing of the year seems to be the time it is especially relished, as then "li-yü" were on sale when almost no other kinds of fish were to be seen. It is also caught when small by the men who fish for small fish, and the young sold along with countless numbers of other small fry. One day several Chinese were seen fishing for "li-yü" in the following manner.

Two small boats (Chinese row boats) made a team and each boat carried two men, one to handle the line and the other to row. A cord extended between the boats and was allowed to sag deeply in the shallow water. From this cord-line several barbless hooks 4 or 5 inches in length were suspended by short strings. This sagging line was pulled back and forth, first a few feet toward one boat and then back toward the other, by means of two handles, each held by a fisherman, one at either end of the line. In this way the large "li-yü" were snagged by a hook, and then careful drawing in of the line brought the fish near enough the surface to be caught by a large iron hand-hook or gaff and quickly landed (C. H. Pope, field notes).

Cyprinus fossicola Richardson

Locality of Material:—Canton (*fide* Gee).
Description:—Depth in length to base of caudal, less than 3; head, 3. Dorsal rays, II, 19 or 20; anal, II, 5; scales, 32 or 33.

Cyprinus micristius Regan

Locality of Material:—Specimens examined from Yunnan.

Description:—Depth in length to base of caudal, 3 to 3.1; head, 3.3 to 3.5; eye in head, 3.6 (specimens 97 to 104 mm. standard length). Dorsal rays, II, 11; anal, II, 5; scales, 36 to 38.

Cyprinus pellegrini Tchang

Cyprinus pellegrini Tchang, 1933, Zool. Sinica, (B) II (1), p. 20, Fig. 5. Tunghai, Yunnan.

Description:—Depth in length to base of caudal, 3.3 to 3.6; head, 2.8 to 3; eye in head, 3.2 to 4 (specimens 90 to 120 mm. standard length). Dorsal rays, II, 16 to 18; anal, II, 5; scales, 34 to 38.

Head very broad, mouth oblique, no barbels.

Remarks:—It is hard to evaluate this form, whether a “good” species or an abnormality of Cyprinus carpio. Cyprinus yunnanensis Tchang (ibid., p. 21, Fig. 6) from the same locality, a carp with a small pair of maxillary barbels only, is intermediate.

Cyprinus rabaudi Tchang

Description:—Depth in length to base of caudal, 3; head, 4; eye in head, 4 (specimens 195 and 155 mm. long). Dorsal rays, II, 20; anal, II, 6; scales, 45. Body compressed, nape elevated; dorsal and anal spines high.

Genus Carassius Nilsson

Rather sluggish, heavy-bodied, free swimming, Eurasian carps of small or moderate size, feral elsewhere in temperate regions; the domestic goldfish and its allies.

Dorsal and anal each with a serrate, bony spine. Dorsal with not less than 14 branched rays; anal with 5 or 6, its origin anterior to the vertical from the end of the dorsal. No barbels. Pharyngeal teeth in one row.

Upper jaw protractile. Gill membranes attached to the isthmus. Gill rakers not fused. Eye placed in or above the axis of the body.
Key to Chinese Carassius

Deeper (depth in length to base of caudal, 1.8 or more); 7 to 8 rows of scales above lateral line; gill rakers, 23 to 33 ___________________________ Carassius carassius

Less deep (depth in length to base of caudal, about 2.4 to 3); 5 or 6 rows of scales above lateral line; gill rakers, 39 to 50 ___________________________ Carassius auratus

Carassius carassius (Linnaeus)

Locality of Material:—North China (fide Gee).

Description:—Depth in length to base of caudal, 1.8; head, 3.5; eye in head, 5. Dorsal rays, II, 15 to 18; anal, II, 5 or 6; scales, 31 to 35.

Remarks:—None of the material obtained in North China by the Asiatic Expeditions of the American Museum of Natural History is referable to this species.

According to Berg (1932.4, pp. 15-18, Figs. 1-3), Cyprinus gibelio Bloch, which has been considered a form of Carassius carassius, is the native European and northern race of Carassius auratus, and Carassius carassius is found with it as far east as the Lena basin, but does not occur in the Amur, etc. This throws considerable doubt on Chinese records of Carassius carassius.

Carassius auratus (Linnaeus)

Figure 19

Carassius auratus var. wui Tchang, 1930, Cyprinidés du Bassin du Yangtze, p. 65.

Carassius auratus var. cantonensis Tchang, 1933, Zool. Sinica, (B) II (1), p. 27, Fig. 8. Canton.

Locality of Material:—Shanghai; Ningpo; Canton; Yangtze River; Pei Ho; Hong Kong (fide Gee).

Fig. 19. Carassius auratus (Linnaeus). 83 mm. without caudal.
Specimens examined from Paotou (Yellow River); Chihli; Shansi; Shantung; Anhwei; Tungting Lake, Hunan; Szechwan; Yunnan; Kiangsi; Fukien; Kwangtung; Hainan Island; up to 190 mm. standard length.

Description:—Depth in length to base of caudal, 2.4; head, 3.6; eye in head, 3.4 (specimen 99 mm. standard length). Dorsal, II, 14 to 20; anal, II, 5; scales, 26 to 28.

Remarks:—Wild goldfish, of a silvery color, are called “chi-yü” at Tungting Lake, where they are about one foot in total length when full grown. This is one of the important food fishes and incidentally expensive. Fish dealers often have special tanks in which they are kept alive. They are to be seen for sale in great numbers on the streets of Yochow, and the young are caught and sold as well as the adult (C. H. Pope, field notes).

Genus Carassoides Oshima

Local South Chinese carps with 4 small barbels and 2 series of pharyngeal teeth, the outer series (4) strongly compressed, inverted cone-shaped, with narrow oval grinding surfaces, the inner series (1 or 2) exceedingly slender with blunt tips; otherwise like *Carassius*. The single species is a compressed, rhomboidal fish, apparently a perfectly good species, though with characters like those described for the hybrid between *Cyprinus* and *Carassius*.

Carassoides cantonensis (Heincke)

Locality of Material:—Specimens examined from Kwangtung; largest 110 mm. long.

Description:—Depth in length, 2.2; head, 3.5 or 3.6; eye in head, 3 or 3.1. Dorsal rays, II, 18 or 19; anal, II, 5 or 6; scales, 30 or 31.

Genus Procypris Lin

A genus which seems to be more or less intermediate between *Cyprinus* and *Barbus*. Last simple ray of anal, as of dorsal, a serrate spine; 3 rows of hooked pharyngeal teeth; 2 pairs of barbels; dorsal long (with 16 branched rays).

The single specimen on which this genus is based may have affinity with *Puntius proctozisron* Bleeker from Siam, type of *Puntioplites* Smith, 1929, or it may possibly have been a hybrid.
The Fresh-water Fishes of China

Procypris merus Lin

Description:—Depth in length to base of caudal, 3; head, 3.5; eye in head, 3.1. Dorsal rays, II, 16; anal, II, 5; scales, 42.

Genus Cirrhinus Oken

Cirrhinus Oken, 1817, Isis, pp. 1181-1183, after Cuvier. Type: Cyprinus cirrkosus Bloch.

Moderate or large-scaled, soft-finned carps with depressed snout, transverse mouth, lips thin, the upper not fringed, dorsal of 13 to 17 rays, opposite the ventrals; anal short, with 5 or 6 (exceptionally 7) branched rays. A few Indian and one Chinese species.

Edge of mandible rather sharp, with a symphysial tubercle. Gill rakers short, subconical. Lateral line running in the middle of the peduncle. Barbels small (1 or 2 pairs) or absent. Pharyngeal teeth in 3 rows, none molar-like.

Vent and anal fin not bordered by a row of enlarged scales. Anal base behind that of the dorsal. No scaleless keel before anal fin. Gill membranes attached to the isthmus. Gill rakers not fused. Eye placed in or above the axis of the body.

Cirrhinus chinensis Günther

Description:—Depth in length to base of caudal, 3.2 to 3.3; head, 5 to 5.3 (specimens about 190 mm. to 260 mm. long). Dorsal rays, 16; anal, 8; scales, 38 to 39.

Genus Osteochilus Günther

Rather thick-bodied, soft-finned carps of small or moderate size, of which a number of closely related species occur in the East Indies and on the adjacent Asiatic mainland.

Dorsal fin long, of 13 to 21 soft rays. Mouth terminal or inferior, with fringed lips. Two pairs of small barbels. Anal with 5 or 6 branched rays (rarely 7). Pharyngeal teeth in 3 rows.

No scaleless keel before the anal fin. Upper jaw protractile. Gill membranes attached to the isthmus. Gill rakers not fused. Eye placed in or above the axis of the body.
SYSTEMATIC ACCOUNT

Osteochilus salsburyi Nichols and Pope

Figure 20

Locality of Material:—Specimens examined from Kwangtung and Hainan; up to 155 mm. standard length.

Description:—Depth in length to base of caudal, 3.1; head, 4; eye in head, 3.9 (specimen of 85 mm. standard length). Dorsal rays, 13; anal, 7.5; scales, 34.

Genus Barbus Cuvier

Barbus Cuvier, 1817, Règne Animal, II, p. 192. Type: Cyprinus barbus Linnaeus.

As here understood a large and varied genus of small or moderate-sized carps with pharyngeal teeth in 3 rows and normally 2 pairs of barbels (sometimes reduced to a single pair, or absent). When a spine is present in the dorsal it is usually serrate behind (in Chinese species), and usually with a soft tip. Mouth terminal or slightly inferior; not transverse, with a sharp-edged lower jaw; lower jaw rarely with a cartilaginous covering. Intestinal tract short. Anal fin with 5 or 6 branched rays (exceptionally 7).

Vent and anal fin not bordered by a row of enlarged scales. Origin of anal behind or under posterior end of dorsal. No scaleless keel before anal fin. No serrate spinous ray in the anal. Upper jaw protractile. Gill membranes attached to the isthmus. Gill rakers not fused. Eye placed in or above the axis of the body.

Many species occur in Eurasia and Africa, especially southern Asia, where numerous nominal genera, best considered subgenera, are almost impossible to recognize without violating the relationships of the forms involved.
Key to Chinese Barbus

1. Mouth various, not as below .. see 2
 Lower jaw included, with a free tip (sometimes with a horny sheath)
 projecting beyond the lip, the front margin of which is notched in the
 center. Scales, about 40 (except rendahli). ¹ Two pairs of longish barbels.
 (Lissocliichthys) .. see 14

2. Two pairs of barbels .. see 3
 A single pair of barbels or none. Dorsal with a serrate spine
 No barbels. No spinous dorsal ray. A tubercle at the symphysis fitting
 a depression in the upper jaw. Scales, 88 to 90

3. Last simple dorsal ray not osseous see 4
 Last simple dorsal ray more or less osseous, smooth. Scales, 29. Dark
 along the back, scales on the sides with dark borders, lower surfaces
 with golden shades, vertical fins blackish see 11
 Last simple dorsal ray more or less osseous, smooth. Scales, 22 or 23.
 Dorsal with a sharply defined black marginal band
 Last simple dorsal ray more or less osseous, serrate behind, at least in
 large examples .. see 6

4. Scales small, about 53. Lower jaw projecting see 5
 Scales large, 20 to 26. Dorsal with a sharply defined black marginal band

5. Scales, 24 to 26. Moderately compressed, the head broad, snout pointed;
 width of head and of body in length of head, about 1.8
 Scales, 22 or 23. Dorsal origin nearer base of caudal than end of snout
 Dorsal origin nearer end of snout than base of caudal

6. Scales small, more than 100 see 7
 Scales, 55 to 59 .. see 8
 Scales, about 53 .. see 9
 Scales moderate or rather large, less than 50

7. Scales, 45 or 46 .. sinensis
 Scales, 35 to 41 .. regani
 Scales, about 29 to 32. Serration on dorsal spine fine, little if at all
 appreciable in the young. Fins more or less dark colored

8. Dorsal origin much nearer end of snout than base of caudal. Well-devel-
 oped free lips all around
 Dorsal origin about equidistant from end of snout and base of caudal

9. Dorsal origin about equidistant from base of caudal and hind margin of
 eye. Scales, about 39
 Dorsal origin nearer end of snout than base of caudal. Scales, about 41
 Dorsal origin about equidistant from base of caudal and end of snout

¹ Barbus rendahli Lin presumably comes here. Edge of lower jaw leathery. Maxillary barbel about ¾ of
 eye; dorsal with a spinous ray; scales, 48 or 49; coloration uniform.

² This species not examined. It is described with a spine in the dorsal fin, but the last simple dorsal ray of
 closely allied forms we consider relatively non-osseous.
SYSTEMATIC ACCOUNT

10. Dorsal spine $\frac{3}{4}$ to $\frac{3}{4}$ of head. Scales, 36 to 38
 Dorsal spine equal to or longer than head. Scales, 35. A dark band across dorsal
 see barbodon margarianus
11. Small species with dark cross marks in the middle of the side. Scales, about 25
 Larger; scales, 40 to 45
 see szechwanensis 13
 see parallens 12
12. Color uniform. Scales, 40. No barbels
 Lower lip with an uninterrupted transverse fold. Scales, 45. A pair of short barbels
 see semifasciolatus simus
13. Six or seven cross marks. Barbels more than $\frac{1}{2}$ length of eye
 Fewer cross marks. Barbels absent
 see snyderi 15
14. Last simple dorsal ray not spinous and serrate behind
 Last simple dorsal ray spinous (at least at base) and serrate behind
 see hemispinus 16
15. A horny edge to the lower jaw; sides with distinct blackish cross marks;
 barbel moderate or long lissochiloides (ad.)
 No noticeable horny edge to the jaw
 see hemispinus 17
16. Lower jaw with a well-developed horny edge; depth in length to base of
 caudal, 3.5 or more
 Lower jaw without a horny edge; barbel moderate or long
 see hemispinus 18
17. Sides with distinct blackish cross marks and without lateral band; barbel long (less than 4, usually less than 3, in head)
 Sides without cross marks or lateral band; barbel moderate (about 3.5
 to 4.5 in head)
 Sides with lateral band, and abruptly pale below it, distinct short cross
 marks, confined to the sides of the back (except in young); barbel
 moderate (usually 3 or more in head)
 see parallens 19
18. Barbel small (6 or 7 in head), and no distinct cross marks (at 193 mm.)
 Barbel moderate or long (4 or less), black cross marks distinct
19. Deeper (depth, 3.1 to 3.4 at 56 to 95 mm.); cross marks faint or
 wanting
 Less deep (depth, 3.4 to 3.6 at 48 to 67 mm.); cross marks distinct lissochiloides (juv.)

Subgenus Barbus Cuvier

Barbus Cuvier, 1817, Regne Animal, II, p. 192. Type: Cyprinus barbus Linnaeus.

Barbus pingi (Tchang)

Description:—Depth in length to base of caudal, 3; head, 3.5; eye in head,
7.7 or 7.8 (specimen 440 mm. total length). Dorsal rays, 10; anal, 7; scales, 53.
Chu says “dorsal with the third simple ray ossified and serrated at the proximal
portion.”

Barbus regani Tchang

Description:—Depth in length to base of caudal, 3.6 to 4.5; head, 3.1 to 3.2; eye in head, 6.3 (at 310 mm., specimens 220 to 310 mm. standard length). Dorsal rays, II, 8; anal, 7; scales, 55 to 59.

Lower jaw projecting; maxillary barbel slightly shorter than the diameter of eye; dorsal origin nearer caudal base than tip of snout.

Barbus grahami Regan

Locality of Material:—Specimens examined from Yunnan.

Description:—Depth in length, 3.5; head, 3.7 or 3.8; eye in head, 5.7 (specimen 170 mm. long). Dorsal rays, II, 7; anal, 7; scales, 110.

Barbus normani Tchang

Description:—Depth in length to base of caudal, 4.3 to 4.6; head, 4.3 to 4.6; eye in head, 7.5 (at 480 mm., specimens 360 to 480 mm. standard length). Dorsal rays, 10; anal, 7; scales, 88 to 90.

Head pointed, mouth large, jaws equal. Teeth 2-rowed, pointed, and hooked.

Barbus brevifilis Peters

Barbus (Labeobarbus) brevifilis Peters, 1880, Monatsber. Akad. Wiss. Berlin, p. 1033, Fig. 4. Hong Kong.

Description:—Depth in length to base of caudal, about 4.7; head, not quite 4; eye in head, about 4 (specimen 120 mm. long). Dorsal rays, II, 8; anal, 7; scales, 45 or 46.

Barbus zonatus (Lin)

Tor zonatus Lin, 1935, Lingnan Sci. Jour., Canton, XIV, p. 308, Fig. 5. Liuchow, Kwangsí.

Description:—Depth in length to base of caudal, 3.4 to 3.8; head, 3.6 to 3.9; eye in head, 3.5 to 5 (specimens 105 to 265 mm. standard length). Dorsal rays, II, 10; anal, 7; scales, 41.

Lips thick, completely covering edge of jaws, with a median labial lobe. Maxillary barbel about as long as eye. Dorsal with a strong serrate spine. Three sharp black bars followed by two rounded spots in middle of side. This species, said to be close to *brevifilis*, is suggestive of the subgenus *Lissochilichthys* but with a different mouth.

Barbus yunnanensis Regan

SYSTEMATIC ACCOUNT

Description:—Depth in length, 3.7 or 3.8; head, 4.4; eye in head, 5 (specimen 210 mm. long). Dorsal rays, II, 8; anal, 7; scales, 46.

Barbus szechwanensis Tchang

Description:—Depth in length to base of caudal, 3.9; head, 3.9; eye in head, 4.8 (specimen 192 mm. standard length). Dorsal rays, II, 8; anal, 7; scales, 45.

Subgenus Barbodes Bleeker

Barbus deauratus Cuvier and Valenciennes

Barbus deauratus Cuvier and Valenciennes, 1842, Hist. Nat. Poissons, XVI, p. 188. Cochinchina.

Locality of Material:—Canton (*fide* Gee).

Description:—Dorsal rays, II, 8; anal, 7; scales, 29.

Barbus cogginii Chaudhuri

Barbus cogginii Chaudhuri, 1911, Rec. Indian Mus., Calcutta, VI, p. 16, Pl. 1, fig. 2. Yunnan.

Locality of Material:—Specimens examined from Yunnan.

Description:—Depth in length to base of caudal, 3.2; head, 4; eye in head, 3.7 (specimen 141 mm. standard length). Dorsal rays, II, 8; anal, 7; scales, 39.

Barbus gregorii Norman

Description:—Depth in length, 3 to 3.7; head, 3.5 to 4; eye in head, 3.5 to 4.5 (specimens 110 to 260 mm. total length). Dorsal rays, II, 7 or 8; anal, 7; scales, 36 to 38.

Barbus margarianus Anderson

Barbus margarianus Anderson, 1878, Anat. and Zool. Researches Western Yunnan, I, p. 867; II, Pl. LXXIX, fig. 1. Western Yunnan border.

Description:—Depth in length to base of caudal, 3.2; head, 4.7; eye in head, 3.5. Dorsal rays, II, 8; anal, 7; scales, 35.

Barbus simus Sauvage and Dabry de Thiersant

Description:—Depth in total length, 4.7; head, 6 (specimen 180 mm. total length). Dorsal rays, II, 8; anal, 6; scales, 40.

Subgenus Spinibarbus Oshima

This subgenus is characterized by a precumbent, forwardly directed spine before the dorsal, which is not here counted as a fin ray.

Barbus caldwelli Nichols

Figure 21

Locality of Material:—Tien-mu-san, Chekiang (Chu, 1932.1, p. 135).

Specimens examined from Hokou, Kiangsi; Chungan Hsien, Fuching Hsien, Kienning, and Yenping, Fukien; up to 220 mm. standard length.

Description:—Depth in length to base of caudal, 3.6 to 4.8; head, 3.3 to 4; eye in head, 3.7 to 5.5 (specimens 59 to 220 mm. standard length). Dorsal rays, II; anal, 7; scales, 24 to 26.

Barbus mandarinus (Rendahl)

Description:—Depth in length to base of caudal, 4.1 to 3.9; head, 3.3 to 3.4; eye in head, 4.2 to 5 (specimens of 144 to 153 mm. standard length). Dorsal rays, II, 9; anal, 7; scales, 22 or 23.
SYSTEMATIC ACCOUNT

Barbus nigrodorsalis (Oshima)

Figure 22 and Plate IV, figure 1

Locality of Material:—Specimens examined from Noda, Hainan.

![Barbus nigrodorsalis](image)

Fig. 22. Barbus nigrodorsalis (Oshima). 115 mm. without caudal.

Description:—Depth in length to base of caudal, 4.1; head, 3.6; eye in head, 4 (specimen 115 mm. standard length). Dorsal rays, 11; anal, 7; scales, 20.

Remarks:—Constantly taken in the immediate environs of Noda, but not found personally by Mr. Pope in numbers in any particular environment.

Barbus sinensis (Bleeker)

Puntius (Barbodes) sinensis Bleeker, 1871, Verhandel. Akad. Wetensch., Amsterdam, Afd. Natuurk., XII, p. 17, Pl. III, Fig. 2. Yangtze?

Key to Chinese Barbus sinensis

Dorsal origin over ventral base; equidistant from base of caudal and front of eye.

Scales, 30 to 32 ... *denticulatus*

Dorsal origin in advance of ventral; nearer end of snout than base of caudal. Scales, 28 or 29 ... *sinensis*

Barbus sinensis denticulatus (Oshima)

Figure 23

Locality of Material:—Specimens examined from Noda, Hainan.

Description:—Depth in length to base of caudal, 3; head, 3.7; eye in head, 3.3 (specimen 85 mm. standard length). Dorsal rays, II, 9; anal, 8; scales, 29.
THE FRESH-WATER FISHES OF CHINA

Fig. 23. Barbus sinensis denticulatus (Oshima). 85 mm. without caudal.

Barbus sinensis sinensis (Bleeker)

Puntius (Barbodes) sinensis Bleeker, 1871, Verhandel. Akad. Wetensch., Amsterdam, Afd. Natuurk., XII, p. 17, Pl. 11, fig. 2. Yangtze?

Description:—Depth in length to base of caudal, 3.1 to 3.2; head, 4; eye in head, 4.2 to 4.4 (specimens about 175 mm. standard length). Dorsal rays, II, 9; anal, 7; scales, 30 to 32.

Subgenus Puntius Hamilton-Buchanan

Puntius Hamilton-Buchanan, 1822, Fishes in Ganges, p. 388. Type: Cyprinus puntio Hamilton-Buchanan.

Barbus semifasciolatus Günther

Figure 24 and Plate V, figure 1

Barbus hainani Lohberger, 1929, Zool. Anz., LXXXIV, p. 49, Fig. 1. Hainan.

Fig. 24. Barbus semifasciolatus Günther. 34 mm. without caudal.
SYSTEMATIC ACCOUNT

Locality of Material:—Specimens examined from Hainan.

Description:—Depth in length to base of caudal, 2.6 to 2.8; head, 3.2 to 3.5; eye in head, 2.8 to 3.3 (specimens about 35 mm. standard length). Dorsal rays, II, 8; anal, 8; scales, 24.

Remarks:—This brilliantly colored little fish is common in the many small, grass grown, irrigation reservoirs and ditches of the rice fields about Noda, Hainan. It is very variable in color.

Barbus snyderi (Oshima)

Locality of Material:—Specimens examined from Fukien.

Description:—Depth in length to base of caudal, 3; head, 3.2 to 3.6; eye in head, 3 to 3.7 (specimens 43 to 77 mm. in length). Dorsal rays, II, 8 or 9; anal, 7 or 8; scales, 23 or 24.

Subgenus Lissochilichthys Oshima

Fishes referable to this subgenus, Lissochilichthys of the genus Barbus, seem to be everywhere plentiful in eastern China south of the Yangtze Valley, very variable, but the species are difficult to define. To some extent they are geographic and representative, but in Fukien B. matsudai and B. hemispinus occur plentifully together. Besides other minor quantitative differences from matsudai, B. hemispinus shows a marked qualitative difference in having a serrate dorsal spine, which, however, is more or less reduced or absent in large specimens, though it holds in large specimens of B. barbodon from Hainan Island. Whether or not these two forms hybridize or intergrade, is complicated by the presence of a third in the same province, B. lissochiloides as understood by the writer, which he believes has the serrated dorsal spine when small, and another qualitative difference, a horny edge to the lower jaw when large. From the considerable material and complicated literature examined, it would be possible to recognize more (or fewer) forms than are recognized here. Crossochilus fasciatus Steindachner (preoccupied in Barbus = lissochiloides) belongs in subgenus Lissochilichthys. The common, banded, soft-rayed, soft-jawed Fukien form seems to be indistinguishable from Lissochilichthys matsudai Oshima described from Formosa. Barbus paradoxus Günther may be identical with it or with some other Chinese form, but presumably is not. Lissochilichthys matsudai is apparently the same as Gymnostomus labiatus Regan (labiatus preoccupied in Barbus).
Barbus matsudai (Oshima)

Acrossochilus rabaudi Tchang, 1930, Cyprinides du Bassin du Yangtze, p. 76, Pl. IV, fig. 1. Tche-Kiang [Chekiang].

Locality of Material:—Specimens examined from Chungan Hsien and Yenping, Fukien; up to 130 mm. standard length.

Description:—Depth in length to base of caudal, 3.3 to 4.2; head, 3.5 to 3.9; eye in head, 3 to 5 (specimens 22 to 117 mm. standard length). Dorsal rays, 10; anal, 7; scales, 39 to 42.

Barbus parallens Nichols

Figure 25

Barbus (Lissochilichthys) parallens Nichols, 1931, Lingnan Sci. Jour., Canton, X, p. 455, Fig. 1. Lung T'au Shaan, Kwangtung.

Locality of Material:—Specimens examined from the type locality; up to 122 mm. standard length.

![Fig. 25. Barbus parallens Nichols. Cotype. About 75 mm. standard length.](image)

Description:—Depth in length to base of caudal, 3.8 to 4.4; head, 3.4 to 3.8; eye in head, 3.7 to 4.8 (specimens 55 to 122 mm. standard length). Dorsal rays, 10; anal, 7; scales, 38 to 40.

Barbus lissochiloides Nichols

Locality of Material:—Specimens examined from Hokou, Kiangsi; Kienning and Yenping, Fukien; up to 89 mm. standard length.
SYSTEMATIC ACCOUNT

Description:—Depth in length to base of caudal, 3.4 to 3.7; head, 3.4 to 3.9 (more in larger specimens); eye in head, 3.2 to 4.4 (specimens 41 to 89 mm. standard length). Dorsal rays, II, 8; anal, 7; scales, 38 to 43.

Barbus hemispinus Nichols

Description:—Depth in length to base of caudal, 3.4 to 3.7; head, 3.4 to 3.9 (more in larger specimens); eye in head, 3.2 to 4.4 (specimens 41 to 89 mm. standard length). Dorsal rays, II, 8; anal, 7; scales, 38 to 43.

Barbus hemispinus Nichols

Locality of Material:—Specimens examined from Chungan Hsien, Fuching Hsien, and Yenping, Fukien; up to 155 mm. standard length. A single small specimen from Yungtai Hsien, Fukien, approaches *B. barbodon*.

Barbus barbodon Nichols and Pope

Description:—Depth in length to base of caudal, 3 to 3.6 (rarely 3.8); head, 3 to 3.7; eye in head, 3.5 to 5 (specimens 56 to 140 mm. standard length). Dorsal rays, II, 8; anal, 7 or 8; scales, 38 to 40.

Barbus rendahli Lin

THE FRESH-WATER FISHES OF CHINA

Description:—Depth in length, 4.1; head, 4.6; eye in head, 4.4. Dorsal rays, II, 8; anal, 7; scales, 48 or 49.

Fig. 27. Barbus barbodon Nichols and Pope. Type. 193 mm. without caudal.

Genus Cyclocheilichthys Bleeker

This genus contains a few carps of southeastern Asia and the East Indies, questionably distinct from *Barbus*. They have the mouth small, inferior, horseshoe-shaped, horizontal, more or less specialized, and the lower jaw may have a cartilaginous tip; a serrated dorsal spine; normally 2 pairs of barbels, sometimes very small or reduced to a single pair.

Scales of moderate size, the lateral line running in the center of the peduncle. Anal fin with 5 or 6 branched rays (exceptionally 7). Pharyngeal teeth in 3 rows. Vent and anal fin not bordered by a row of enlarged scales. Anal base well behind that of dorsal. No scaleless keel before anal fin. No serrate spinous ray in the anal. Upper jaw protractile. Gill membranes attached to the isthmus. Gill rakers not fused. Eye placed above the axis of the body.

Key to Chinese Cyclocheilichthys

<table>
<thead>
<tr>
<th>Scales, about 42</th>
<th></th>
<th>iridescens</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scales, 35 or 36</td>
<td></td>
<td>sinensis</td>
</tr>
</tbody>
</table>

Cyclocheilichthys iridescens Nichols and Pope

Figure 28

Description:—Depth in length to base of caudal, 3.3; head, 4.1; eye in head, 3.8 (specimen of 102 mm. standard length). Dorsal rays, II, 8; anal, 7; scales, 42.
SYSTEMATIC ACCOUNT

Fig. 28. Cyclocheilichthys iridescens Nichols and Pope. Type. 102 mm. without caudal.

Remarks:—Apparently confined to the higher mountain streams some miles south of Noda, Hainan.

Cyclocheilichthys sinensis Bleeker

Description:—Depth in length to base of caudal, a little more than 3; head, 3.7 to 3.8; eye in head, about 3.3 (specimen about 315 mm. long). Dorsal rays, II, 8 or 9; anal, 7 or 8; scales, 35 to 38.

Genus Crossocheilus Van Hasselt

Carpas of southern Asia, which have the lower jaw transverse, with a narrow lip which is not continuous with the upper lip, and with a sharp, inner, transverse edge; no spines in dorsal or anal fins; dorsal with not more than 9 branched rays, anal with 5 or 6 (exceptionally 7).

No sucking disk on the lower jaw. Vent and anal fin not bordered by a row of enlarged scales. Anal base well behind that of the dorsal. No scaleless keel before anal fin. Gill membranes attached to the isthmus. Gill rakers not fused. Eye placed in or above the axis of the body.

Key to Chinese Crossocheilus

Anterior barbel minute, posterior nearly as long as eye. Color uniform monticola
Anterior barbel a little shorter, posterior a little longer than eye. A dark lateral stripe, and sometimes indistinct dark cross bars .. styani
Crossochilus monticola Günther

Description:—Depth in length to base of caudal, 3.5; head, 4.5; eye in head, 4.5 (specimen about 175 mm. long). Dorsal rays, 10 or 11; anal, 7 or 8; scales, 42.

Crossochilus styani Boulenger

Acrossochilus styani, Chu, 1931, China Jour., XIV, pp. 187–194, Fig. 14, 14B. Chekiang.

Description:—Depth in length to base of caudal, 3.5 to 3.8; head, 4.2 to 4.3; eye in head, 4 to 4.5. Dorsal rays, 10; anal, 7; scales, 39 to 41.

Genus Sinibarbus Sauvage

A small Chinese carp, closely resembling certain members of the genus Barbus, but pharyngeal teeth one-rowed, 5, hooked and recurved.

Scales of moderate size, lateral line complete. Dorsal opposite ventrals. Mouth transverse, with a single pair of barbels, the lower jaw somewhat included. A strong, serrate, dorsal spine. Anal fin with 5 or 6 branched rays.

Vent and anal fin not bordered by a row of enlarged scales. Anal base well behind that of dorsal. No scaleless keel before the anal fin. No serrate spinous ray in the anal. Upper jaw protractile. Gill membranes attached to the isthmus. Gill rakers not fused. Eye placed in or above the axis of the body.

Sinibarbus vittatus Sauvage

Description:—Head in length to base of caudal, 4; eye, longer than snout and equal to interorbital (specimen 70 mm. long). Dorsal rays, II, 8; anal, 7; scales, 40.

Genus Danio Hamilton-Buchanan

Danio Hamilton-Buchanan, 1822, Fishes in Ganges, p. 390. Type: Cyprinus dangila Hamilton-Buchanan.

Active, free swimming, soft-finned minnows of tropical or subtropical Asia, with the lateral line running along the lower half of the tail; no scaleless keel before the anal; dorsal fin with 9 or more branched rays, the posterior of which are over the origin of the anal fin which has 10 or more branched rays; mouth narrow.

Scales of moderate size. Lateral line complete. Mouth oblique. Normally 2, sometimes a single pair of barbels, which may be rudimentary or absent. Gill rakers very short. Pharyngeal teeth in 3 rows, hooked.
Upper jaw protractile. Vent and anal fin not bordered by a row of enlarged scales. Gill membranes attached to the isthmus. Gill rakers not fused. Eye placed in or above the axis of the body.

Danio kakhiienensis Anderson

Danio kakhiienensis Anderson, 1878, Anat. and Zool. Researches Western Yunnan, I, p. 868; II, Pl. lxxix, fig. 2. Western Yunnan border (Nampoung River).

Description: Depth in length to base of caudal, 3.5; head, 3.9; eye in head, 3.5. Dorsal rays, 10; anal, 14; scales, 32.

Genus Schizothorax Heckel

Schizothorax Heckel, 1838, Fische aus Caschmir, p. 11. Type: Schizothorax plagistomus Heckel.

Fine-scaled carps of high Asia, a few species occurring in western China.

Vent and base of anal fin bordered by a row of enlarged scales. Anal short, with 5 or 6 branched rays. Two pairs of barbels. Pharyngeal teeth in 3 rows.

Anal base well behind that of dorsal. No scaleless keel before anal fin. No serrate spinous ray in the anal. Upper jaw protractile. Gill membranes attached to the isthmus. Gill rakers not fused. Eye placed in or above the axis of the body.

Key to Chinese Schizothorax

1. Mouth arched, normal (Schizothorax) ... see 2
 Mouth inferior, transverse, margin of lower jaw horny (Schizopyge) see 4

2. Origin of dorsal about equidistant from nostrils and base of caudal. Scales, 110 to 115 ... potanini
 Origin of dorsal a little nearer base of caudal than end of snout; profile somewhat concave; lower lip widely interrupted; numerous small, unequal, dark spots on the back. Scales, 70 to 77 ... multipunctatus
 Origin of dorsal about equidistant from end of snout and base of caudal. Scales, 85 to 105 ... see 3
 Dorsal with a strong, serrate spine, its origin midway between end of snout and base of caudal, or nearer the former. Scales, 150 to 160 progastus
 Mouth inferior, lower lip interrupted. Scales, about 102 yunnanensis
 Mouth inferior, lower lip continuously free across the chin, with a small central lobe; posterior barbel, 1.25 to 1.75 times eye. Scales, 95 to 100 griseus

4. Last simple dorsal ray strongly spinous, coarsely serrated behind ... see 5
 Last simple serrated dorsal ray weakly spinous. Scales, 95 to 125 see 6
 Last simple dorsal ray not spinous. Scales, 100 to 105 prenanti

5. Scales, 150 to 160 ... progastus
 Scales, 105 to 110 ... molesworthi

6. Scales, 115 to 125 ... sinensis
 Scales, about 98 ... grahame
Subgenus Schizothorax Heckel

Schizothorax Heckel, 1838, Fische aus Caschmir, p. 11. Type: Schizothorax plagiostomus Heckel.

Schizothorax potanini Herzenstein

Description:—Depth in length to base of caudal, 4.4; head, 3.9 to 4.4; eye in head, about 5.5. Dorsal rays, 10 (II, 8); anal, 7; scales, 110 to 115.

Schizothorax multipunctatus Pellegrin

Description:—Depth in length to base of caudal, 3 to 3.3; head, 3 to 3.3; eye in head, 5.3 to 5.5. Dorsal rays, 10 (II, 8); anal, 7; scales, 70 to 77 (lateral line). Mouth terminal or slightly inferior; barbels subequal, about 2 times eye.

Schizothorax taliensis Regan

Description:—Depth in length to base of caudal, 5 to 6; head, 4.7 to 5; eye in head, 3.5 to 3.8. Dorsal rays, II, 7; anal, 7; scales, 85 to 100.

Schizothorax yunnanensis Norman

Description:—Depth in length to base of caudal, 4.6; head, 4.6; eye in head, 5.2 to 5.3 (specimen of 270 mm. total length). Dorsal rays, 11 (II, 9); anal, 7; scales, 102.

Schizothorax griseus Pellegrin

Description:—Depth in length to base of caudal, 4 to 4.3; head, 3.7 to 4; eye in head, 5.5 to 6. Dorsal rays, 10 (II, 8); anal, 7; scales, 95 to 100 (lateral line).

Subgenus Schizopyge Heckel

Schizothorax progastus (McClelland)

Description:—Depth in length to base of caudal, about 4.8; head, about 4.3; eye in head, 4.5 to 6. Dorsal rays, II, 8 or 9; anal, 7; scales, 150 to 160.

The mouth of this species seems to be somewhat intermediate between that typical of the subgenera *Schizothorax* and *Schizopyge*.

Schizothorax molesworthi (Chaudhuri)

Schizothorax molesworthi, Tchang, 1933, Zool. Sinica, (B) II (1), p. 39, Fig. 16. Yunnan, Szechwan.

Description:—Depth in length to base of caudal, 3.7 to 4.3; head, 4 to 4.4; eye in head, 5 to 5.8 (specimens 105 to 205 mm. standard length). Dorsal rays, II, 8; anal, 7; scales, 105 to 110. Sides of body with small, scattered, black spots.

Schizothorax prenanti (Tchang)

Oreinus prenanti Tchang, 1930, Cyprinidés du Bassin du Yangtze, p. 74. Szechwan.

Description:—Depth in length, 4.4 to 5; head, 4 to 4.5; eye in head, 5 to 5.7 (specimens 150 to 250 mm. long). Dorsal rays, 10; anal, 7; scales, 100 to 105.

Schizothorax sinensis Herzenstein

Locality of Material:—Specimen examined from Wuting Chou district, Yunnan.

Description:—Depth in length to base of caudal, 4.2 to 4.6; head, 4.2 to 4.8; eye in head, 4.1 to 5.3. Dorsal rays, 10 (II, 8); anal, 7; scales, 115 to 125.

Schizothorax grahami (Regan)

Description:—Depth in length to base of caudal, 4.5 to 5; head, 4 to 4.3; eye in head, 4.2 to 4.6 (specimens 118 to 170 mm. total length). Dorsal rays, 10 (II, 8); anal, 7; scales, about 98.

Genus **Schizopygopsis** Steindacher

Carps of high Asia with a single species known from western China.

Vent and base of anal fin bordered by a row of enlarged scales. Anal short, with 5 or 6 branched rays. Body mostly scaleless, a few fine scales present. No barbels.

Anal base well behind that of dorsal. No keel before anal fin. No serrate spi-
nous ray in the anal. Upper jaw protractile. Gill membranes attached to the isthmus. Gill rakers not fused. Eye placed in or above the axis of the body.

Schizopygopsis pylzovi Kessler

Description:—Depth in length to base of caudal, 4.5 to 5.4; head, 4.2 to 4.5; eye in head, 3.6 to 5.8. Dorsal rays, 9 or 10; anal, 7.

Genus Diptychus Steindachner

Carps of high Asia with a single species known from western China.

Vent and base of anal fin bordered by a row of enlarged scales. Anal short, with 5 or 6 branched rays. Body mostly scaleless, a few fine scales present. A single pair of barbels. Pharyngeal teeth in 2 rows.

Anal base well behind that of dorsal. No keel before anal fin. No serrate spinous ray in the anal. Upper jaw protractile. Gill membranes attached to the isthmus. Gill rakers not fused. Eye placed in or above the axis of the body.

Subgenus Gymnodiptichus Herzenstein

Characterized by absence of scales except on the lateral line. Absence of sharp cartilaginous sheath to lower jaw; very fleshy and thick lower lip.

Diptychus dybowskii Kessler

Description:—Body elongate; head in length to base of caudal, 4 or a little more; eye in head, 6 to 6.5 (specimens 220 to 230 mm. long). Dorsal rays, 10; anal, 8; scales, about 97 or 98.

Genus Leuciscus Cuvier

Leuciscus Cuvier, 1817, Règne Animal, II, p. 194. Type: Cyprinus leuciscus Linnaeus.

A large, north Eurasian genus of mostly rather elongate, actively free swim-
ming carps of small or moderate size. One or two forms only, seemingly races of the same Siberian species, are known in China.

Origin of dorsal over ventrals. Scales imbricated. Lateral line complete. Dorsal with 7 to 9 branched rays; anal with 7 to 12. Lower jaw not projecting. Pharyngeal teeth in 2 rows: 2, 5–5, 2; 2, 4–5, 2; or 3, 5–5, 3, not or but slightly serrate. Upper jaw protractile, without a noticeable knob. Belly behind ventrals rounded. Gill membranes attached behind the vertical of the posterior edge of the eye.

No barbels. Mouth more or less oblique and terminal, not transverse with sharp-edged lower jaw. Vent and anal fin not bordered by a row of enlarged scales. Origin of anal behind or under posterior end of dorsal. No scaleless keel before the anal fin. No serrate spinous ray in the anal. Gill rakers not fused. Eye placed in or above the axis of the body.

Chinese forms belong to the genus or subgenus *Idus*, if this is recognized.

Leuciscus waleckii (Dybowski)

Key to Chinese Leuciscus waleckii

Larger (commonly over 150 mm. standard length), more compressed (interorbital in head, 4), the nape elevated, mouth larger (maxillary in head, 3), lower jaw slightly projecting, fins lower (dorsal height in head, 1.6; anal, 2), scales smaller (about 58) ... **sinensis**

Smaller (usually 150 mm. or less standard length), less compressed (interorbital in head, 3.2), fusiform, mouth smaller (maxillary in head, 3.4), lower jaw slightly included, fins higher (dorsal height in head, 1.4; anal, 1.7), scales larger (about 52) **waleckii**

Leuciscus waleckii waleckii (Dybowski)

Locality of Material:—Specimens examined from Shansi.

Description:—Depth in length to base of caudal, 4.4; head, 3.6; eye in head, 4 (specimen of 93 mm. standard length). Dorsal rays, 9½; anal, 11; scales, 52.

Leuciscus waleckii sinensis (Rendahl)

Idus waleckii sinensis Rendahl, 1925, Fauna och Flora, Uppsala, p. 197. Hoangho, Ping-lu-hsien; Shansi; also Honan.

Locality of Material:—Specimens examined from the Yellow River at Paotou, Mongolia.

Description:—Depth in length to base of caudal, 4.2; head, 3.6; eye in head, 5 (specimen 165 mm. standard length). Dorsal rays, 9; anal, 11; scales, 50 to 58.
THE FRESH-WATER FISHES OF CHINA

Genus Phoxinus Rafinesque

Phoxinus Rafinesque, 1820, Ichthyologia Oblensis, p. 45. Type: Cyprinus phoxinus Linnaeus (Europe).

Fine-scaled minnows of Europe and northern Asia, closely related to Leuciscus. Abundant in northern China, where it is seemingly referable to two races of a species described from the Amur River.

Origin of dorsal more or less behind ventral base. Scales small, particularly anteriorly, little if at all imbricated. Lateral line sometimes incomplete. Small fishes.

Dorsal with 7 to 9 branched rays; anal with 7 to 12; no spinous dorsal or anal ray. Lower jaw not projecting. Pharyngeal teeth in 2 rows: 2, 5–5, 2; 2, 4–5, 2; or 3, 5–5, 3, not or but slightly serrate. Upper jaw protractile, without a noticeable knob. Belly behind ventrals rounded. Gill membranes attached behind the vertical of the posterior edge of the eye.

No barbels. Mouth more or less oblique and terminal, not transverse with sharp-edged lower jaw. Vent and anal fin not bordered by a row of enlarged scales. Origin of anal behind or under posterior end of dorsal. No scaleless keel before the anal fin. Gill rakers not fused. Eye placed in or above the axis of the body.

Phoxinus lagowskii Dybowski

Key to Chinese Phoxinus lagowskii

<table>
<thead>
<tr>
<th>Scales finer, 80 to 100</th>
<th>variegatus</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scales coarser, 70 to 80</td>
<td>oxycephalus</td>
</tr>
</tbody>
</table>

Phoxinus lagowskii variegatus (Günther)

Probable Habitat:—Chihli and Shansi south to the middle Yangtze, Hupeh and Kiangsi.

Description:—Depth in length to base of caudal, 4.5 to 5.5; head, 3.4 to 3.8; eye in head, 3.6 to 5. Dorsal rays, 9; anal, 9; scales, 80 to 100.

Phoxinus lagowskii oxycephalus (Sauvage and Dabry de Thiersant)

Rhyncocypris variegata, Berg, loc. cit., not of Günther.
Probable Habitat:—Hopei (Fowler, 1924, p. 389), northern Shansi, and eastern Mongolia, southwest to western Szechwan.

Description:—Depth in length to base of caudal, 4.3 to 5.8; head, 3.4 to 3.7; eye in head, 3.8 to 4.5. Dorsal rays, 9; anal, 9; scales, 70 to 80.

Genus Aspius Agassiz

Large-mouthed, active, elongate carps without a spine in dorsal or anal. Belly compressed to form a keel, over which, however, the scales pass freely. A few species in Europe and Asia, one of them in China.

Gill membranes attached on the vertical of the posterior edge of the eye. Pharyngeal teeth not serrate: 3, 5–5, 3, or 2, 5–5, 3. Dorsal with 7 to 10, anal with 10 to 14 branched rays. Lateral line, 46 to 105. No barbels. Mouth more or less oblique, the lower jaw projecting.

Vent and anal fin not bordered by a row of enlarged scales. Dorsal opposite the space between ventrals and anal. Upper jaw a little protractile. Gill rakers not fused. Eye placed in or above the axis of the body.

Aspius spilurus Günther

Description:—Depth in length to base of caudal, 4.5; head, 4; eye in head, about 3.3 (specimens about 40 to 65 mm. long). Dorsal rays, 9; anal, 14; scales, 46.

Genus Elopichthys Bleeker

A large, elongate, large-mouthed, small-scaled, predaceous carp with mouth parts more or less fused into a pointed, mackerel-like snout; upper jaw not protractile.

Dorsal and anal without spinous rays, their branched rays 9 to 12, and 10 to 13, respectively. Pharyngeal teeth in 3 rows.

No scaleless keel on the belly. Barbels absent. Gill membranes attached to the isthmus. Gill rakers not fused. Eye placed in or above the axis of the body.

Elopichthys bambusa (Richardson)

Figures 29 and 30

Fig. 29. *Elopichthys bambusa* (Richardson). 198 mm. standard length.

Fig. 30. Diagrammatic sketch of the jaws of *Opsariichthys uncirostris hainanensis* Nichols and Pope (upper) and *Elopichthys bambusa* (Richardson) (lower).

PLATE IV

Fig. 1. *Barbus nigrodorsalis* (Oshima). 115 mm. standard length. Nodoa, Hainan.

Fig. 2. *Erythroculter dabryi* (Bleeker). 117 mm. standard length. Tungting Lake.

Fig. 3. *Parabramis pekinensis* (Basilewski). 85 mm. standard length. Tungting Lake.

Fig. 4. *Hemiculter clupeoides* Nichols. Type. 127 mm. standard length. Tungting Lake.
SYSTEMATIC ACCOUNT

89

Locality of Material: — Ningpo, Canton, Shanghai, Pei Ho, Tientsin (fide Gee). Yangtze at Hankow (Kreyenberg and Pappenheim, 1909, p. 17).

Specimens examined from Tungting Lake, Hunan.

Description: — Depth in length to base of caudal, 6.6; head, 4.1; eye in head, 6.7 (specimen of 198 mm. standard length). Dorsal rays, 11 to 14; anal, 12 to 14; scales, 100 to 120.

Remarks: — Called “kan-yii” at Tungting Lake, where it reaches a very large size. The Chinese have a little rhyme:

One thousand “chin huang-yii”
Ten thousand “chin kan-yii.”

The “kan-yii” is the fish in question, while the “huang-yii” is the sturgeon. A “chin” is about a pound and a quarter. This gives an indication as to the size of this fish. It is very commonly seen in the villages hereabouts, both large and small specimens being caught and sold (C. H. Pope, field notes).

Genus Mylopharyngodon Peters

Large-scaled, Chinese carps superficially resembling Ctenopharyngodon but characterized by a single series of pharyngeal teeth, some of which are broad, short molars, none serrate. The three or four species described may be synonyms of a single widely distributed form, Leuciscus aethiops of Basilewski.

Belly rounded; mouth terminal, somewhat oblique. Lateral line complete. Dorsal and anal without spinous rays; branched rays, about 7 and 8.

No barbels. Vent and anal fin not bordered by a row of enlarged scales. Origin of anal well behind posterior end of dorsal. No scaleless keel before anal. Upper jaw protractile. Gill membranes attached to the isthmus. Gill rakers not fused. Eye placed in or above the axis of the body.

Mylopharyngodon aethiops (Basilewski)

Locality of Material: — Peking, Chihli; Yangtze; North China (fide Gee). Yangtze at Hankow (Kreyenberg and Pappenheim, 1909, p. 16).
Specimens examined from Tungting Lake, Hunan, and near Canton.

Description:—Depth in length to base of caudal, 3.9; head, 3.7; eye in head, 4.4 (specimen of 122 mm. standard length). Dorsal rays, about 9; anal, about 10; scales about 45.

Remarks:—Called “ch’ing-yü” at Tungting Lake, where it is sold in great numbers on the streets of Yochow. In appearance it is very like the “huan-yü” but is much blacker than that fish, uniformly black on sides and back. It is said by fishermen to attain a length of 4 or 5 feet (C. H. Pope, field notes).

Genus Ctenopharyngodon Steindachner

A widely distributed, broad-headed, large-scaled carp. Pharyngeal teeth in 2 rows, sharply serrate, and with a longitudinal groove on their chewing surface. Belly rounded, mouth terminal, somewhat oblique. Lateral line complete. Dorsal and anal without spinous rays; branched rays, about 7 and 8.

No barbels. Vent and anal fin not bordered by a row of enlarged scales. Origin of anal well behind posterior end of dorsal. No scaleless keel before anal. Upper jaw protractile. Gill membranes attached to the isthmus. Gill rakers not fused. Eye placed in or above the axis of the body.

Ctenopharyngodon idella (Cuvier and Valenciennes)

Locality of Material:—Ningpo and Shanghai (fide Gee).

Specimens examined from Tungting Lake, Hunan, and from near Canton.

Description:—Depth in length to base of caudal, 4.2; head, 3.4; eye in head, 3.8 (specimen of 107 mm. standard length). Dorsal rays, 9 to 11; anal, 10 to 11; scales, 38 to 42.

Remarks:—Called “huan-yü” at Tungting Lake, where it is sold in great quantity on the streets of Yochow. It is a blackish fish, white beneath, but less black than the “ch’ing-yü” which it otherwise resembles. It is said by fishermen to attain a length of 4 or 5 feet (C. H. Pope, field notes).

Genus Squaliobarbus Günther

A moderate-sized, soft-finned, fusiform carp; mouth almost horizontal, lower
jaw included; maxillary with a minute subterminal barbel, sometimes lacking, and a minute rostral barbel sometimes present. Peritoneum black. A single widely distributed species in China, from which only one of the several others described seems to be distinguishable.

Mouth small, not reaching the vertical from the posterior margin of the eye. Gill membranes attached under the posterior edge of the preopercle. Premaxillary without a notch. One or 2 pairs of minute barbels. Pharyngeal teeth in 3 rows.

Lower jaw not transverse and sharp-edged. Vent and anal fin not bordered by a row of enlarged scales. Anal base well behind that of dorsal. No scaleless keel before the anal fin. No spinous rays in dorsal or anal. Upper jaw protractile. Gill rakers not fused. Eye placed in or above the axis of the body.

Key to Chinese Squaliobarbus

Origin of dorsal about equidistant from tip of snout and base of caudal. Barbels normally present .. *curriculus*

Origin of dorsal decidedly nearer tip of snout than base of caudal. Barbels absent *panwingi*

Squaliobarbus curriculus (Richardson)

Locality of Material:—Yangtze at Hankow (Kreyenberg and Pappenheim, 1909, p. 16). Specimens examined from Shansi; Tungting Lake, Hunan; Fukien; and near Canton.

Description:—Depth in length to base of caudal, 4.5; head, 4; eye in head, 4.5 (specimen of 128 mm. standard length). Dorsal rays, 9 or 10; anal, 9 to 11; scales, 40 to 47.

Remarks:—Called “ma-lang-yü” at Tungting Lake, where it is one of the common large fish of the lake, often to be seen for sale in Yochow (C. H. Pope, field notes).

Squaliobarbus panwingi Lin

Description:—Depth in length to base of caudal, 4.2; head, 3.8; eye in head, 3.6 (specimen 55 mm. standard length). Dorsal rays, 9; anal, 11; scales, 46.

Genus Ochetobius Günther

A moderate-sized, fine-scaled, soft-finned, slender, more or less fusiform, ac-
tive, free swimming carp. No barbels. Peritoneum pale. Apparently but a single widely distributed species, at least in China.

Mouth moderate, terminal, slightly oblique. Premaxillary without a notch. Pharyngeal teeth in 3 rows.

Lower jaw not transverse and sharp-edged. Vent and anal fin not bordered by a row of enlarged scales. Anal base well behind that of dorsal. No scaleless keel before the anal fin. Upper jaw protractile. Gill membranes attached to the isthmus. Gill rakers not fused. Eye placed in or above the axis of the body.

Ochetobius elongatus (Kner)

Locality of Material:—Specimens examined from Tungting Lake, Hunan, and from Anhwei; up to 190 mm. standard length.

Description:—Depth in length to base of caudal, 6.8; head, 4.4; eye in head, 4 (specimen of 123 mm. standard length). Dorsal rays, 11 or 12; anal, 11 or 12; scales, 68 to 70.

Remarks:—Called "chih-ma-tiao" at Tungting Lake, where it is fairly common and said to reach a weight of 3 or 4 pounds (C. H. Pope, field notes).

Genus Barilius Hamilton-Buchanan

Barilius Hamilton-Buchanan, 1822, Fishes in Ganges, p. 384. Type: *Cyprinus barila* Hamilton-Buchanan.

Large-mouthed, soft-finned, more or less compressed and elongate, actively free swimming carps of small or moderate size. Numerous species in tropical Asia and Africa.

Mouth oblique, more or less terminal, without lips. Gill membranes narrowly attached to the isthmus. Dorsal fin with 7 to 10 branched rays, its origin behind the ventrals and before the anal, which has 8 to 20 branched rays. Lateral line evenly bent down, running low, below the center on the peduncle. Pharyngeal teeth conical, hooked, in 2 or 3 rows.

No definite knob or angle on the side of the lower jaw fitting into a notch in the upper. Vent and anal fin not bordered by a row of enlarged scales. No scaleless keel before anal fin. Upper jaw protractile. Gill rakers not fused. Eye placed in or above the axis of the body.

Barilius interrupta Day

Locality of Material:—Hotha, Yunnan (Anderson, 1878, I, p. 869).

Description:—Depth in total length, 3.5; head, 4.5; eye in head, 2.5 (speci-
SYSTEMATIC ACCOUNT

men up to about 50 mm. long). Dorsal rays, 9; anal, 14; scales, 34.

Remarks:—This species may or may not rightly belong in Barilius, but Chu's reference of it to Brachydanio Weber and de Beaufort is probably wrong.

Genus Atrilinea Chu

Elongate, head pointed, abdomen rounded. Lower jaw flat, fitting flatly into the upper jaw, barbels none, a prominent symphysial knob at the end of the lower jaw. Gill rakers short, 12 or 13 on the first arch. No spinous fin rays, origin of dorsal considerably behind that of anal. Peritoneum black; air bladder bipartite; teeth in 3 rows. Apparently an oriental derivative of Barilius balancing the unlike Zacco.

Atrilinea chenchiwei (Chu)

Barilius chenchiwei Chu, 1931 (July), China Jour., XV, p. 33, Fig. 17. Tien-mu-san, Chekiang.
? Barilius macrops Lin, 1931 (April), Carps of Kwangtung, p. 144, Fig. 10. Yaoshan, Kwangsi.

Description:—Depth in length, 4.6 to 5; head, 4.4 to 4.7; eye in head, 3.3 to 3.5 (specimens 101 to 120 mm. standard length). Dorsal rays, 9; anal, 13 to 15; scales, 50 to 55.

Remarks:—If the same, macrops Lin has priority over chenchiwei Chu.

Genus Zacco Jordan and Evermann

Large-mouthed, soft-finned, compressed, predaceous carps of small or moderate size, represented by a few species in eastern temperate Asia and adjacent islands. Closely allied to Barilius but somewhat shorter bodied, larger mouthed, with head in the adult (males at least) characteristically much beset with horny asperities, anal with some of its rays enlarged, simple, exserted.

Mouth oblique, more or less terminal. Gill membranes narrowly attached to the isthmus behind the hind edge of eye. Dorsal origin over or behind the ventrals. Anal with 10 or more branched rays. Lateral line evenly bent down, running low, reaching the center of peduncle before its end. Pharyngeal teeth in 3 rows.

No definite knob or angle on the side of the lower jaw fitting into a notch in the upper. Vent and anal fin not bordered by a row of enlarged scales. Anal origin behind a vertical from the end of the dorsal base. No scaleless keel before anal fin. Upper jaw protractile. Gill rakers not fused. Eye placed above the axis of the body.
THE FRESH-WATER FISHES OF CHINA

Key to Chinese *Zacco*

1. Lower jaw projecting .. see 2
 Jaws about equal. Eye large, 3.7 or 3.8 in head (at 70 to 90 mm. standard length). Scales few, about 45 .. *macrophthalmus*
 Lower jaw included; tubercles forming conspicuous serrate ridges on pre- opercle and above upper jaw; scales, 49 to 51 .. *acanthogenys*
 Lower jaw included; tubercles not forming conspicuous serrate ridges; scales, about 46 .. *platypus*

2. Depth in length to base of caudal, 3 to 4 (at 85 to 100 mm. standard length). Scales, 47 to 51. Tubercles forming conspicuous serrate ridges on opercle and lower jaw *asperus*
 Depth in length to base of caudal, 4.5 (at 150 to 160 mm. total length). Scales, 58 to 60 *chengtui*

Zacco asperus Nichols and Pope

Zacco asperus Nichols and Pope, 1927, Bull. Amer. Mus. Nat. Hist., LIV, p. 367, Fig. 32. Hainan.

Aspius spilurus, Lin, 1935, Lingnan Sci. Jour., Canton, XIV, p. 310, Fig. 6. White Cloud Mountain, near Canton.

![Figure 31. *Zacco asperus* Nichols and Pope. Type. 106 mm. without caudal.](image-url)

Description:—Depth in length to base of caudal, 3.9 to 3.2; head, 3.3 to 3.6; eye in head, 3.6 to 4.4 (specimens of 85 to 110 mm. standard length). Dorsal rays, 9 or 10; anal, 13 to 15; scales, 47 to 51.

Zacco chengtui Kimura

Description:—Depth in length to base of caudal, 4.5; head, about 4; eye in head, 5 to 5.7 (specimens 150 to 160 mm. total length). Dorsal rays, 9 or 10; anal, 12 or 13; scales, 58 to 60.

Lower jaw slightly longer than upper.
Zacco macrophthalmus Kimura

Description:—Depth in length to base of caudal, 4.6 or 4.7; head, 3.8 or 3.9; eye in head, 3.7 or 3.8 (specimens 70 to 92 mm. standard, 80 to 107 mm. total length). Dorsal rays, 9; anal, 13 or 14; scales, 45.

Zacco acanthogenys (Boulenger)

Description:—Depth in length to base of caudal, 3.3 to 4; head, 4; eye in head, 4.5 to 5 (specimens up to 130 mm. long). Dorsal rays, 9; anal, 11; scales, 49 to 51.

Zacco platypus (Temminck and Schlegel)

Locality of Material:—Yangtze at “Nankanho” (Kreyenberg and Pappenheim, 1909, p. 16).

Specimens examined from Chihli; Shantung; Chungan Hsien, Fuching Hsien, Kienning, Yungtai Hsien and Yenping, Fukien; up to 100 mm. standard length.

Fig. 32. Zacco platypus (Temminck and Schlegel). Fukien.

Description:—Depth in length to base of caudal, 3.7 to 3.8; head, 3.6; eye in head, 4 to 5 (specimens about 90 mm. standard length). Dorsal rays, 9; anal, 11 to 13; scales, about 46.
Remarks:—The young of about 55 mm. standard length may look quite different from the adult, slender, anal small, with a dark longitudinal shade posteriorly, and no cross marks.

Genus *Opsariichthys* Bleeker

Large-mouthed, compressed, soft-finned, predaceous carps, mostly of moderate size. A few closely related species, common fishes in eastern temperate Asia and adjacent islands.

Mouth oblique, usually reaching to or beyond the vertical from the posterior margin of the eye. A knob or angle on the side of the lower jaw fitting into a notch in the upper. Gill membranes attached close together, about under the posterior border of the eye. No barbels. Pharyngeal teeth in 3 rows.

Vent and anal fin not bordered by a row of enlarged scales. Anal base well behind that of dorsal. No scaleless keel before anal fin. Upper jaw protractile. Gill rakers not fused. Eye placed above the axis of the body.

The genus *Opsariichthys* is generally abundant in China and very variable. In the Yangtze Valley there is a well-marked form with heavily hooked jaws, which is elongate when young and broad headed when large (*bidens*). Contrast with it we find in Chekiang and Kiangsi a form which approaches more closely to the genus *Zacco* (*chekianensis*), and the fish which Berg (1916, p. 193, Fig. 140 [141]) has figured from Lake Hanka in the Amur basin is more like this. Records for true *uncirostris* in China are presumably not correct. A deep-bodied form, with few scales, seems to be recognizable in Hainan (*hainanensis*) and to be approached by some specimens from elsewhere in South China.

Key to Chinese *Opsariichthys*

1. Comparatively deep bodied (depth, 3.5 at 37 mm. standard length); scales, about 45. Size small ... *minutus*
 Less deep (depth, 3.5 to 4 at 100 to 125 mm.); scales, 40 to 47. Size moderate
 More slender at comparable sizes (depth, about 5 at 85 mm.); scales, 44 to 47;
 notch in jaw less anterior and stronger. Size moderate or large. Central Valley
 bidens

2. Depth, 3.7 to 4; scales, 42 to 47; notch in jaw more anterior and relatively weak
 Depth, 3.5 to 3.8; scales, 40 to 43; notch in jaw strong. Hainan Island *hainanensis*

Opsariichthys uncirostris (Temminck and Schlegel)

Leuciscus uncirostris Temminck and Schlegel, 1846, in Siebold, Fauna Japonica, Pisces, p. 211, Pl. cxx, fig. 1.
Japan (the typical race extralimital).
SYSTEMATIC ACCOUNT

Opsariichthys uncirostris chekianensis Shaw

Locality of Material:—Specimens examined from Hokou, Kiangsi, and Chungan Hsien, Fukien; up to 124 mm. standard length.

Description:—Depth in length to base of caudal, 3.7 to 4; head, 3.3 to 3.7; eye in head, 5 to 6.5 (specimens 103 to 124 mm. standard length). Dorsal rays, 9 or 10; anal, 10 to 12; scales, 42 to 47.

Opsariichthys uncirostris bidens Günther

Locality of Material:—Specimens examined from Shansi; Anhwei; Szechwan; (approaching chekianensis) Tsinan, Shantung; Chungan Hsien, Fukien; (approaching hainanensis) Foochow, Fukien.

Fifteen specimens from Kienning, Fukien, are particularly “mixed” and variable, not assignable to this or either of the other races. Standard lengths, 41 to 117 mm.; depth, 3.9 to 4.8; scales, 40 to 50.

Description:—Depth in length to base of caudal, 5; head, 3.5; eye in head, 4 (specimen 85 mm. standard length). Dorsal rays, 9 or 10; anal, 11; scales, 44 to 47.

Opsariichthys uncirostris hainanensis Nichols and Pope

Figures 30 and 33

Opsariichthys hainanensis Nichols and Pope, 1927, Bull. Amer. Mus. Nat. Hist., LIV, p. 368, Fig. 33. Hainan.

Fig. 33. Opsariichthys uncirostris hainanensis Nichols and Pope. Type. 115 mm. without caudal.

Locality of Material:—Specimens examined from Hainan Island; (approaching chekianensis or bidens) Yenping and Yungtai Hsien, Fukien.
Description:—Depth in length to base of caudal, 3.5 to 3.8; head, 3.2 to 3.4; eye in head, 4.8 to 5.3 (specimens of about 120 mm. standard length). Dorsal rays, 9 or 10; anal, 11 or 12; scales, 40 to 43.

Opsariichthys minutus Nichols

Figure 34

Opsariichthys minutus Nichols, 1926, Amer. Mus. Novitates, No. 224, p. 6, Fig. 5. Fukien.

Description:—Depth in length to base of caudal, 3.5; head, 3.3; eye in head, 3.6 (specimen of 37 mm. standard length). Dorsal rays, 9 or 10; anal, 10 or 11; scales, 45.

Fig. 34. Opsariichthys minutus Nichols. Type. 37 mm. standard length.

Remarks:—Four anomalous specimens of 80 to 93 mm. standard length from Kienning, Fukien, may or may not be the adult of this form. They have depth, 3.5 to 3.6; head, 3.4 to 3.6; eye, 4.4 to 5; dorsal rays, 9; anal, 11; scales, 42 to 45.

Genus Tanichthys Lin

Moderately large-scaled, large-eyed, soft-finned minnows, with strongly oblique mouth and projecting lower jaw. No ventral keel; no barbels; dorsal and anal with about 7 and 8 branched rays, respectively; the origin of the dorsal well behind the ventral axil, anal origin under about middle of dorsal; lateral line not distinguishable; teeth in 2 rows, slender, hooked.

Vent and anal fin not bordered by a row of enlarged scales; upper jaw protractile; gill membranes broadly attached to the isthmus; gill rakers not fused; eye placed above the axis of the body.
SYSTEMATIC ACCOUNT

Tanichthys albonubes Lin

Description:—Depth in length to base of caudal, 4.2; head, 4.2; eye in head, 2.5 (specimen 21 mm. standard length). Dorsal rays, 9; anal, 10; scales, about 30.

Genus Rasbora Bleeker

Moderate or large-scaled, soft-finned, active, free swimming minnows, with lateral line evenly bent down, running low, below the center on the peduncle. Numerous species in southern Asia and the East Indies.

Mouth moderate, oblique, terminal, or the lower jaw projecting. Gill membranes narrowly attached to the isthmus. No barbels. Dorsal fin more or less behind the ventrals. Anal with not more than 7 branched rays. Pharyngeal teeth in 3 rows.

No prominent knob or angle on the side of the lower jaw fitting into a notch in the upper. Vent and anal fin not bordered by a row of enlarged scales. Anal origin more or less behind a vertical from the end of the dorsal base. No scaleless keel before anal fin. Upper jaw protractile. Gill rakers not fused. Eye placed in or above the axis of the body.

Key to Chinese Rasbora

Eye in head, 3.5 (at 65 mm.); a black stripe from opercle to caudal steineri
Eye in head, 4 (at 45 mm.); a dark streak back from under dorsal alios

Rasbora cephalotaenia (Bleeker)

Rasbora cephalotaenia steineri Nichols and Pope

Figure 35 and Plate V, figure 2

Description:—Depth in length to base of caudal, 3.6; head, 3.7; eye in head, 3.5 (specimen of 65 mm. standard length). Dorsal rays, 9; anal, 7; scales, 30.
Rasbora alios Lin

Rasbora lateristriata alios Lin, 1931, Carps of Kwangtung, p. 67. 1934, Lingnan Sci. Jour., Canton, XIII, p. 237, Fig. 2. Canton.

Description:—Depth in length to base of caudal, 4; head, 3.7; eye in head, 4 (specimen 45 mm. standard length). Dorsal rays, 9; anal, 7; scales, 27 to 29. Lower jaw with a symphysial knob.

Remarks:—A doubtful species based on a single small (perhaps young) specimen.

Genus *Pseudorasbora* Bleeker

A genus of soft-finned minnows with very small, superior (upwardly directed), transverse mouth, and the lateral line running straight in the center of the body. Common in North and central China where it is divisible into several races, representative species, or ecological forms.

Pharyngeal teeth in one row. Anal fin with 5 or 6 branched rays (exceptionally 7). No barbels. No scaleless keel before the anal fin.

Vent and anal fin not bordered by a row of enlarged scales. Origin of anal behind posterior end of dorsal base. Upper jaw protractile. Gill membranes attached to the isthmus. Gill rakers not fused. Eye placed in or above the axis of the body.

Key to Chinese Pseudorasbora

1. Dorsal high (longest ray about equals head); anal small; scales, 38 *altipinna*
 Dorsal lower (longest ray, 1.1 to 1.6 in head) ... see 2
2. Scales, 38. Nape elevated and snout depressed .. *depressirostris*
 Scales, 32 to 37 ... see 3
3. Scales, 35 to 37; depth, 3.4 to 3.9; interorbital (broader with age) in head, 1.8 to 2.4; longest dorsal ray, 1.2 to 1.6 (specimens 49 to 73 mm. standard length). Tendency to rather uniform dusky color parvula
Scales, 33 to 35; depth, 4 to 4.5; interorbital, 2.3 to 2.4; longest dorsal ray, 1.1 to 1.2 (specimens of 31 to 40 mm.) tenuis
Scales, 34 to 37; depth, 3.8 to 4.1; interorbital, 2.3 to 2.6; longest dorsal ray, 1.3 to 1.4 (specimens of 55 to 65 mm.) fowleri
Scales, 32 to 36; depth, 3.5 to 4.4; interorbital, 2.2 to 2.9; longest dorsal ray, 1.2 to 1.5 (specimens of 36 to 61 mm.). Lateral line frequently incomplete. Tendency to have fins with heavy black margins monstrosa

Pseudorasbora parva (Temminck and Schlegel)

Leuciscus parvus Temminck and Schlegel, 1846, *in* Siebold, Fauna Japonica, Pisces, p. 215, Pl. cxii, fig. 3. *Japan (typical form extralimital).*

Pseudorasbora parva altipinna Nichols

Figure 36

![Am. Mus. No. 8428](am-mus-no-8428.png)

Fig. 36. Pseudorasbora parva altipinna Nichols. Type. 55 mm. standard length.

Description:—Depth in length to base of caudal, 4; head, 3.8; eye in head, 4 (specimen 55 mm. standard length). Dorsal rays, 9; anal, 8; scales, 38.

Pseudorasbora parva depressirostris Nichols

Figure 37

Description:—Depth in length to base of caudal, 3.8; head, 3.6; eye in head, 4.2 (specimen of 49 mm. standard length). Dorsal rays, 9; anal, 8; scales, 38.
Pseudorasbora parva parvula Nichols

Figure 38

Pseudorasbora parva parvula Nichols, 1929, Amer. Mus. Novitates, No. 377, p. 8, Fig. 5. Tsinan, Shantung.

Description:—Depth in length to base of caudal, 3.4 to 3.9; head, 3.8 to 4.2; eye in head, 3.8 to 4.6 (specimens 49 to 73 mm. standard length). Dorsal rays, 9; anal, 8; scales, 35 to 37.

Remarks:—In this genus the interorbital becomes broader with age. Bearing this in mind *P. p. parvula* has a relatively broad interorbital, 2.1 or less in head in all specimens examined over 52 mm. standard length. It is most frequently dark colored, central part of each scale dusky, fins dusky or grayish. The young, however, are as a rule pale or with a dark streak, and an occasional *P. p. fowleri* is also similarly dark. At a standard length of 50 to 55 mm. *P. p. parvula* frequently has horny warts on the face which are relatively somewhat larger, especially those under the eye, than such warts in *P. p. fowleri* at 65 to 70 mm. standard length.
Both these forms are present in collections from Tsinan, but so far *P. p. parvula* has not been found elsewhere.

Pseudorasbora parva tenuis Nichols
Figure 39

Pseudorasbora parva tenuis Nichols, 1929, Amer. Mus. Novitates, No. 377, p. 10, Fig. 6. Tsinan, Shantung.

Description:—Depth in length to base of caudal, 4 to 4.5; head, 3.6 to 4.1; eye in head, 3 to 3.3 (specimens 31 to 41 mm. standard length). Dorsal rays, 9; anal, 8; scales, 33 to 35.

Remarks:—Probably an ecological form, based on seven specimens only, from Tsinan, readily picked out from other *Pseudorasbora* material with which they were collected by their slenderness and the relative conspicuousness of the lateral streak. *P. p. parvula* tends to be a chubby fish, and at comparable sizes the young of *P. p. fowleri* have a narrower interorbital, 2.5 or more in head in specimens examined under 60 mm. standard length.

Pseudorasbora parva fowleri Nichols
Figure 40

Aphyocypris chinensis, Fowler, 1924, *ibid.*, p. 383, Fig. 1 (not of Günther). Anhwei.

Locality of Material:—Specimens examined from Chihli (Fowler, 1924, p. 382); Shantung; Anhwei; Hokou, Kiangsi, and Fukien (approaching *monstrosa*).

Description:—Depth in length to base of caudal, 3.7 to 4.1; head, 3.5 to 4.2; eye in head, 3.4 to 4 (specimens 50 to about 84 mm. standard length). Dorsal rays, 9; anal, 8; scales, 34 to 37.
Pseudorasbora parva monstrosa Nichols

Figure 41

Locality of Material:—Specimens examined from Yenping and Foochow, Fukien.

Description:—Depth in length to base of caudal, 3.5 to 4.4; head, 3.6 to 4.5; eye in head, 3 to 4.4 (specimens of 36 to 62 mm. standard length). Dorsal rays, 9; anal, 8; scales, 32 to 36.
SYSTEMATIC ACCOUNT

Remarks:—This form is characterized by low scale count and frequently incomplete lateral line, and tends to have a distinctive color pattern wherein the scales have dusky borders and the fins heavy blackish margins. Specimens examined from Foochow have scales 34 to 36, but a larger proportion of them show imperfect lateral line and color pattern than of those examined from Yenping which have scales 32 to 34.

Genus Luciobrama Bleeker

A rather large, peculiar, elongate, fine-scaled, soft-finned Chinese carp, wherein the eye is placed far forward near the small, oblique mouth with projecting lower jaw; the front part of the head is slightly depressed; the head and body behind the eye somewhat compressed; nape rising on a slant so as to make the outline of the top of the head concave.

Dorsal and anal equal, rather short, with about 8 branched rays, dorsal about midway between ventrals and anal, caudal forked. No barbels.

Upper jaw protractile. No scaleless keel before the anal fin. Vent and anal fin not bordered by a row of enlarged scales. Gill membranes attached to the isthmus. Gill rakers not fused. Eye placed in or above the axis of the body.

Luciobrama typus Bleeker

Figure 42

Yangtze?

Locality of Material:—Specimens examined from Tungting Lake, Hunan.

Fig. 42. Luciobrama typus Bleeker.

Description:—Depth in length to base of caudal, 6.3; head, 3.4; eye in head, 9 (specimen of 240 mm. standard length). Dorsal rays, 10 to 11; anal, 10 to 14; scales, about 130 to 137.
Remarks:—Called "lou-er-yü" at Tungting Lake where it is common but not numerous. Every day the fishermen's baskets contained single specimens, but seldom more than two in the same basket. The average length was slightly over a foot and a half, and very small ones were never seen (C. H. Pope, field notes).

Genus Semilabeo Peters

A Chinese, bottom living carp related to *Garra* and *Labeo*, which has the mouth surrounded by continuous, broad, papillose lips, ending in a bib-like point but not free behind; the eye placed high and posteriorly.

Mouth inferior, transverse. A pair of small rostral barbels and minute maxillary barbels sometimes present. No spine in dorsal or anal fin; dorsal origin well in advance of ventrals; dorsal and anal short, the former with 8, the latter with 5 or 6 branched rays. No sucking disk on the lower jaw. Lateral line running in about the center of body and peduncle. Scales of moderate size. Gill membranes broadly joined to isthmus; vent appreciably before anal origin. Pharyngeal teeth in 3 rows.

Vent and anal fin not bordered by a row of enlarged scales. Anal base behind that of the dorsal. No scaleless keel before anal fin. Gill rakers not fused.

The two fishes described by Tchang as *Gyrinocheilus* from China look like this and may be referable to *Semilabeo*, though described without pharyngeal teeth, and with other differences.

Semilabeo notabilis Peters

Description:—Depth in length to base of caudal, about 4.7 to 4.8; head, 4.2 to 4.7; eye in head, 5 to 5.5 (specimens 135 to 340 mm. long). Dorsal rays, 10; anal, 7; scales 46 or 47.

Genus Ptychidio Myers

Ptychidio Myers, 1930, Copeia, No. 4, p. 110. Type: *Ptychidio jordani* Myers.

Mouth small, inferior, with an expanded, extrusible, fimbriated upper lip which is not connected with the slightly movable fimbriated lower lip which it covers when folded.

Two pairs of barbels. No spine in dorsal or anal fin. Eight branched rays in the dorsal fin and 5 in the anal. No sucking disk on the lower jaw. Lateral line running in about the center of body and peduncle. Pharyngeal teeth in 2 rows.

Vent and anal fin not bordered by a row of enlarged scales. Anal base behind
that of the dorsal. No scaleless keel before anal fin. Gill membranes attached to the isthmus. Gill rakers not fused. Eye placed above the axis of the body.

Ptychidio jordani Myers

Ptychidio jordani Myers, 1930, *Copeia*, No. 4, p. 110, Fig. Central Formosa.

Locality of Material:—Hong Kong market (Herre, 1934.1, p. 26).

Description:—Depth in length to base of caudal, 3.5; head, 5; eye in head, 5.4 (specimen 270 mm. standard length). Dorsal rays, 10; anal, 7; scales, 42 to 45.

Remarks:—"This very peculiar fish *Ptychidio jordani* Myers] is confined to the West River from Wuchow upward, and to the Fu River and perhaps other tributaries in Kwangsi Province. It is certainly not native to Formosa, and its presence there was purely accidental. It lives among rocks in the rapids of the rivers of Kwangsi, and in common with a number of carps, spawns there. The fry of certain of these carps are gathered in vast numbers and taken to Kau Kong, a town in the West River delta, which is one of the chief centers of the carp industry. The fry are placed in ponds and when large enough are shipped all over southeastern China, to the Yangtze valley, Hainan, Singapore, and Formosa. There they are placed in ponds and reared till large enough for the market.

"Unquestionably the specimen of *Ptychidio jordani* collected in Formosa was gathered up with the fry of *Aristichthys*, *Hypophthalmichthys*, *Mylopharyngodon*, *Ctenopharyngodon*, and *Cirrhina*, and later sent across to Formosa. None of the fishes named above by Peters, Steindachner, and Myers, occurs more than a few miles down stream from Wuchow, but are common on the West River from Wuchow on toward Nanning, the capital of Kwangsi Province, and in the Fu River. It is unfortunate that the type locality of these fishes is incorrect, and that they all occur in a region far from the one ostensibly their habitat” (Herre, 1934.3, pp. 327–328).

Genus Labeo Cuvier

Small or moderate-sized carps with an inferior, transverse, more or less curved mouth, the lower jaw more or less sharp, sometimes leathery but not covered by cartilage. Numerous species in southern Asia and Africa, the few oriental ones so identified perhaps not congeneric.

Two pairs of barbels present or absent. No spine in dorsal or anal fin. No sucking disk on the lower jaw. Snout more or less swollen, each lip with an inner transverse fold. Gill rakers short, subconical. Lateral line little bent down, running in the center of the peduncle. Dorsal fin opposite ventrals, with 13 to 20 rays in all; anal with 5 or 6 branched rays (exceptionally 7). Pharyngeal teeth in 3 rows.
Vent and anal fin not bordered by a row of enlarged scales. Anal base behind that of the dorsal. No scaleless keel before anal fin. Gill membranes attached to the isthmus. Gill rakers not fused. Eye placed in or above the axis of the body.

Key to Chinese Labeo

1. No barbels. A black blotch on caudal peduncle ... \textit{yunnanensis}
 At least one pair of small barbels ... \textit{see 2}
2. More slender, depth (in standard length), 3.7 or 3.8; scales, 43
 Deeper, depth (in standard length), 2.9 to 3.4; scales, 39 to 40. Anterior barbels the best developed ... \textit{decorus}
 \textit{see 3}
3. Anterior barbels, 2.5 in eye, posterior minute; depth in length to base of caudal, 3.4 (at 152 mm. standard length) ... \textit{jordani}
 Anterior barbels minute, posterior absent; depth in length to base of caudal, 2.9 (at 202 mm. standard length). A conspicuous blackish band of small bars over the pectoral (a mark which is usually absent or less distinct in the preceding) ... \textit{melanostigma}

Labeo yunnanensis Chaudhuri

\textit{Labeo yunnanensis} Chaudhuri, 1911, Rec. Indian Mus., Calcutta, VI, p. 14, Pl. 7, fig. 1, 1a, 1b. Yunnan.

Description:—Depth in length, 3.5; head, 4.5. Dorsal rays, 13; anal, 7; scales, 43.

Labeo decorus Peters

\textit{Labeo decorus} Peters, 1880, Monatb. Akad. Wiss. Berlin, p. 1031, Fig. 2. Hong Kong.

Description:—Depth in length to base of caudal, 3.7 or 3.8; head, 4.5; eye in head, 5 (specimen 330 mm. long). Dorsal rays, 13; anal, 7; scales, 43.

Labeo jordani Oshima

\textit{Labeo jordani} Oshima, 1910, Ann. Carnegie Mus., XII, p. 204, Pl. xlix, fig. 3. Formosa.
\textit{Labeo collaris}, Chu, 1931, China Jour., XIV, p. 193, Fig. 16. Not of Nichols and Pope.

Locality of Material:—Specimens examined from Swatow and near Canton. More or less generally cultivated by the Chinese.

Description:—Depth in length to base of caudal, 3.4; head, 4.5; eye in head, 4 (specimen 152 mm. standard length). Dorsal rays, 14; anal, 7 or 8; scales, 40.

Labeo melanostigma (Fowler and Bean)

Figure 43

\textit{Cirrhus melanostigma} Fowler and Bean, 1922, Proc. U. S. Nat. Mus., LXII, p. 4, Fig. 1. Koroton, Formosa.
SYSTEMATIC ACCOUNT

Locality of Material:—Specimens examined from Hainan.

Description:—Depth in length to base of caudal, 2.9; head, 4.7; eye in head, 3.6 (specimen 202 mm. standard length). Dorsal rays, 14; anal, 7 or 8; scales, about 39.

![Fig. 43. Labeo melanostigma (Fowler and Bean). Type of Labeo collaris Nichols and Pope. 202 mm. without caudal.](image)

Remarks:—This fish is closely related to but apparently distinct from *Labeo jordani*, and very likely does not belong in *Labeo*, though one hesitates to place it in *Cirrhinus* without a critical examination of material representing that genus. *L. jordani*, on the other hand, seems to have phylogenetic affinity with *Varicorhinus tungting*.

Genus Tylognathus Heckel

Small or moderate-sized carps, with the mouth essentially as in *Labeo*, but the dorsal fin shorter, with not more than 9 branched rays. Several species in southern Asia and the East Indies.

One or 2 pairs of very small barbels. No spine in dorsal or anal fin. No sucking disk on the lower jaw. Lateral line running in the center of the peduncle. Anal with 5 or 6 branched rays (exceptionally 7). Pharyngeal teeth in 3 rows.

Vent and anal fin not bordered by a row of enlarged scales. Anal base behind that of the dorsal. No scaleless keel before anal fin. Gill membranes attached to the isthmus. Gill rakers not fused. Eye placed in or above the axis of the body.

Tylognathus davidi Sauvage

Description:—Depth in length to base of caudal, about 3.7; head, 4.5; eye in snout, 1.5. Dorsal rays, 10; anal, 8; scales, 35.
THE FRESH-WATER FISHES OF CHINA

Genus Paratylognathus Sauvage

Resembles Tylognathus, but scales finer. Four barbels. Chu (1935, p. 7), who has examined types of this genus, considers it a primitive Schizothoracin, allied to Schizothorax.

Paratylognathus davidi Sauvage

Description:—Depth in length to base of caudal, 5; head, 5; eye in head, 3.5 (specimen 125 mm. long). Dorsal rays, 11; anal, 7; scales, 115.

Genus Pseudogyrinocheilus Fang

Pseudogyrinocheilus Fang, 1933, Sinensia, III, p. 255. Type: Discognathus prochilus Sauvage and Dabry de Thiersant.

Bottom living, soft-finned carps. Mouth inferior, curved, opening downward in a subcircular sucker-like disk with many small, regularly arranged, horny papillae. Middle of lower lip thick, triangular, fitting into a cleft in the upper lip when the mouth is closed. Two pairs of barbels, the anterior the longer, posterior minute. Teeth in 3 rows: 5, 4, 2. Anal fin with 5 branched rays. Vent and anal fin not bordered by a row of enlarged scales. Anal base well behind that of dorsal. No scaleless keel before anal fin. Gill membranes attached to the isthmus. Gill rakers not fused. Eye placed above the axil of the body.

Apparently but a single species, a native of China.

Pseudogyrinocheilus prochilus (Sauvage and Dabry de Thiersant)

Description:—Depth in length to base of caudal, 4.2 to 6.5; head, 3.9 to 5; eye in head, 4.1 to 6 (specimens 89 to 206 mm. standard length). Dorsal rays, 10 (rarely 9); anal, 7; scales, 41 to 48.

Genus Garra Hamilton-Buchanan

Garra Hamilton-Buchanan, 1822, Fishes in Ganges, p. 303. Type: Cyprinus lamta Hamilton-Buchanan.

Small or moderate-sized, bottom living, spineless finned carps with a sucking disk on the lower jaw, usually free in front. Lower lip well developed, continuous, free behind. Vent usually about midway between bases of ventral and anal fins or
nearer the latter. Normally 4 barbels, sometimes absent. Lower jaw sharpened and covered by cartilage. Intestinal tract long. Pharyngeal teeth in 3 rows. Anal fin with 5 or 6 branched rays (exceptionally 7).

Vent and anal fin not bordered by a row of enlarged scales. Anal base well behind that of dorsal. No scaleless keel before anal fin. Gill membranes attached to the isthmus. Gill rakers not fused. Eye placed above the axis of the body.

A south Asiatic and African genus with a few Chinese species.

KEY TO CHINESE *Garra*

1. Two pairs of barbels. Scales, 33 to 40
 - No barbels .. see 2
 - Scales, about 40; depth, about 5; head, about 4.5 see 4
 - Scales, about 33; depth, about 4.5; head, about 4 see 3
2. Depth (in standard length), 5.2 or 5.3; head, 4.2 or 4.3. Scales, about 51
 - Depth (in standard length), 5.6 to 6.8. Scales, about 44

Subgenus *Garra* Hamilton-Buchanan

Garra Hamilton-Buchanan, 1822, Fishes in Ganges, p. 393. Type: *Cyprinus lamta* Hamilton-Buchanan.

Garra yunnanensis (Regan)

Description:—Depth in length, 5; head, 4.5; eye in head, 4 (specimen 53 mm. long). Dorsal rays, 10; anal, 7; scales, 40.

Garra orientalis Nichols

Figure 44

Description:—Depth in length to base of caudal, 4.4; head, 3.9; eye in head, 5.5 (specimen 75 mm. in standard length). Dorsal rays, 10 or 11; anal, 7 or 8; scales, 33.

Garra rhynchota Koller

Figure 45

Description:—Depth in length to base of caudal, 4.5; head, 4.1; eye in head, 4.6 (specimen 108 mm. standard length). Dorsal rays, 10; anal, 7; scales, 33.

Subgenus Ageneiogarra Garman

Ageneiogarra may be generically separable from Garra, with which it agrees in having 3 rows of pharyngeal teeth, and from which it differs in a more anterior vent and the lower lip not free in front. G. pingi (Tchang) seems close to and may be inseparable from G. imberba Garman. Whereas G. imberba and G. imberbis (Vinciguerra) have sometimes been synonymized, the author is not convinced of their close relationship, or that identifications of the latter from China may not be in error.

Garra pingi (Tchang)

Description:—Depth in length to base of caudal, 5.2 to 5.3; head, 4.2 to 4.3; eye in head, 5 (specimen of 273 mm. total length). Dorsal rays, 13; anal, 7; scales, 51.
Garra imberba Garman

Type examined in Museum of Comparative Zoology, Cambridge.

Description:—Depth in length to base of caudal, 6; head, 5.1; eye in head, 4.8 (specimen 200 mm. standard length). Dorsal rays, 11; anal, 8; scales, 50 or 51.

Garra imberbis (Vinciguerra)

Figure 46

![Fig. 46. Garra imberbis (Vinciguerra). After Vinciguerra.](image_url)

Locality of Material:—Hainan (Boulenger, 1899, p. 961).

Description:—Depth in length to base of caudal, 5.6 to 6.8; head, 4.5 to 5.3; eye small, 2.2 to 2.5 in snout. Dorsal rays, 11; anal, 7; scales, 44.

Genus Discogobio Lin

Discogobio Lin, 1931, Carps of Kwangtung, p. 72. Type: *Discogobio tetrabarbatus* Lin.

Related to *Varicorhinus*; with inferior transverse mouth; lower lip free behind, its center a small, smooth "suctorial disk"; 2 pairs of small barbels.

Discogobio tetrabarbatus Lin

Discogobio tetrabarbatus Lin, 1931, Carps of Kwangtung, p. 72. Yaoshan. 1933, Lingnan Sci. Jour., Canton, XII, p. 494, Fig. 2.

Description:—Depth in length to base of caudal, 5; head, 5; eye in head, 6 (specimen 110 mm. standard length). Dorsal rays, 10; anal, 7; scales, about 38.

Genus Varicorhinus Rüppell

Small or moderate-sized carps with an inferior, transverse mouth, the lower jaw sharpened and covered by cartilage. No spine in dorsal or anal fin. Intestinal tract long. No sucking disk on the lower jaw. Pharyngeal teeth in 3 rows. Anal fin with 5 or 6 branched rays (exceptionally 7).

Ventr and anal fin not bordered by a row of enlarged scales. Anal base well behind that of dorsal. No scaleless keel before anal fin. Gill membranes attached to the isthmus. Gill rakers not fused. Eye placed in or above the axis of the body.

Usually common in China, where several species occur.

Key to Chinese Varicorhinus

1. Two pairs of barbels, the longest about equal to diameter of eye. Scales, 39 to 42 ... see 6
 No barbels .. see 2
 Usually 2 pairs of small or minute barbels, the longest not more than \(\frac{1}{2} \) and usually less than \(\frac{1}{2} \) diameter of eye .. see 3
 Rostral barbels minute, the maxillary barbels from \(\frac{1}{2} \) as long to as long as eye. Scales, 48 to 50 .. *barbatus* *macrolepis*

2. Scales, about 50 .. see 7
 Scales, 39 to 44 .. see 4

3. Lower lip not free in front. Scales, 47 to 51 see 5
 Lower lip free in front, with a fluted edge or basal fold. Scales, about 45 ...

4. Depth, about 4.3 (at 95 mm. standard length). Edge of lower jaw brown ...
 Depth, about 3.7 (at 103 mm. standard length). Edge of lower jaw brown ...
 Depth, about 3.9 (at 114 mm. standard length). Edge of lower jaw pale ...

5. Lower lip not papillose; maxillary barbels the longer *tamusuiensis*
 Lower lip (especially) papillose; snout barbels the longer *shansiensis*

6. Dorsal rays, 10; anal, 5 ... *tungting*
 Dorsal rays, 13; anal, 7. Lower lip free in front *mutabilis*

7. Lower lip slightly free behind *kreyenbergii*
 Lower lip not free behind .. *pogonifer*

Subgenus Altigena Lin

Varicorhinus brevis Lin

Description:—Depth in length, 4; head, 4.3; eye in head, 6. Dorsal rays, 14; anal, 7; scales, 42 to 44.

No barbels; a papillose labial fold, not free behind.
SYSTEMATIC ACCOUNT

Varicorhinus discognathoides Nichols and Pope

Figure 47

Fig. 47. Varicorhinus discognathoides Nichols and Pope. Type. 225 mm. without caudal.

Description:—Depth in length to base of caudal, 3.6; head, 4.6; eye in head, 6 (specimen 225 mm. standard length). Dorsal rays, 12; anal, 7; scales, 39.

Remarks:—The type of this species was taken in the Golden River at its point of emergence from the mountains five miles southeast of Namfong, Hainan, and it may be a hill form.

Varicorhinus pogonifer Lin

Osteochilus pogonifer, Lin, 1933, Lingnan Sci. Jour., Canton, XII, p. 344.

Description:—Depth in length to base of caudal, 4.3; head, 4.3; eye in head, 5.8 (specimen 152 mm. standard length). Dorsal rays, 13; anal, 7; scales, 39 to 42.

Lower lip free in front, papilllose. Four barbels, rostral minute, maxillary nearly as long as eye and deeply inserted in lateral-postlabial groove. Lin may be right in considering this form to have affinity with *Osteochilus*.

Subgenus Varicorhinus Rüppell

Varicorhinus kreyenbergii (Regan)

Gymnostomus kreyenbergii Regan, 1908, Ann. Mag. Nat. Hist., (8) I, p. 109, Fig. a, Pl. iv, fig. 1. Nankancho near Tinghsiang [probably in Kiangsi].

Locality of Material:—Yangtze; “Nankanho at Pinghsiang” (Kreyenberg and Pappenheim, 1909, p. 11).

Description:—Depth in length, 3.7; head, 4; eye in head, 4 to 5 (specimens of 90 and 160 mm. total length). Dorsal rays, 10; anal, 5; scales, 41 or 42.
Varicorhinus macrolepis (Bleeker)

Description:—Depth in length to base of caudal, 5; head, 4.7; eye in head, about 4 (specimen about 400 mm. long). Dorsal rays, 10 or 11; anal, 7 or 8; scales, about 50.

Varicorhinus barbatus (Lin)

Description:—Depth in length to base of caudal, 4.5 to 4.7; head, 4.3 to 4.9; eye in head, 4 to 5 (specimens 118 mm., etc., standard length). Dorsal rays, 10; anal, 7; scales, 48 to 50.

Varicorhinus tamusuiensis (Oshima)

Locality of Material:—Specimens examined from Chungan Hsien, Yenping, etc., Fukien; up to 200 mm. standard length.

Description:—Depth in length to base of caudal, 4.3; head, 4; eye in head, 3.4 (specimen of 95 mm. standard length). Dorsal rays, 10; anal, 7 or 8; scales, about 48.

Varicorhinus robustus Nichols

Figure 48

Locality of Material:—Specimens examined from Fuching Hsien and Yenping, Fukien; up to 175 mm. standard length.
Description:—Depth in length to base of caudal, 3.7; head, 4; eye in head, 3.5 (specimen of 103 mm. standard length). Dorsal rays, 10; anal, 8; scales, 47.

Varicorhinus shansiensis Nichols

Description:—Depth in length to base of caudal, 3.9; head, 4.5; eye in head, 5 (specimen of 174 mm. standard length). Dorsal rays, 10; anal, 7; scales, 51.

Varicorhinus mutabilis (Lin)

Description:—Depth in length to base of caudal, 4.4; head, 4.7; eye in head, 5.8 (specimen 128 mm. standard length). Dorsal rays, 10; anal, 7; scales, 44.

Remarks:—This may be generically separable from Varicorhinus but seems to have no close relationship with Epalzeorhynchus.

Subgenus Rectoris Lin

Varicorhinus posehensis (Lin)

Description:—Depth in length to base of caudal, 5.4; head, 5.2; eye in head, 4.7 (specimen 109 mm. long). Dorsal rays, 10; anal, 7; scales, 45. Four barbels, the rostral slightly longer than the maxillary, about 2 in eye.

Subgenus Sinilabeo Rendahl

THE FRESH-WATER FISHES OF CHINA

Varicorhinus tungting Nichols

Figure 50

Labeo diplostomus, Tchang, 1933, Zool. Sinica, (B) II (1), p. 32, Fig. 11. Szechwan.

Labeo (Varicorhynus) rendahli Kimura, 1934, Jour. Shanghai Sci. Inst., Sec. 3, I, p. 125, Pl. iii, fig. 2. Chungking, Szechwan; and Luchow.

![Figure 50. Varicorhinus tungting Nichols. Type. 126 mm. standard length.](image)

Description:—Depth in length to base of caudal, 4.5; head, 4.4; eye in head, 5 (specimen of 126 mm. standard length). Dorsal rays, 12; anal, 7; scales, 45.

Remarks:—This is close to Varicorhinus diplostomus Heckel (1838, Fische aus Caschmir, p. 67, Pl. xi, Kashmir) but seems to have a more inferior, slightly different mouth and more deeply forked caudal.

Genus Onychostoma Günther

Rather small or moderate-sized, free swimming, Chinese carps with an inferior, transverse mouth (straight across) without free lips, the lower jaw covered by cartilage; a more or less serrate spine in the dorsal, sometimes with a soft terminal portion. No barbels. Gill membranes attached to breast under edge of preopercle. Anal fin with 5 branched rays.

Vent and anal fin not bordered by a row of enlarged scales. Anal base well behind that of dorsal. No scaleless keel before anal fin. Gill rakers not fused. Eye placed above the axis of the body.
SYSTEMATIC ACCOUNT

Key to Chinese Onychostoma

1. Deeper; depth, 3 to 3.5 (specimens of 198 mm. standard and 240 mm. total length). Serrate dorsal spine strong. Interorbital wide (2 or less in head) see 2
 More slender; depth, 4 (specimens of about 125 mm. standard length) see 3
2. Depth, 3 (at 198 mm. standard length) .. fontouensis
 Depth, 3.5 (at 240 mm. total length). Greatest depth before dorsal origin; peduncle relatively long .. gerlachi
3. Serrate dorsal spine rather strong .. leptura
 Serrate dorsal spine weak ...

Onychostoma laticeps Günther

Onychostoma laticeps laticeps Günther

Description:—Depth in length to base of caudal, 3; head, 5; eye in head, 4.4 (specimen of 198 mm. standard length). Dorsal rays, II, 8 or 9; anal, 7 or 8; scales, 47.

Onychostoma laticeps fontouensis Tchang

Varicorhinus rarus Lin, 1933, Lingnan Sci. Jour., Canton, XII, p. 204, Fig. 1. Kweichow.

Description:—Depth in length to base of caudal, 3.5; head, 4.7 to 4.8; eye in head, 5 (specimen of 240 mm. total length). Dorsal rays, II, 8; anal, 7; scales, 48.

Onychostoma gerlachi (Peters)

Barbus gerlachi Peters, 1880, Monatsber. Akad. Wiss. Berlin, p. 1034, Fig. 5. Hong Kong.

Description:—Depth in length to base of caudal, 4; head, 5; eye in head, 3.5 (specimen 165 mm. long). Dorsal rays, II, 8; anal, 7; scales, 49.

Onychostoma leptura (Boulenger)

Figure 51

Locality of Material:—Specimens examined from Hainan.

Description:—Depth in length to base of caudal, 4; head, 4.5; eye in head, 3.3 (specimen of 125 mm. standard length). Dorsal rays, 10 (II, 8); anal, 7 or 8; scales, 46 to 49.
Genus Xenocypris Günther

This genus comprises compressed, more or less silvery, actively free swimming carps of moderate size. They are characterized by small, inferior, transverse mouth with cartilaginous border, and a strong smooth spine in the dorsal.

Pharyngeal teeth in 2 or 3 rows. No barbels. Anal with 8 to 12 branched rays; dorsal with 7 or 8, ending before anal origin.

Vent and anal fin not bordered by a row of enlarged scales. No serrate spinous ray in the anal. Gill membranes attached to the isthmus. Gill rakers not fused. Eye placed in or above the axis of the body.

The comparatively deep-bodied, fine-scaled subgenera Plagiognathops (with a scaleless keel behind the ventrals) and Distoechodon (with only 2 rows of teeth) are represented by one or two species. Fishes of the subgenus Xenocypris are common in China, representing several related forms which are not easily differentiable.

Key to Chinese Xenocypris

1. Scales, less than 70
 - Scales, 70 or more
 - Scales, 50 to 60
 - Scales, 60 to 65
 - Scales, about 50. Anal rays, 11
 - Scales, about 54. Anal rays, 13
 - Scales, about 58. Anal rays, 11. Interorbital broad, 2.5 in head

2. Scales, 70 or more
 - Scales, 50 to 60
 - Scales, 60 to 65
 - Scales, about 50. Anal rays, 11
 - Scales, about 54. Anal rays, 13
 - Scales, about 58. Anal rays, 11. Interorbital broad, 2.5 in head

3. Scales, 50 to 60
 - Scales, 60 to 65
 - Scales, about 50. Anal rays, 11
 - Scales, about 54. Anal rays, 13
 - Scales, about 58. Anal rays, 11. Interorbital broad, 2.5 in head

4. Scales, 60 to 65
 - Scales, about 50. Anal rays, 11
 - Scales, about 54. Anal rays, 13
 - Scales, about 58. Anal rays, 11. Interorbital broad, 2.5 in head

5. Scales, 70 or more
 - Scales, 50 to 60
 - Scales, 60 to 65
 - Scales, about 50. Anal rays, 11
 - Scales, about 54. Anal rays, 13
 - Scales, about 58. Anal rays, 11. Interorbital broad, 2.5 in head

PLATE VI

Fig. 1. Acanthorhodeus guichenoti Bleeker. 73 mm. standard length. Tungting Lake.

Fig. 2. Sarcocheilichthys sinensis sinensis Bleeker. 120 mm. standard length. Tungting Lake.

Fig. 3. Hemibarbus maculatus Bleeker. 135 mm. standard length. Tungting Lake.
SYSTEMATIC ACCOUNT

4. Longest dorsal ray slightly shorter than head; length of peduncle distinctly greater than its depth. Anal rays, 10 to 13 ... davidii
 Longest dorsal ray slightly longer than head; length of peduncle only slightly greater than its depth. Anal rays, 13 ... insularis

5. Teeth 3-rowed ... see 6
 Teeth 2-rowed ... see 9

6. Dorsal spine slender (shorter than head), its tip usually articulated. Keel on the belly little developed. Scales, 70 to 74 see 7
 Dorsal spine strong. Keel on the belly well developed. Scales, 76 to 84 microlepis

7. Eye small (5 in head at about 150 mm. length). Anal rays, 11 jangi
 Eye larger (3.5 in head at 123 mm. standard length). Anal rays, 13 or 14 see 8

8. Tip of dorsal spine articulated. Scales, 72 ... yunnanensis
 Tip of dorsal spine not articulated. Scales, 70 suifuensis

9. Depth, about 4.75 ... tumirostris
 Depth, about 3.8 (specimen of 103 mm. standard length) compressus

Subgenus Xenocypris Günther

Xenocypris argentea Günther

Description:—Depth in length to base of caudal, 5; head, 4.3; eye in head, somewhat more than 3 (specimen about 100 mm. long). Dorsal rays, II, 7 or 8; anal, 13; scales, 54.

Xenocypris davidi Bleeker

Xenocypris davidi davidi Bleeker

Locality of Material:—Specimens examined from Shansi; Tungting Lake, Hunan; Anhwei; Yenping; up to 146 mm. standard length.

Description:—Depth in length to base of caudal, 4.1; head, 4.3; eye in head, 4 (specimen of 118 mm. standard length, perhaps grows much deeper with age). Dorsal rays, II, 7 or 8; anal, 10 to 13; scales, 62 to 65.

Xenocypris davidi lampertii Popta

Locality of Material:—Specimen of 107 mm. standard length from Tsinan, Shantung, is the only one examined which seems referable to this form, of which we have not been able definitely to locate the type locality. It is close to X. d. davidi.

Description:—Depth in length to base of caudal, 3.8 to 3.9; head, 4.7 to 4.9; eye in head, 3.5 (specimens of 106 and 107 mm. standard length). Dorsal rays, II, 7; anal, 11; scales, 58 or 59.

Xenocypris davidi insularis Nichols and Pope

Figure 52

Xenocypris insularis Nichols and Pope, 1927, Bull. Amer. Mus. Nat. Hist., LIV, p. 363, Fig. 29. Hainan.

Fig. 52. Xenocypris davidi insularis Nichols and Pope. Type. 213 mm. without caudal.

Description:—Depth in length to base of caudal, 3.7; head, 4.9; eye in head, 4 (specimen of 213 mm. standard length). Dorsal rays, II, 7; anal, 13; scales, 63.

Xenocypris macrolepis Bleeker

Xenocypris tapeinosoma Bleeker, 1871, ibid., p. 55. Yangtze.

Description:—Depth in length to base of caudal, about 4; head, about 4.5; eye in head, a little more than 3 (specimen about 300 mm. long). Dorsal rays, II, 7; anal, 11 or 12; scales, about 50.

Xenocypris fangi Tchang

Xenocypris fangi Tchang, 1930, Sinensia, I, p. 92, Fig. 3. Soo-foo [Suifu, Szechwan].

Description:—Depth in length to base of caudal, 4 to 4.7; head, 4.4 to 4.8; eye in head, 5 (specimens about 150 mm. long). Dorsal rays, II, 7; anal, 11; scales 72 to 74.
SYSTEMATIC ACCOUNT

Xenocypris yunnanensis Nichols

Figure 53

![Image of Xenocypris yunnanensis](image)

Description:—Depth in length to base of caudal, 4.2; head, 3.9; eye in head, 3.5 (specimen of 123 mm. standard length). Dorsal rays, II, 7 or 8; anal, 13 or 14; scales, 72.

Xenocypris suifuensis Kimura

Description:—Depth in length to base of caudal, 4; head, 4.7 to 5; eye in head, 3.6 to 3.7 (specimens 162 to 170 mm. standard length). Dorsal rays, II, 7; anal, 13; scales, 70.

Depth of peduncle equal to or slightly greater than its length; dorsal origin midway between tip of snout and caudal base. Questionably distinct from *Xenocypris yunnanensis*.

Subgenus *Plagiognathops* Berg

Xenocypris microlepis Bleeker

Xenocypris setchuanensis Tchang, 1930, Cyprinidés du Bassin du Yangtze, p. 105. Szechwan.

Description:—Depth in length to base of caudal, 3.1 to 3.6; head, about 5; eye in head, 3.7 to 3.8 (last two measurements for a large specimen about 675 mm. long). Dorsal rays, II, 7; anal, 13 or 14; scales, 74 to 84.
Subgenus Distoechodon Peters

Xenocypris tumirostris (Peters)

Description:—Depth in length, 4.7 to 4.8; head, scarcely longer than depth; eye in head, 4.5. Dorsal rays, II, 7; anal, 11; scales, 75 to 80.

Xenocypris compressus Nichols

Figure 54

Locality of Material:—Specimens examined from Kienning and Yenping, Fukien; up to 173 mm. standard length.

Description:—Depth in length to base of caudal, 3.8 to 4.2; head, 3.6 to 3.9; eye in head, 3 to 3.5 (specimens of 36 to 103 mm. standard length). Dorsal rays, II, 7; anal, 12; scales, 74.

Genus Acanthobrama Heckel

Silvery, compressed, free swimming, Asiatic carps of small or moderate size, with a small mouth, terminal or subterminal; a strong, smooth spine in the dorsal; scaleless keel between anal and ventral fins; the lateral line little bent down.

Scales small. Dorsal fin inserted behind the ventrals. Anal fin rather long, of something like 20 rays. Pharyngeal teeth in one row.

Barbels absent. Vent and anal fin not bordered by a row of enlarged scales. No serrate, spinous ray in the anal. Upper jaw protractile. Gill membranes attached to the isthmus. Gill rakers not fused. Eye placed in or above the axis of the body.
SYSTEMATIC ACCOUNT

Key to Chinese Acanthobrama

Depth, 3.4 to 3.7; scales, 40 to 45 .. \textit{dumerili}
Depth, about 3.8 (at 100 mm. standard length); scales about 50 \textit{simoni}

\textbf{Acanthobrama dumerili} (Bleeker)

\textit{Locality of Material:}—Specimens examined from Anhwei.

\textit{Description:}—Depth in length to base of caudal, 3.4; head, 3.9; eye in head, 3.2 (specimen of 47 mm. standard length). Dorsal rays, II, 7; anal, 12 to 13; scales, 40 to 45.

\textbf{Acanthobrama simoni} Bleeker

\textit{Locality of Material:}—Specimens examined from Tungting Lake, Hunan.

\textit{Description:}—Depth in length to base of caudal, 3.8; head, 4.1; eye in head, 3.1 (specimen of 101 mm. standard length). Dorsal rays, II, 7; anal, 12; scales, 51.

Genus Culticula Abbott

A small, free swimming, Chinese carp with a scaleless keel behind the ventrals, not extending forward of same; a well-developed spine in the dorsal; lateral line moderately bent down, without abrupt changes in direction; anal with about 11 branched rays; teeth in one row, knife-shaped, not hooked.

Mouth terminal, oblique, of moderate size. Peritoneum black. Sides with a dark lateral band.

Barbels absent. No serrate spinous ray in the anal. Upper jaw protractile. Gill membranes attached to the isthmus. Gill rakers not fused. Eye placed in or above the axis of the body.

Key to Chinese Culticula

Anal, 13. Scales, 47 .. \textit{emmelas}
Anal, 11. Scales, 58 .. \textit{tchangi}

\textbf{Culticula emmelas} Abbott

\textit{Description:}—Depth in length to base of caudal, 4; head, 4.4; eye in head, 4 (specimen 70 mm. long). Dorsal rays, II, 7; anal, 13; scales, 47.
THE FRESH-WATER FISHES OF CHINA

Culticula tchangi Shaw

Description:—Depth in length to base of caudal, 4 to 4.5; head, 4.8 to 4.9; eye in head, 3.5 to 3.7 (specimens 112 to 120 mm. long). Dorsal rays, II, 7; anal, II; scales, 58.

Remarks:—This form suggests Xenocypris davidi lampertii and is described as having a “rounded abdomen between ventrals and anal,” but is here retained provisionally as a second species of Culticula.

Genus Yaoshanicus Lin

Yaoshanicus Lin, 1931, Carps of Kwangtung, p. 50. Type: Yaoshanicus arcus Lin.

This genus with thick, adherent scales and complete lateral line, evenly bent down and rising on the peduncle to terminate in its center, separated from Aphyocypris by Chu, seemingly also contains Yaoshanicus arcus Lin, named at an earlier date.

Key to Chinese Yaoshanicus

Mouth moderately oblique; breast not particularly deep; jaws equal normalis
Mouth very oblique; breast deep and rounded; lower jaw slightly included arcus

Yaoshanicus normalis (Nichols and Pope)

Figure 55 and Plate I, figure 4

Fig. 55. Yaoshanicus normalis (Nichols and Pope). Type. 64 mm. without caudal.

Description:—Depth in length to base of caudal, 4; head, 4; eye in head, 4 (specimen 64 mm. standard length). Dorsal rays, 10; anal, 10 or 11; scales, 35.
SYSTEMATIC ACCOUNT

Yaoshanicus arcus Lin

Description:—Depth in length, 4; head, 4; eye in head, 4 (specimen 61 mm. long). Dorsal rays, 9; anal, 9; scales, 36.

Looks much like Aphyocypris normalis, but breast deep and rounded; mouth very oblique, maxillary not reaching to under front of eye; lower jaw slightly included; teeth 3-rowed: 5, 4, 2.

Genus Aphyocypris Günther

Moderately large-scaled, soft-finned, free swimming minnows with a scaleless keel before the anal, not passing forward of the ventral fins, the anal fin short, with about 7 branched rays. Three or four species in China and adjacent islands.

Mouth oblique, terminal, the jaws approximately equal or the lower projecting. Lateral line incomplete.

Barbels absent. Vent and anal fin not bordered by a row of enlarged scales. Upper jaw protractile. Anal origin behind the vertical from the end of the dorsal. Gill rakers not fused. Eye placed in or above the axis of the body.

Key to Chinese Aphyocypris

1. Depth, 3.5 (at 60 mm. length); scales, 30; lower jaw distinctly projecting; dorsal origin equidistant between front of eye and base of caudal kikuchii
 Depth, 4 (at 30 to 50 mm. length); scales, 32; lower jaw scarcely projecting chinensis
 Depth, 3.2 to 3.8 (at 30 to 45 mm. length); scales, 30 to 33; lower jaw more or less projecting; dorsal origin equidistant between edge of preopercle and base of caudal; a dark lateral band more or less pronounced see 2
2. Lower jaw slightly projecting; mouth moderately oblique; maxillary to under front of eye, about 2.6 times in length of head shantung
 Lower jaw decidedly projecting, mouth very oblique; maxillary barely to under front of eye; about 3 times in length of head agilis

Aphyocypris chinensis Günther

Aphyocypris chinensis chinensis Günther

Locality of Material:—Chekiang (fide Gee).

Specimen examined from southern Hupeh (by courtesy of the British Museum).

Description:—Depth in length to base of caudal, 4; head, 3.7; eye in head,
slightly less than 4 (specimen about 50 mm. long). Dorsal rays, 9; anal, 9; scales, 31 or 32.

Aphyocypris chinensis shantung Nichols

Figure 56

Aphyocypris chinensis shantung Nichols, 1930, Amer. Mus. Novitates, No. 402, p. 1, Fig. 1. Tsinan, Shantung.

Description:—Depth in length to base of caudal, 3.2 to 3.8; head, 3.4 to 3.8; eye in head, 3.2 to 3.6 (specimens 30 to 46 mm. standard length). Dorsal rays, 9 (rarely 8); anal, 9 (rarely 10); scales, 30 to 33.

Aphyocypris agilis (Nichols)

Figure 57

Description:—Depth in length to base of caudal, 3.3; head, 3.6; eye in head, 3.5 (specimen of 41 mm. standard length). Dorsal rays, 9; anal, 9; scales, 31.

Remarks:—This shy and active little fish, found in a cold spring on the edge of a paddy field by Walter Granger, was at first thought to represent an unde-
scribed genus, but on the contrary is doubtless close to certain other forms of *Aphyocypris*.

Aphyocypris kikuchii (Oshima)

Locality of Material:—Specimen examined from Fukien.

Description:—Depth in length to base of caudal, 3.5; head, 3.5; eye in head, 4 (specimen 60 mm. long). Dorsal rays, 9; anal, 9; scales, 30.

Genus Hypophthalmichthys Bleeker

An aberrant genus of heavy-bodied, broad-headed, fine-scaled carps, valued as food and raised in ponds by the Chinese. Systematic position uncertain.

Eye placed more or less below the axis of the body. Gill membranes broadly united, free from the isthmus. Breast and belly with a keel, which is scaled to the edge but not crossed by scales.

Dorsal with 11 to 15 branched and no spinous rays. Pharyngeal bones perforate; the teeth in one row: 4–4, much compressed. Gill rakers more or less fused.

Key to Chinese* Hypophthalmichthys

Keel on breast as well as belly, not freely crossed by scales ———— *molitrix*

Keel on breast absent or indistinct, freely crossed by scales. Head, about 3; eye in snout, at least 1.5, usually more than 2; pectoral fin longer than postorbital part of head *nobilis*

Hypophthalmichthys molitrix (Cuvier and Valenciennes)

Locality of Material:—Ningpo; Yangtze (fide Gee).

Specimens examined from Tungting Lake, Hunan; near Canton.

Description:—Depth in length to base of caudal, 3.2 to 3.6; head (with opercular membrane), 3.2; eye in head, 4.3 to 5.2 (specimens of 150 to 180 mm. standard length). Dorsal rays, 9 to 10; anal, 13 to 17; scales, 107 to 115.

Remarks:—Called “p’ang-t’ou-yü” at Tungting Lake, where it is very common. It attains a length of approximately 2 feet, perhaps more, and is to be seen for
sale in great numbers. Every day baskets of it are displayed on the streets of Yochow (C. H. Pope, field notes).

Hypophthalmichthys nobilis (Richardson)

Locality of Material:—Ningpo; Shanghai; Yangtze (fide Gee). Yangtze at Hankow (Kreyenberg and Pappenheim, 1909, p. 17).

Specimens examined from near Canton; up to 195 mm. standard length.

Description:—Depth in length to base of caudal, 3.1; head (without opercular membrane), 3.1 (with membrane, 2.9); eye in head, 5 to 6 (specimens of 165 mm. standard length). Dorsal rays, 10; anal, 16; scales, about 115.

Genus Rasborinus Oshima

Rather small, more or less elongate or deep-bodied, compressed, soft-finned carps with a scaleless keel before the anal not passing forward of the ventral fins, the anal fin long, with more than 15 branched rays. Two or three forms in southeastern China and adjacent islands.

Mouth rather small, oblique, terminal or the lower jaw included. Lateral line evenly bent down, rising on peduncle to terminate near its center. Dorsal placed behind the ventrals. The vertical from the hind end of its base anterior to the origin of the anal. Gill membranes attached to the isthmus under the hind margin of eye, or narrowly united at base, free from isthmus.

Barbels absent. Upper jaw protractile. Gill rakers not fused. Eye placed in or above the axis of the body.

Berg (1932.2, p. 156) synonymizes Rasborinus with Metzia Jordan and Thompson, 1914 (Mem. Carnegie Mus., VI, pp. 206, 227), type Acheilognathus mesembrinum Jordan and Evermann (1902, p. 323, Fig. 6) from Formosa, a different looking fish with very similar formulae.

Rasborinus takakii Oshima

Key to Chinese Rasborinus takakii

Lower jaw slightly projecting; depth, 3.4 (at 69 mm. standard length) jukiensis
Lower jaw slightly included; depth, 3.2 (at 95 mm. standard length) hainanensis
SYSTEMATIC ACCOUNT

Rasborinus takakii fukiensis Nichols

Figure 58

Locality of Material:—Specimens examined from Fuching Hsien, and near Yenping, Fukien; up to 77 mm. standard length.

![Fish diagram](image1)

Description:—Depth in length to base of caudal, 3.4; head, 4; eye in head, 3.5 (specimen of 69 mm. standard length). Dorsal rays, 10; anal, 17; scales, 39.

Rasborinus takakii hainanensis Nichols and Pope

Figure 59

Description:—Depth in length to base of caudal, 3.2; head, 3.8; eye in head, 3.8 (specimen of 95 mm. standard length). Dorsal rays, 9; anal, 19; scales, 38 to 41.

![Fish diagram](image2)

Remarks:—This species was constantly taken in the immediate environs of Nodoa, Hainan (C. H. Pope, field notes).
Hemiculterella Warpachowski

Hemiculterella Warpachowski, 1888, Bull. Acad. Sci. St. Pétersbourg, XXXII, p. 23. Type: Hemiculterella sau-
vagei Warpachowski.

Rather elongate, free swimming carps with a scaleless keel before anal, which keel may be more or less appreciable though scaled, forward of the ventrals; lateral line descending rather steeply, running low, ascending rather abruptly to run in the center of peduncle; no spinous ray in the dorsal. Not common; three or four species described are probably referable to this genus.

Mouth oblique, the jaws equal. Anal with 12 or more branched rays. Gill membranes narrowly attached to the center of the isthmus. Pharyngeal teeth in 3 rows.

Barbels absent. No serrate spinous ray in the anal. Upper jaw protractile. Gill rakers not fused. Eye placed in or above the axis of the body.

Key to Chinese Hemiculterella

1. Anal rays, 14 or 15 .. see 2
 Anal rays, 21 or 22 .. see 3
 Anal rays, about 18 .. tsaninensis

2. Eye in head, about 4. Scales, 50 .. sauvagei
 Eye in head, about 5. Scales, 45 to 48 .. eigenmanni

3. Depth in standard length, about 5. Snout longer than eye .. engraulis
 Depth in standard length, about 4. Snout shorter than eye .. setchuanensis

Hemiculterella sauvagei Warpachowski

Nicholsiculter rendahli Wu, 1930, Sinensia, I, p. 74, Fig. 4. Kiating.

Description:—Depth in length to base of caudal, 4.2 to 4.8; head, 4.2 to 4.4; eye in head, 3.4 to 3.8 (specimens 115 to 120 mm. total length). Dorsal rays, 9; anal, 15; scales, 50 to 52.

Hemiculterella eigenmanni (Jordan and Metz)

Locality of Material:—Tsinan, Shantung (Mori, 1928, p. 69).

Description:—Depth, about equal to head; head in length, 4.3 to 4.8; eye, about 5 (specimens 77 to 169 mm. long). Dorsal rays, 9 or 10; anal, 14 to 16; scales, 45 to 48.

Hemiculterella tsinanensis (Mori)

Pseudolaubuca tsinanensis Mori, 1933, Japanese Jour. Zool., V, p. 165, Fig. 1. Tsinan.

Description:—Depth in length, 5.3; head, 4; eye in head, 4.8 (specimen 128 mm. total length). Dorsal rays, 9; anal, 18; scales, 52.
Mouth little oblique; maxillary in head, 2.7 (fig.); pectoral pointed, almost to ventral origin.

Hemiculterella engraulis Nichols

Figure 60

Pseudolaubuca shawi Tchang, 1930, Cyprinidés du Bassin du Yangtze, p. 147, Pl. III, fig. 4. Szechwan.

![Fig. 60. Hemiculterella engraulis Nichols. Type. 148 mm. standard length.](image)

Description:—Depth in length to base of caudal, 5; head, 3.7; eye in head, 4.4 (specimen of 148 mm. standard length). Dorsal rays, 9; anal, 21 or 22; scales, 45 to 50.

Remarks:—Called "hsien-tsan" at Tungting Lake—a small species (C. H. Pope, field notes).

Hemiculterella setchuanensis (Tchang)

Pseudolaubuca setchuanensis Tchang, 1930, Cyprinidés du Bassin du Yangtze, p. 147. Szechwan.

Description:—Depth in length to base of caudal, 4; head, 4; eye in head, 4.5 (specimens 130 to 140 mm. total length). Dorsal rays, 9; anal, 21; scales, 48.

Genus Hemiculter Bleeker

More or less slender, compressed, silvery, actively free swimming carps of small or moderate size, generally common in Chinese fresh waters. Several closely related and not easily separable species.

A naked keel before the anal, the keel sometimes extending forward of the ventrals onto the breast. A strong, smooth spine in the dorsal. Mouth oblique, jaws about equal. Lateral line descending steeply in front, running low, and slanting abruptly upward to the center of the peduncle, over the anal axil.

Anal with not less than 10 branched rays. Pharyngeal teeth in 3 rows.
Barbels absent. No serrate spinous ray in the anal. Upper jaw protractile. Gill membranes attached to the isthmus. Gill rakers not fused. Eye placed in or above the axis of the body.

Key to Chinese Hemiculter

1. Keel extending forward of ventrals (*Hemiculter*) .. see 2
 Keel between ventrals and anal only (*Pseudohemiculter*) ..see 6
2. Body well compressed; scales adherent ... see 3
 Body only moderately compressed (width in head, about 2); scales more or less deciduous; anterior flexure in lateral line not abrupt; dorsal spine slender ... clupeoides
3. Head less than depth; scales, usually less than 50 ... see 4
 Head equal to or greater than depth ... see 5
4. Depth, 4 or less (at 100 mm.). Scales, 45 to 50 .. schrencki
 Depth, more than 4 (at 100 mm.). Scales, less than 45 .. shibatae
5. Head and depth, 4.5 or more (in grown fish) .. leucisculus
 Head and depth, about 4 (in grown fish) .. kneri
6. Dorsal spine much shorter than head, smooth ... see 7
 Dorsal spine almost as long as head, finely serrate on its hind edges serrata
7. Depth, 4 or less (at 115 mm. standard length); scales, about 56 hainanensis
 Depth, about 5 (at 105 mm. standard length); scales, 50 to 55 dispar
 Depth, 4.5 to 4.8 (at 150 to 185 mm. total length); scales, about 48 hunanensis

Subgenus Hemiculter Bleeker

Hemiculter leucisculus (Basilewski)

Locality of Material:—Shanghai; Chihli; Yangtze (*fide* Gee).

Small specimens examined from Shantung.

Description:—Depth in length to base of caudal, 4.6 to 4.8; head, 4 (young fish) to 4.8; eye in head, 4.2 to 4.4. Dorsal rays, II, 7; anal, 13 to 15; scales, 50 to 53.

Hemiculter schrenki Warpachowski

Hemiculter schrencki schrencki Warpachowski

Localities of Material:—Specimens examined from Fukien and near Canton; up to about 170 mm. standard length.

Description:—Depth in length to base of caudal, 3.7 to 3.9; head, 4.3 to 4.4; eye in head, 3.9 to 4.1 (specimens 80 to 98 mm. standard length). Dorsal rays, II, 8; anal, 12 to 15; scales, 45 to 50.

Hemiculter schrencki shibatae Mori

Hemiculter shibatae Mori, 1933, Japanese Jour. Zool., V, p. 166, Fig. 2. Tsinan.

Description:—Depth in length, 4.3; head, 4.5; eye in head, 4.5 (specimen 108 mm. total length). Dorsal rays, II, 7; anal, 15; scales, 41.

Hemiculter kneri Warpachowski

Locality of Material:—Specimens examined from Anhwei.

Description:—Depth in length to base of caudal, 4.4; head, 4; eye in head, 3.3 (specimens of 83 to 85 mm. standard length). Dorsal rays, II, 7 or 8; anal, 13 to 17; scales, 46 to 50.

Hemiculter clupeoides Nichols

Figure 61 and Plate IV, figure 4

![Hemiculter clupeoides Nichols. Type. 127 mm. standard length.](image_url)

Description:—Depth in length to base of caudal, 4.3; head, 4.6; eye in head, 3.7 (specimen of 127 mm. standard length). Dorsal rays, II, 7; anal, 14; scales, about 55.
THE FRESH-WATER FISHES OF CHINA

Subgenus Pseudohemiculter Nichols and Pope

Hemiculter hainanensis Nichols and Pope

Figure 62

![Image of Hemiculter hainanensis](image)

Description:—Depth in length to base of caudal, 3.7; head, 3.5; eye in head, 3.8 (specimen of 115 mm. standard length). Dorsal rays, II, 7; anal, 17; scales, 56.

Remarks:—This species was constantly taken in the immediate environs of Nodox, Hainan (C. H. Pope, field notes).

Hemiculter dispar Peters

Hemiculter dispar Peters, 1880, Monatsber. Akad. Wiss. Berlin, p. 1035, Fig. 7. Hong Kong.

Hemiculter dispar dispar Peters

Figure 63

Hemiculter dispar Peters, 1880, Monatsber. Akad. Wiss. Berlin, p. 1035, Fig. 7. Hong Kong.

?_Barilius hainanensis_ Boulenger, 1899, Proc. Zool. Soc. London, p. 901, Pl. lxix, fig. 2. Hainan. Chu (1935, p. 4) says he has examined the type and this is a _Hemiculter_.

![Image of Hemiculter dispar dispar](image)

Locality of Material:—Specimens examined from Chungan Hsien, Kienning, and Yenping, Fukien; Hokou, Kiangsi; up to 122 mm. standard length.
Description:—Depth in length to base of caudal, 5 to 5.4; head, 3.9 to 4.3; eye in head, 3.2 to 3.7 (specimens 95 to 122 mm. standard length). Dorsal rays, II, 7; anal, 16 to 19; scales, 50 to 55.

Hemiculter dispar hunanensis Tchang

Description:—Depth in length to base of caudal, 4.5 to 4.8; head, 4; eye in head, 4 (specimens 150 to 185 mm. total length). Dorsal rays, II, 7; anal, 15 to 18; scales, about 48.

Subgenus Hainania Koller

Hemiculter serrata (Koller)

Figure 64

Hainania serrata Koller, 1927 (July), Ann. Naturhist. Mus. Wien, XLI, p. 45, Fig. 5. Hainan. (Description inaccurate?)

Hemiculter serracanthus Nichols and Pope, 1927 (Sept.), Bull. Amer. Mus. Nat. Hist., LIV, p. 373, Fig. 37. Hainan.

Fig. 64. Hemiculter serrata (Koller). Type of Hemiculter serracanthus Nichols and Pope. 113 mm. without caudal.

Description:—Depth in length to base of caudal, 4.5; head, 3.8; eye in head, 3.1 (specimen of 113 mm. standard length). Dorsal rays, II, 7; anal, 16; scales, 53.

Genus Toxabramis Günther

More or less slender, compressed, silvery, actively free swimming Chinese carps of small or moderate size, resembling Hemiculter but the dorsal spine serrated and the teeth in 2 rows. Uncommon, the species few and difficult.

A scaleless keel before the anal extending forward of the ventrals onto the
breast. Mouth oblique, jaws about equal or the lower slightly projecting. Lateral line descending steeply in front, running low and slanting abruptly upward to the center of the peduncle over the anal axil. Anal with more than 10 branched rays.

Barbels absent. No serrate spinous ray in the anal. Upper jaw protractile. Gill membranes attached to the isthmus. Gill rakers not fused. Eye placed in or above the axis of the body.

Key to Chinese Toxabramis

- Anal rays, 20; scales, 62
- Anal rays, 14; scales, 44
- Anal rays, 15; scales, 49 to 51

Toxabramis swinhonis Günther

Description:— Depth in length to base of caudal, about 4.7; head, 4.5; eye in head, 3.5 (specimen about 100 mm. long). Dorsal rays, II, 7; anal, 20; scales, 62.

Toxabramis argentifer Abbott

Toxabramis argentifer Abbott, 1901, Proc. U. S. Nat. Mus., XXIII, p. 484, Fig. Chihli.

Description:— Depth in length to base of caudal, 4.5; head, about 4.7; eye in head, 4 (specimen 130 mm. long). Dorsal rays, II, 7; anal, 14; scales, 44.

Toxabramis hoffmanni Lin

Toxabramis hoffmanni Lin, 1934, Lingnan Sci. Jour., Canton, XIII, p. 440, Fig. 1. Wuchow, Kwangsi.

Description:— Depth in length to base of caudal, 5.1; head, 4.1; eye in head, 3.1 (specimen 46 mm. standard length). Dorsal rays, II, 7; anal, 15; scales, 49 to 51. Teeth in 2 rows; dorsal spine scarcely serrate.

A young fish resembling *Hemiculter leucisculus* closely.

Genus Parapelecus Günther

Active, slender, compressed, soft-finned, silvery carps with a scaleless keel from before the pectorals to the anal; lateral line running low, slanting down steeply in front and gaining the center of the peduncle by a flexure behind; dorsal small, placed well back, its axil just in front of the anal, without a spine. Not common, a few closely related representative species recognized from different Chinese localities.
Mouth terminal or the lower jaw slightly included. Scales small, deciduous. Anal with 21 to 29 rays. Pharyngeal teeth 3-rowed.

No barbels. Upper jaw protractile. Gill membranes attached to the isthmus. Gill rakers not fused. Eye in or above the axis of the body.

Key to Chinese Parapelecus

<table>
<thead>
<tr>
<th>Description</th>
<th>Argenteus</th>
<th>Fukiensis</th>
<th>Machaerius</th>
<th>Nickolsi</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anal rays, 25; scales, 75</td>
<td>argenteus</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anal rays, 21; scales, about 65</td>
<td></td>
<td>fukiensis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anal rays, 29; scales, 68</td>
<td></td>
<td></td>
<td>machaerius</td>
<td></td>
</tr>
<tr>
<td>Anal rays, 25 or 26; scales, 62</td>
<td></td>
<td></td>
<td></td>
<td>nickolsi</td>
</tr>
</tbody>
</table>

Parapelecus argenteus Günther

Description: — Depth in length to base of caudal, 4.3; head, 5.3; eye in head, 4 (specimen about 240 mm. long). Dorsal rays, 10; anal, 25; scales, 75.

Parapelecus fukiensis Nichols

Figure 65

Parapelecus fukiensis Nichols, 1926, Amer. Mus. Novitates, No. 224, p. 7, Fig. 6. Fukien.

Description: — Depth in length to base of caudal, 4.6; head, 4.4; eye in head, about 4 (specimen of 95 mm. standard length). Dorsal rays, 9; anal, 21; scales, about 65.

![Fig. 65. Parapelecus fukiensis Nichols. Type. 95 mm. standard length.](image)

Remarks: — Based on a single specimen collected by H. R. Caldwell in Fukien Province, but more exact locality data lost. This form may not be valid, as three specimens from Kienning, Fukien, are referable to *Parapelecus nicholsi* (Fowler), rather than to it.

Parapelecus machaerius Abbott

Description: — Depth in length to base of caudal, 4.4; head, 5.2; eye in head, 3.7 or 3.8 (specimen 130 mm. long). Dorsal rays, 10; anal, 29; scales, 68.
Parapelecus nicholsi (Fowler)

Figure 66

Fig. 66. Parapelecus nicholsi (Fowler). After Fowler.

Locality of Material:—Specimens examined from Anhwei; Kienning, Fukien.

Description:—Depth in length to base of caudal, 4 to 5.7; head, 4.6 to 4.8; eye in head, 3.3 to 3.7 (specimens 96 to 122 mm. standard length). Dorsal rays, 9 (rarely 10); anal, 24 to 26; scales, 60 to 62.

Genus *Pseudolaubuca* Bleeker

Compressed, soft-finned carps with a keel along the entire abdominal edge, the lateral line gradually bent downwards, without an abrupt bend above the pectorals, which are unusually long. Cleft of the mouth very oblique. Dorsal fin situated entirely in advance of the anal. One or a few more or less lost species of questionable affinities with *Parapelecus, Hemiculterella,* and *Chela.*

No barbels. Upper jaw protractile. Gill membranes attached to the isthmus. Gill rakers not fused. Eye in or above the axis of the body.

Pseudolaubuca sinensis Bleeker

Description:—Depth in length to base of caudal, 6:5; head, about 6. Dorsal rays, 9; anal, 26; scales of moderate size.

Genus *Ischikauia* Jordan and Snyder

Rather small-scaled, compressed, free swimming, silvery carps of small or moderate size, with a scaleless keel between ventrals and anal, the belly rounded; lateral line running low, usually slanting down steeply in front and reaching the center of the peduncle by a flexure behind. Dorsal and anal (which is rather long) without spinous rays. A few species in China and adjacent islands.

Barbels absent. Upper jaw protractile. Gill membranes attached to the isthmus. Gill rakers not fused. Eye placed in or above the axis of the body.

In differentiating Ischikauia from Anabarilius, Chu (1935, pp. 5, 11) does not agree with the characters of the former given in Jordan and Snyder's description nor with their figure of its type species, specimens of which, however, I have not seen.

Key to Chinese Ischikauia

1. Anal rays, 12 to 19 ... see 2
 Anal rays, 12; dorsal origin over or slightly in advance of that of anal; mouth rather large, lower jaw projecting, maxillary to or not quite to under front margin of eye; scales, about 66 transmontana
2. Scales, about 50; anal rays, 18 to 19 .. see 3
 Scales, 60 to 106 ... hainanensis
3. Anal rays, 13; scales, about 60 .. see 3
 Anal rays, 15; scales, about 70 .. grahami
 Anal rays, 15 to 17; scales, 76 to 84 polylepis
 Anal rays, 12; scales, 97 to 105 ... alburnops
 Scales, about 97 to 105 .. andersoni

Subgenus Ischikauia Jordan and Snyder

Ischikauia hainanensis Nichols and Pope

Figure 67 and Plate V, figure 3

![Fig. 67. Ischikauia hainanensis Nichols and Pope. Type. 71 mm. without caudal.](image)

Description:—Depth in length to base of caudal, 3.6; head, 3.6; eye in head, 3 (specimen of 71 mm. standard length). Dorsal rays, 9; anal, 18 or 19; scales, 50.
Ischikauia grahami (Regan)

Description:—Close to *Ischikauia polylepis* and *Ischikauia andersoni*. Dorsal rays, 9; anal, 13; scales, about 60.

Ischikauia polylepis (Regan)

Description:—Depth in length, 4.7; head, 4.4; eye in head, 3.7 (specimen 130 mm. long). Dorsal rays, 9; anal, 15; scales, 70.

Ischikauia alburnops (Regan)

Figure 68

Description:—Depth in length, 4.5 to 5; head, 3.5 to 4; eye in head, 3.6 to 4 (specimens 150 to 200 mm. long). Dorsal rays, 9; anal, 15 to 17; scales, 76 to 84.

Ischikauia andersoni (Regan)

Description:—Depth in length, 4.4 to 4.8; head, 4; eye in head, 4 to 4.3 (specimens 95 to 125 mm. long). Dorsal rays, 9; anal, 12; scales, 97 to 105.

Subgenus Rohanus Chu

Ischikauia transmontana Nichols

Figure 69

SYSTEMATIC ACCOUNT

![Image of fish](Am.Mus.No.8441)

Fig. 69. Ischikauia transmontana Nichols. Type. 100 mm. standard length.

Description:—Depth in length to base of caudal, 4.4; head, 3.7; eye in head, 4 (specimen of 100 mm. standard length). Dorsal rays, 9 or 10; anal, 11; scales, 66.

Genus Erythroculter Berg

More or less slender, compressed, silvery, actively free swimming carps of moderate size generally common in Chinese fresh waters. Several closely related species.

A scaleless keel on belly not extending forward of ventrals. Lateral line but slightly bent down. Lower jaw projecting. A strong, smooth spine in the dorsal.

Mouth oblique or vertical. Air bladder with 3 divisions. Anal long (usually 20 rays or more). Pharyngeal teeth in 3 rows.

Barbels absent. No serrate spinous ray in the anal. Upper jaw protractile. Gill membranes attached to the isthmus. Gill rakers not fused. Eye placed in or above the axis of the body.

Key to Chinese Erythroculter

1. Scales, 65 to 75; anal rays, 26 to 29
 Scales, about 60; anal rays, about 21
 Scales, 77 to 87; anal rays, 22 to 26
 see 2
 Scales, about 65
 see 3
 2. Depth, about 4; scales, 70 to 75; nape elevated
 Depth, about 3.4; scales, about 65
 see 4
 3. Moderate as to obliqueness of mouth and bending down of lateral line; scales, about 70
 Mouth more oblique; lateral line almost straight; scales, about 75
 see 2
 3. oxycephalus
 dabryi
 pseudobrevicauda
THE FRESH-WATER FISHES OF CHINA

4. Scales, about 77; anal rays, about 22; outlines of *dabryi* but nape less elevated .. *mongolicus*
Scales, 80 or more; anal rays, 24 to 26 ... see 5

5. Mouth almost vertical; lower outlines more convex than upper; lateral line well bent down ... *oxycephaloides*
Mouth not very oblique; upper outlines more convex than lower; lateral line almost straight ... *erythropterus aokii*

6. Less slender (depth, about 4) .. *erythropterus*
More slender (depth, about 4.5) ... *mongolicus*

Erythroculter *erythropterus* (Basilewski)

Locality of Material:—Chihli; North China (*fide* Gee).
Specimens examined from Tungting Lake, Hunan; up to 261 mm. standard length.

Description:—Depth in length to base of caudal, 4; head, 4.4; eye in head, 3.9 (specimen of 261 mm. standard length). Dorsal rays, II, 7; anal, about 25; scales, about 82.

Remarks:—Called “pai-yii” or “whitefish” at Tungting Lake where it is very common, seen for sale in Yochow. It is said to reach a very large size (200 pounds) (C. H. Pope, field notes).
There is possibility of confusion with some other species here.

Erythroculter *mongolicus* (Basilewski)

Locality of Material:—Specimens examined from Tungting Lake, Hunan.

Description:—Specimens examined from Tungting Lake, Hunan.

Description:—Depth in length to base of caudal, 4.1; head, 3.9; eye in head, 5 (specimen of 213 mm. standard length). Dorsal rays, II, 7; anal, about 22; scales, about 77.

Erythroculter *dabryi* (Bleeker)

Plate IV, figure 2

SYSTEMATIC ACCOUNT

Locality of Material:—Shanghai; Chihli; Canton (fide Gee).
Specimens examined from Tungting Lake, Hunan; up to 180 mm. standard length.

Description:—Depth in length to base of caudal, 4.2; head, 3.6; eye in head, 4 (specimen of 117 mm. standard length). Dorsal rays, II, 7 or 8; anal, 27 to 29; scales, 67 to about 70.

Erythroculter oxycephalus (Bleeker)

Description:—Depth in length to base of caudal, about 3.3; head, about 3.8; eye in head, about 5 (specimen about 600 mm. long). Dorsal rays, II, 7 or 8; anal, 27 or 28; scales, about 65.

Erythroculter oxycephaloides (Kreyenberg and Pappenheim)

Locality of Material:—Specimens examined from Tungting Lake, Hunan.

Description:—Depth in length to base of caudal, 3.6 to 4; head, 3.6 to 4; eye in head, 3.3 to 4.3 (specimens of 96 mm. standard length, and of 172 mm.). Dorsal rays, II, 7; anal, about 26; scales, 80 to 87.

Erythroculter wangi Tchang

Description:—Depth in length to base of caudal, 4.7; head, 3.8; eye in head, 4 (specimen 160 mm. standard length). Dorsal rays, II, 7; anal, 21; scales, 60.

Mouth almost horizontal; upper profile of body more curved than lower; lateral line little decurved.

Erythroculter aokii (Oshima)

Locality of Material:—Specimens examined from Fukien.

Description:—Depth in length to base of caudal, 4.3 to 4.6; head, 3.9 to 4; eye in head, 3.8 to 4 (specimens 254 to 280 mm. long). Dorsal rays, II, 7; anal, 24 or 25; scales, 80 to 86.
Erythroculter pseudobrevicauda Nichols and Pope

Figure 70

Locality of Material:—Specimens examined from Hainan, and near Canton; up to 245 mm. standard length.

Description:—Depth in length to base of caudal, 3.9; head, 4; eye in head, 3.3 (specimen of 170 mm. standard length). Dorsal rays, II, 7; anal, about 26; scales, about 75.

Genus Culter Basilewski

More or less slender, compressed, silvery carps with a scaleless keel on breast (forward of ventrals) as well as on belly. Lateral line dipping very slightly back of the head, running almost straight and in the middle of body. Lower jaw projecting. A strong, smooth spine in the dorsal.

Mouth oblique or almost vertical. Air bladder with 3 divisions. Anal long (more than 20 rays). Pharyngeal teeth in 3 rows.

Barbels absent. No serrate spinous ray in the anal. Upper jaw protractile. Gill membranes attached to the isthmus. Gill rakers not fused. Eye placed in or above the axis of the body.

Key to Chinese Culter

1. Pectoral not reaching ventral base; lateral line rather well curved down ... see 2
 Pectoral reaching ventral base; lateral line almost straight see 3
2. Anal rays, about 30; mouth almost vertical .. alburnus
 Anal rays, 23; mouth moderately oblique .. kashinensis
3. Depth, 3.7 to 4; scales, 65 or 66 .. brevicauda
 Depth, 3.5 (specimen 120 mm. long); scales, about 60 tientsinensis
SYSTEMATIC ACCOUNT

Culter alburnus Basilewski

Description:—Depth in length to base of caudal, about 4; head, about 4.2; eye in head, about 5.5. Dorsal rays, about II, 7; anal, about 30; scales, about 75.

Remarks:—There is no specimen referable to this species in the American Museum of Natural History collections, and Berg is followed in supposing it to belong to the genus *Culter* as here defined, not to *Erythroculter*. Otherwise it might be identical with *Erythroculter erythropterus*, in which case *Erythroculter* would become a synonym of *Culter* and a new generic name necessary for the species referred to it.

Culter kashinensis Shaw

Description:—Depth in length to base of caudal, 4.2; head, 4; eye in head, 4.7 (specimen 152 mm. standard length). Dorsal rays, II, 8; anal, 23; scales, 72.

Culter brevicauda Günther

? *Culter alburnus*, Fu and Tchang, 1933, Bull. Honan Mus., I (1), p. 18, Fig. 18. Kaifeng.

Locality of Material:—Shanghai; Yangtze (*fide* Gee). Hainan (Oshima, 1926, p. 19).

Specimens examined from Anhwei.

Description:—Depth in length to base of caudal, 3.7 to 4; head, 4; eye in head, 3.5 to 4.5 (specimens of 80 mm. standard length and about 225 mm. long). Dorsal rays, II, 7; anal, 27 to 29; scales, 65 or 66.

Remarks:—This form seems to be rather common, and related ones recognized, which are uncommon, may not be distinct from it.

Culter tientsinensis Abbott

Culter tientsinensis Abbott, 1901, Proc. U. S. Nat. Mus., XXIII, p. 489, Fig. Chihli.

Description:—Depth in length to base of caudal, 3.5; head, 4; eye in head, 4 (specimen 120 mm. long). Dorsal rays, II, 7; anal, 28; scales, 60.

Genus Megalobrama Dybowski

More or less deep-bodied, free swimming carps of small or moderate size. Few Chinese species, representing some three rather unrelated forms.
A scaleless keel behind the ventrals, not extending forward of same. Jaws approximately equal, or the mouth slightly inferior. Lateral line little or moderately bent down, not running especially low and without abrupt changes in direction. A strong, smooth spine in the dorsal.

Barbels absent. No serrate spinous ray in the anal. Upper jaw protractile. Gill membranes attached to the isthmus. Gill rakers not fused. Eye placed in or above the axis of the body.

Key to Chinese Megalobrama

1. Less deep and compressed (depth, more than 2); peduncle at least as long as deep; anal rays, usually less than 30 see 2
 Deeper, rhombic, compressed (depth, about 2); peduncle deeper than long; anal rays, more than 30 bramula

2. Depth, about 3 (or more); anal rays, 22 to 25 (rarely 27) see 3
 Depth, 2.3 to 2.7; anal rays, 26 to 28 (rarely 30) see 4

3. Lower jaw slightly included; scales, about 57 macrops
 Jaws equal; scales, 58 to 63 kurematsui
 Jaws equal; scales, about 54 melrosei

4. Depth, 2.6 to 2.7; anal rays, 26 to 28; scales, 49 to 53. Dorsal spine strong; mouth small (maxillary more than 4 in head) hoffmanni
 Depth, about 2.5; anal rays, 26 or 27; scales, about 55 terminalis
 Depth, 2.3 or 2.4; anal rays, about 30; scales, about 55 pellegrini

Megalobrama macrops (Günther)

Key to Chinese Megalobrama macrops

Anal rays, 22 to 25 macrops
Anal rays, about 27 wui

Megalobrama macrops macrops (Günther)

Locality of Material:—Specimens examined from Chungan Hsien, Kiennings, and Yenping, Fukien.

Description:—Depth in length to base of caudal, 3 (to 3.6 in 55- to 75-mm. specimens); head, 4; eye in head, 2.7 (specimen of 145 mm. standard length). Dorsal rays, II, 7 to 8; anal, 22 to 25; scales, 55 to 59.
SYSTEMATIC ACCOUNT

Megalobrama macrops wui (Lin)

Description:—Depth in length, 3.2 or 3.3; head, 4; eye in head, 3.2 (specimens 130 mm. long). Dorsal rays, II, 7; anal, 27; scales, 56 to 60.

Megalobrama kurematsui (Kimura)

Description:—Depth in length to base of caudal, 3.7 to 4; head, 3.9 to 4.1; eye in head, 2.9 to 3 (specimens 135 to 164 mm. standard length). Dorsal rays, II, 7; anal, 24 to 25; scales, 58 to 63.

Megalobrama melrosei Nichols and Pope

Figure 71

Fig. 71. Megalobrama melrosei Nichols and Pope. Type. 66 mm. without caudal.

Description:—Depth in length to base of caudal, 3.1; head, 3.8; eye in head, 2.7 (specimen of 66 mm. standard length). Dorsal rays, II, 7; anal, 23; scales, 54.

Megalobrama hoffmanni Herre and Myers

Locality of Material:—Specimens examined from Kwangtung.

Description:—Depth in length to base of caudal, 2.6 to 2.7; head, 4.5 to 4.7; eye in head, 3.1 to 3.3 (specimens about 200 mm. standard length). Dorsal rays, II, 6 or 7; anal, 26 to 28; scales, 47 to 53.
Megalobrama terminalis (Richardson)

The type locality of *Megalobrama hoffmanni* is the same as that given for *terminalis*, and it may be that *hoffmanni* is a synonym of *terminalis*, in which case *pellegrini* Tchang would replace *terminalis* as here understood.

Megalobrama terminalis terminalis (Richardson)

Locality of Material:—Specimens examined from Fukien.

Description:—Depth in length to base of caudal, 2.5; head, 4; eye in head, 3 (specimen of 130 mm. standard length). Dorsal rays, II, 7 or 8; anal, 26 or 27; scales, 55.

Megalobrama terminalis pellegrini (Tchang)

Parosteobrama pellegrini Tchang, 1930, Bull. Soc. Zool. France, LV, p. 50, Fig. 4. Szechwan.

Description:—Depth in length to base of caudal, 2.3 or 2.4; head, 4.5 to 4.7; eye in head, 3.5 (specimens 190 to 207 mm. total length). Dorsal rays, II, 7; anal, 30; scales, 55.

Megalobrama bramula (Cuvier and Valenciennes)

Locality of Material:—Ningpo; Yangtze; Canton (*fide* Gee).

Specimens examined from Tungting Lake, Hunan; Anhwei.

Description:—Depth in length to base of caudal, 2; head, 4.2; eye in head, 4.1 (specimen 174 mm. standard length). Dorsal rays, II, 7; anal, about 34; scales, about 57.

Genus Parabramis Bleeker

A rather deep-bodied, compressed carp of moderate size. Apparently a single, variable, widely distributed species in China.

A scaleless keel on the belly, passing forward of the ventrals onto the breast. Jaws equal or the lower slightly included. Lateral line in the middle of the body, very little bent down. A strong, smooth spine in the dorsal.

Air bladder with 3 divisions. Anal long with more than 25 rays. Pharyngeal teeth in 3 rows.

Barbels absent. No serrate spinous ray in the anal. Upper jaw protractile. Gill membranes attached to the isthmus. Gill rakers not fused. Eye placed in or above the axis of the body.
SYSTEMATIC ACCOUNT

Parabramis pekinensis (Basilewski)

Plate IV, figure 3

Parabramis Bramula, Fu and Tchang, 1933, Bull. Honan Mus., I (1), p. 26, Fig. 25. Kaifeng.

Locality of Material:—Chihli; Yangtze; North China; Shanghai (*fide* Gee). Hainan (as *Chanodichthys stenzi*), a doubtful record, Oshima, 1926, p. 18.

Specimens examined from Tungting Lake, Hunan; and near Canton; up to about 195 mm. standard length.

Description:—Depth in length to base of caudal, 2.8 (3.1); head, 4.1 (3.7); eye in head, 3 (2.8) (specimens of 85 [and 46] mm. standard length). Dorsal rays, II, 7; anal, 28 to 34; scales, 55 to 65.

Remarks:—Called "yu-pien-tzu" at Tungting Lake. It is one of the very common food fishes seen in the streets of Yochow; the average size seen for sale, over a foot in length. The "pien-tzu-yü," a similar, somewhat deeper-bodied fish of about the same size and equally common, may or may not be a distinct species (C. H. Pope, field notes).

Genus Rhodeus Agassiz

Very small, active, deep-bodied, compressed Eurasian carps.

Origin of anal anterior to the vertical from the end of the dorsal base. Anal branched rays, 8 to 14; dorsal, 9 or 10. Pharyngeal teeth in one row, not serrate. Lateral line incomplete. No barbels. Dorsal and anal usually without spines.

No scaleless keel before anal fin. Upper jaw protractile. Gill membranes attached to the isthmus. Gill rakers not fused. Eye placed in or above the axis of the body.

Key to Chinese Rhodeus

1. Anal with 8 to 10 branched rays ... see 2
Anal with about 14 branched rays; well-developed dorsal and anal spines *spinalis*
2. Simple rays of dorsal and anal not spinous. Deeper (depth, 2.4 to 2.6 at 28 to 36 mm. standard length) ... *sinensis*
Simple rays of dorsal and anal moderately spinous. More slender (depth, 2.6 to 3.9 at 23 to 33 mm. standard length). Black "rhodein" lateral stripe notably strong .. *notatus*

Rhodeus sinensis Günther

Locality of Material:—Southern China (Berg, 1907.1, p. 160).
Specimens examined from Shansi; Shantung; Anhwei; Fukien; Shaohsing; up to 44 mm. standard length.

Description:—Depth in length to base of caudal, 2.4 to 2.6; head, 3.7 to 4.1; eye in head, 2.7 to 3.3 (specimens 28 to 41 mm. standard length). Dorsal rays, 9 to 12 (usually 10); anal, 10 to 13 (usually 10 or 11); scales, 31 to 35.

Remarks:—Females usually have a black blotch on the front of the dorsal fin (maculatus).

Rhodeus notatus Nichols

Figure 72

Rhodeus notatus Nichols, 1929, Amer. Mus. Novitates, No. 377, p. 6, Fig. 4. Tsinan, Shantung.

Rhodeus kwanghensis Mori, 1928, Japanese Jour. Zool., II, p. 68. Tsinan. If identifiable as the above, this has priority.

Am. Mus. No. 9654.

Fig. 72. Rhodeus notatus Nichols. Type. 33 mm. standard length.

Description:—Depth in length to base of caudal, 2.6 to 2.9; head, 3.9 to 4.4; eye in head, 2.6 to 2.9 (specimens 23 to 33 mm. standard length). Dorsal rays, II, 9 or 10; anal, II, 8 or 9; scales, 31 to 34.

Rhodeus spinalis Oshima

PLATE VII

Figs. 1 and 2. Barbatula yarkandensis sellaefer Nichols. Type. 73 mm. standard length. Chin-ssu, Shansi.

Figs. 3 and 4. Barbatula toni posteroventralis Nichols. Type. 66 mm. standard length. Chin-ssu, Shansi.
Description:—Depth in length to base of caudal, 2; head, 4.1 or 4.2; eye in head, 3 (specimen 78 mm. long). Dorsal rays, II, 10; anal, II, 14; scales, 34.

Genus Pseudoperilampus Bleeker

Small, deep-bodied, compressed carps, closely allied to _Rhodeus_ but deeper, more compressed, with smaller scales, more rays in dorsal and anal, teeth serrate. A few species in eastern China and adjacent islands, usually abundant where found.

Anal origin before the vertical from dorsal axil. Mouth small, somewhat inferior, eye large. A dark streak in the middle of the side posteriorly. Pharyngeal teeth in a single row, 5 in number. Lateral line incomplete. Dorsal and anal without developed spines. No barbels. Dorsal with some 12 to 14, anal with some 11 to 18 rays; scales, more than 30.

Upper jaw protractile. No scaleless keel before the anal fin. Gill membranes narrowly joined to the isthmus. Eye in or above the axis of the body.

Key to Chinese Pseudoperilampus

- Anal rays, about 14 ... _ocellatus_
- Anal rays, about 18 ... _hainanensis_

Pseudoperilampus ocellatus Kner

Rhodeus wangkinjui Wu, 1930, Sinensia, I, p. 77, Fig. 5. Luchow.

Locality of Material:—Shanghai; Yangtze (Berg, 1907, I, p. 162). Yangtze at Pinghsiang (Kreyenberg and Pappenheim, 1909, p. 15).

Specimens examined from Shantung, Anhwei, Szechwan, and Fukien.

Description:—Depth in length to base of caudal, 2 to 2.5; head, 3.9 to 4.2; eye in head, 2.7 to 3.1 (specimens of 29 to 52 mm. standard length). Dorsal rays, 12 to 14; anal, 11 to 14; scales, 32 to 34.

Pseudoperilampus hainanensis Nichols and Pope

Figure 73 and Plate V, figure 4

Pseudoperilampus hainanensis Nichols and Pope, 1927, Bull. Amer. Mus. Nat. Hist., LIV, p. 379, Fig. 42. Hainan.

Description:—Depth in length to base of caudal, 2.3; head, 3.9; eye in head, 2.5 (specimen of 39 mm. standard length). Dorsal rays, about 14; anal, about 18; scales, about 34.

Remarks:—This species was abundant and constantly taken in the immedi-
ate environs of Nodoa, though less abundant than *Acanthrhodeus tonkinensis* in the same places (C. H. Pope, field notes).

![Fig. 73. Pseudoperilampus hainanensis Nichols and Pope. Type. 39 mm. without caudal.](image)

Genus *Paracheilognathus* Bleeker

Small, active, deep-bodied, compressed Asiatic carps allied to *Rhodeus*.

Origin of anal anterior to the vertical from the end of the dorsal base. Pharyngeal teeth in one row, serrate. Lateral line complete. Barbels absent or minute. Dorsal and anal without spinous rays.

No scaleless keel before anal fin. No serrate spinous ray in the anal. Upper jaw protractile. Gill membranes attached to the isthmus. Gill rakers not fused. Eye placed in or above the axis of the body.

Key to Chinese *Paracheilognathus*

1. Dorsal with 12 rays ... *imberbis*
 Dorsal with 14 to 16 rays ... see 2
 Dorsal with 18 to 20 rays ... *jeholicus*

2. Dark shoulder blotch present; dorsal rays, 14 *peihoenis*
 Dark shoulder blotch absent; dorsal rays, 15 to 16 *bleckeri*

Paracheilognathus imberbis (Günther)

Locality of Material:—Ningpo; Pei Ho; Tientsin (*fide* Gee).

Specimen examined from Tsinan, Shantung; 52 mm. standard length.

Description:—Depth in length to base of caudal, about 2.8; head, about 4.1; eye in head, 3 to 3.3 (specimens from 52 mm. standard length to about 67 mm. long). Dorsal rays, 12; anal, 11 to 14; scales, 35.
SYSTEMATIC ACCOUNT

Paracheilognathus peihoensis Fowler

Description:—Depth in length to base of caudal, 2.1; head, 3.8; eye in head, 3 (specimen about 63 mm. long). Dorsal rays, 14; anal, 12; scales, 36.

Paracheilognathus bleekeri Berg

Description:—Depth in length to base of caudal, 2.5; head, 4; eye in head, 2.7. Dorsal rays, 15 or 16; anal, 12 to 13; scales, 35.

Paracheilognathus jeholicus (Mori)

Description:—Depth in length to base of caudal, 2.2 to 2.5; head, 4.1 to 4.3; eye in head, 3 to 3.8 (specimens 83 to 123 mm. total length). Dorsal rays, 18 to 20; anal, 15 to 16; scales, 35 to 37.

Minute barbel present; fins with lengthwise streaks, no shoulder mark. The figure indicates non-spinous anterior dorsal and anal rays—otherwise it might be Acanthorhodeus guichenoti.

Genus Acheilognathus Bleeker

Small, active, deep-bodied, compressed Asiatic carps allied to Rhodeus.

Origin of anal anterior to the vertical from the end of the dorsal base. Anal branched rays, 8 to 14; dorsal, 8 to 15. Pharyngeal teeth in one row, not serrate. Lateral line complete. Barbels present or absent; dorsal and anal with or without spinous rays.

No scaleless keel before anal fin. No serrate spinous ray in the anal. Upper jaw protractile. Gill membranes attached to the isthmus. Gill rakers not fused. Eye placed in or above the axis of the body.

KEY TO CHINESE Acheilognathus

1. Depth, 2.8 to 3; no barbel ... see 2
 Depth, about 2.5; barbel present ... see 3
2. Depth, about 3; dorsal, II, 9; anal, II, 7 gracilis
 Depth, about 2.8; dorsal, II, 11; anal, II, 9 luchowensis
3. Barbel much less than diameter of eye; dorsal and anal spines more or less developed; anal, about 11 (II, 9); scales, about 37 or 38 see 4
 Barbel about equal diameter of eye; dorsal and anal without developed spines; anal, about 13 or 14; scales, about 33 himantegus
4. Barbel less than $\frac{1}{2}$ diameter of eye ... barbatulus
 Barbel about $\frac{1}{2}$ diameter of eye, or more barbatus

Acheilognathus gracilis Nichols

Acheilognathus gracilis Nichols, 1926, Amer. Mus. Novitates, No. 214, p. 5, Fig. 5. Tungting Lake.

Preoccupied by Acanthorhodeus gracilis Regan, 1908, if Acanthorhodeus is not considered differentiable from Acheilognathus.

Acheilognathus gracilis gracilis Nichols

Figure 74

Acheilognathus gracilis Nichols, 1926, Amer. Mus. Novitates, No. 214, p. 5, Fig. 5. Tungting Lake.

Fig. 74. Acheilognathus gracilis gracilis Nichols. 44 mm. standard length.

Description:—Depth in length to base of caudal, 3; head, 3.8; eye in head, 2.5 (specimen of 44 mm. standard length). Dorsal rays, II, 9; anal, II, 7; scales, 35.

Acheilognathus gracilis luchowensis Wu

Acheilognathus gracilis luchowensis Wu, 1930, Sinensia, I, p. 29, Fig. 6. Luchow [in Szechwan].

Description:—Depth in length to base of caudal, 2.8; head, 4; eye in head, 3.5 (specimen 37 mm. total length). Dorsal rays, II, 11; anal, II, 9; scales, 37.

Remarks:—There is a possibility that this is Acanthorhodeus elongatus of Yunnan.
Acheilognathus barbatulus Günther

Locality of Material:—Specimens examined from Shantung; Anhwei; Yen-ping, Fukien; up to 80 mm. standard length.

Description:—Depth in length to base of caudal, 2.2 to 2.4; head, 3.8 to 4.3; eye in head, 3 to 3.4 (specimens of 47 to 53 mm. standard length). Dorsal rays, about 14 (II, 11 or 12); anal, about 11 (II, 8 to 10); scales, 34 to 37.

Acheilognathus barbatus Nichols

Figure 75

Acheilognathus barbatus Nichols, 1926, Amer. Mus. Novitates, No. 214, p. 6, Fig. 6. Anhwei.

Locality of Material:—Specimens examined from Anhwei; Hokou, Kiangsi (not typical); Chungan Hsien and Kienning, Fukien (not typical).

Description:—Depth in length to base of caudal, 2.3; head, 3.5; eye in head, 3 (specimen of 40 mm. standard length). Dorsal rays, II, 10; anal, II, 9; scales, 38.

Acheilognathus himantegus Günther

Locality of Material:—Specimens examined from Fukien.

Description:—Depth in length to base of caudal, 2.5; head, 4.5; eye in head, 2.6 (specimen of 47 mm. standard length). Dorsal rays, 11; anal, 13 to 14; scales, 33 to 34.
Genus Acanthorhodeus Bleeker

Type: Acanthorhodeus macropterus Bleeker.

Small or medium-sized, active, deep-bodied, compressed Asiatic carps allied to Rhodeus.

Origin of anal anterior to the vertical from the end of the dorsal base. Anal branched rays, 8 to 14; dorsal, 11 to 18. Pharyngeal teeth in one row, serrate. Lateral line complete. Barbels absent or minute. Dorsal and anal with spinous rays.

No scaleless keel before anal fin. No serrate, spinous ray in the anal. Upper jaw protractile. Gill membranes attached to the isthmus. Gill rakers not fused. Eye placed in or above the axis of the body.

Key to Chinese Acanthorhodeus

1. Barbel present .. see 2
 Barbel absent .. see 5
2. Dorsal with 17 or 18 branched rays; anal with 12 to 14
 Dorsal with about 15 branched rays; anal with about 11; depth, about 2; scales, about 36
 Dorsal with about 10 branched rays. Barbel longer than eye
 tonkinensis
 omeiensis
3. Depth, about 2.5; scales, 34 or 35
 Depth, less than 2.5; scales, more than 35
 guichenoti
4. Head, about 5 in standard length
 Head, about 4.4 in standard length
 macropterus
 dicaeus
5. Scales, about 30
 Scales, 35 to 38
 hypselonotus
6. Dorsal with 11 to 13 branched rays, anal with 10 to 12
 Dorsal with 16 to 17 branched rays, anal with 13 to 14
 taenianalis
7. Depth, about 2.5; scales, about 35
 Depth, 3 to 3.7; scales, 36 to 39
 atranalis
 elongatus

Acanthorhodeus macropterus Bleeker

Acanthorhodeus macropterus Bleeker, 1871, Verhandel. Akad. Wetensch., Amsterdam, Afd. Natuurk., XII, p. 40,
Pl. II, fig. 2. Yangtze?

Locality of Material:—Yangtze; Ningpo (fide Gee).

Description:—Depth in length to base of caudal, 2.5; head, about 5; eye in head, about 3 (specimen about 275 mm. long). Dorsal rays, III, 17 to 18; anal, III, 12 to 13; scales, 35.

Acanthorhodeus dicaeus Rutter

Description:—Depth in length to base of caudal, 2.5; head, 4.4. Dorsal rays, III, 17; anal, III, 13 to 14; scales, 34.
Acanthorhodeus omeiensis Shih and Tchang

Description:—Depth in length to base of caudal, 2.7; head, 4; eye in head, 3 (specimen 60 mm. standard length). Dorsal rays, II, 10; anal, III, 8; scales, 36. Barbel longer than eye, 3.2 in head (from fig.), spines in vertical fins strong; a slanting dark bar above origin of lateral line (in fig.).

Acanthorhodeus guichenoti Bleeker

Plate VI, figure 1

Locality of Material:—Specimens examined from Tungting Lake, Hunan; Anhwei.

Description:—Depth in length to base of caudal, 2.2; head, 3.6 (to 4.5 in larger specimens); eye in head, 3.5 (specimen of 73 mm. standard length). Dorsal rays, III, 17 or 18; anal, III, 13 or 14; scales, 36 to 40.

Remarks:—Called “p'ang-ch'ih-p'i” at Tungting Lake, where it seems to be one of the common small lake fish (C. H. Pope, field notes).

Acanthorhodeus tonkinensis Vaillant

Figure 76

Fig. 76. *Acanthorhodeus tonkinensis* Vaillant. 77 mm. without caudal.
Locality of Material:—Specimens examined from Hainan; Kiencing, Fukien; up to 77 mm. standard length.

Description:—Depth in length to base of caudal, 2 to 2.6; head, about 4; eye in head, about 3.5. Dorsal rays, III, 13 to 15; anal, III, 11 to 14; scales, about 36.

Remarks:—This species was found by Pope to be very abundant and generally distributed about Nodoa, Hainan.

Acanthorhodeus hypselonotus Bleeker

? *Acanthorhodeus ngowyangi* Tchang, 1930, Cyprinidés du Bassin du Yangtze, p. 115, Pl. iii, fig. 2.

Description:—Depth in length to base of caudal, about 1.7 or 1.8; head, about 4; eye in head, about 3 (specimen about 165 mm. long). Dorsal rays, III, 14 to 15; anal, III, 12 to 13; scales, about 30.

Acanthorhodeus atranalis Günther

Locality of Material:—Specimens examined from Tsinan, Shantung; Shao-hsing; up to 75 mm. standard length.

Description:—Depth in length to base of caudal, 2.6; head, 4.3; eye in head, 2.8 (specimen of 67 mm. standard length). Dorsal rays, II, 12 or 13; anal, II, 10 or 11; scales, 35. An unusually slender specimen from Tsinan of 42 mm. standard length has depth, 2.9.

Acanthorhodeus elongatus Regan

Description:—Depth in length to base of caudal, 3 to 3.7; head, 4 to 4.5; eye in head, 2.7 or 2.8 (specimens of 54 mm. standard length to 70 mm. long). Dorsal rays, II, 11 to 13; anal, II, 10 to 12; scales, 36 to 39.

Acanthorhodeus taenianalis Günther

Locality of Material:—Tungting Lake, Hunan (Kreyenberg and Pappenheim, 1909, p. 15).

Specimens examined from Shansi and Anhwei.
SYSTEMATIC ACCOUNT

Description:—Depth in length to base of caudal, 2.3; head, 3.6; eye in head, 2.6 (specimen of 50 mm. standard length). Dorsal rays, II, 16 to 17; anal, II, 12 to 14; scales, 35 to 36.

Genus Paracanthobrama Bleeker

Scales of moderate size; lateral line straight, in the center of peduncle. Dorsal fin short, with an osseous and smooth spine; opposite to the ventrals. Anal fin of moderate length (9 rays). Mouth small, subinferior, subhorizontal; lips thin. A pair of maxillary barbels. Pharyngeal teeth hooked, in 2 rows. China. (Description chiefly from Günther, 1868, p. 205.)

Anal base entirely behind that of dorsal. Vent and anal fin not bordered by a row of enlarged scales. No serrate spinous ray in the anal. Upper jaw protractile. Gill membranes attached to the isthmus. Gill rakers not fused. Eye placed in or above the axis of the body.

Paracanthobrama guichenoti Bleeker

Description:—Depth in length to base of caudal, about 4; head, 4.5; eye in head, 3.7 or 3.8. Dorsal rays, II, 8; anal, 9; scales, 46 to 48.

Genus Hemibarbus Bleeker

Small or moderate-sized carps, with thickish-lipped, inferior mouth, a single pair of barbels and a strong, smooth, sharp spine in the dorsal. Common in China, where it is represented by three or four rather ill-defined species.

Lower jaw not sharpened or covered by cartilage. Intestinal tract short. Pharyngeal teeth in 3 (usually, sometimes 2) rows. Anal with 5 or 6 branched rays (exceptionally 7).

Vent and anal fin not bordered by a row of enlarged scales. Anal base well behind that of dorsal. No scaleless keel before the anal fin. No serrate, spinous ray in the anal. Upper jaw protractile. Gill membranes attached to the isthmus. Gill rakers not fused. Eye placed above the axis of the body.

Key to Chinese Hemibarbus

1. Vent well in advance of anal .. *dissimilis*
 Vent immediately before anal .. see 2
2. Scales, about 47 or 48.
 Scales, about 42. Interorbital about equal eye. Back, dorsal, and caudal spotted
3. A row of dark marks along the side, fins essentially immaculate; interorbital
 about equal to eye.
 Back and sides irregularly blotched, dorsal and caudal sharply spotted with
 black; interorbital decidedly greater than eye (in a specimen of 135 mm.
 standard length)

Hemibarbus dissimilis Bleeker

Description:—Depth in length to base of caudal, 3.3 to 3.4; head, about 4.8;
 eye in head, about 4 (specimens about 375 to 415 mm. long). Dorsal rays, II, 7 or
 8; anal, 8 or 9; scales, about 48.

Hemibarbus labeo (Pallas)

Figure 77

Cyprinus labeo Pallas, 1776, Reise d. russischen Reiches, III, pp. 207, 703. Upper Amur River.

Hemibarbus longianalis Kimura, 1934, Jour. Shanghai Sci. Inst., Sec. 3, I, p. 123, Pl. iv, fig. 1. Suining and
 Howchwan, Szechwan. Scales, 44 to 45.

Fig. 77. *Hemibarbus labeo* (Pallas). 131 mm. without caudal.

Locality of Material:—Chefoo (*fide* Gee).
 Specimens examined from Chihli; Tungting Lake, Hunan; Anhwei; Chungan
 Hsien and Yenping, Fukien; Hainan; up to 155 mm. standard length.

 Description:—Depth in length to base of caudal, 4.3; head, 3.3; eye in head,
 4 (specimen 133 mm. standard length). Dorsal rays, II, 7; anal, about 8; scales,
 about 47.

 Remarks:—In this species, length (height) of anal is a function of size, per-
 haps complicated with sex. Upon examining specimens from Hainan, I found one
 of about 250 mm. with the anal quite as long as described for *longianalis*. Of two
 measuring about 150 mm., one has the anal not quite so long, the other short.
SYSTEMATIC ACCOUNT

Hemibarbus maculatus Bleeker

Plate VI, figure 3

Locality of Material:—Specimens examined from Tungting Lake, Hunan.

Description:—Depth in length to base of caudal, 4.1; head, 3.9; eye in head, 4 (specimen 135 mm. standard length). Dorsal rays, II, 7 or 8; anal, 8 or 9; scales, about 48.

Remarks:—Called "chi-ha-yü" at Tungting Lake, not uncommon, to be found at any time for sale on the Yochow streets, but in small numbers. The color of this fish is most interesting. When in water and viewed from directly above, its profuse black spots conceal its scales so perfectly by their irregular arrangement that it presents the appearance of a long, slender, scaleless fish and reminds one of the catfish or mudfish. Take it out of water, however, and its appearance changes as if by magic; you have a scaled, silver fish, with a few small black spots scattered over its back and upper sides; the largest black spots, seen from above, have disappeared. The unusually long, tapering spine of the dorsal is noticeable, and when the fish's body is bent in the act of turning, this spine sticks off to one side in a curious fashion (C. H. Pope, field notes).

Hemibarbus shingtsonensis Shaw

Description:—Depth in length to base of caudal, 3.8; head, 3.6; eye in head, 3.5 (specimen 100 mm. standard length). Dorsal rays, II, 8; anal, 9; scales, 42.

This is close to if not indistinguishable from Acanthogobio longirostris Regan (1908.4, p. 60, Pl. iii, fig. 3) from Chong-ju, Korea. Dorsal, II, 7; anal, 8; scales, 43; dorsal origin decidedly nearer end of snout than base of caudal, versus almost equidistant. Depth, 4.6 or 4.7; head, 3.4; eye, 3.8 (specimen 95 mm. total length). For the present we may consider that the two are distinct and refer Chinese references for H. longirostris (Regan) to H. shingtsonensis Shaw.

Genus Acanthogobio Herzenstein

This genus is close to and sometimes synonymized with *Hemibarbus*, from which it may be distinguished by a scaleless strip on the back.

Acanthogobio guentheri Herzenstein

Locality of Material: —Southern Kansu (Günther, 1896, p. 215).

Description: —Depth in length to base of caudal, 4; eye in head, 4.5 (specimen of 200 mm. standard length). Dorsal rays, II, 8; anal, 8; scales, 45.

Genus Leucogobio Günther

Small, rather short-bodied carps with a single pair of small barbels (sometimes absent). Breast scaled. Mouth terminal or subterminal. Closely allied to *Gobio*. One species (subgenus *Paraleucogobio*) has the last simple dorsal ray spinous except at the tip. A few species locally common in northern and western China.

Vent about midway between bases of ventral and anal fins or nearer the anal. Lips thin. Ventral origin under that of the dorsal. Pharyngeal teeth in 2 rows. Lower jaw never sharp-edged nor covered by cartilaginous or bony integument. Anal fin with 5 or 6 branched rays (exceptionally 7).

Vent and anal fin not bordered by a row of enlarged scales. Origin of anal behind posterior end of dorsal. No scaleless keel before the anal fin. No serrate spinous ray in the anal. Upper jaw protractile. Gill membranes attached to the isthmus. Gill rakers not fused. Eye placed in or above the axis of the body.

Key to Chinese Leucogobio

1. Most of last simple dorsal ray stiffened, spinous (*Paraleucogobio*). Barbel about $\frac{1}{2}$ diameter of eye, or less .. notacanthus

Dorsal without spinous rays (*Leucogobio*) .. see 2

2. Barbels about $\frac{3}{4}$ diameter of eye; scales, about 36 .. taeniellus

Barbels about $\frac{1}{2}$ diameter of eye .. see 3

Barbels minute (or absent) .. see 5

Scales, 39 or 40 .. taeniatus

Depth, about 3.7 to 3.9 (specimens of 60 to 86 mm. standard length) see 4

4. Dark on back and sides, differentiated into a broader central and several narrower stripes above and below by pale streaks between; a blackish spot on front of dorsal continued across the fin as a faint dark shade. Scales, 39 or 40.

Paired fins longer, pectoral about 1.3 and ventral 1.5 in head polyaenia

Scales, 36 to 38. Paired fins shorter, pectoral, 1.4 or 1.5, ventral, 1.6 or 1.7 in head .. tienmusanensis
SYSTEMATIC ACCOUNT

5. Dorsal origin equidistant from end of snout and base of caudal. Barbels minute, present. Scales, 36 to 39 tsinanensis
Dorsal origin equidistant from end of snout and base of caudal; barbels imperfect or absent; depth and head, less than 4 in length (specimen about 70 mm. long); scales, 38 to 42 imberbis
Dorsal origin nearer end of snout than base of caudal; depth and head, 4 or more (specimen about 70 mm. long); scales, about 39 herzensteini

Subgenus Paraleucogobio Berg

Leucogobio notacanthus (Berg)

Locality of Material:—Specimens examined from Chihli.

Description:—Depth in length to base of caudal, 3.6; head, 3.6; eye in head, 4 (specimen of 73 mm. standard length). Dorsal rays, 9 (II, 7); anal, 8; scales, 34 to 40.

Subgenus Leucogobio Günther

Leucogobio taeniellus Nichols

Figure 78

Description:—Depth in length to base of caudal, 3.7; head, 3.8; eye in head, 3.5 (specimen 55 mm. standard length). Dorsal rays, 9; anal, 8; scales, 36.

Leucogobio taeniatus Günther

Description:—Depth in length to base of caudal, 4; head, 4; eye in head, 4.5 (specimen 105 mm. long). Dorsal rays, 10; anal, 8; scales, 40.

Leucogobio polytaenia Nichols

Leucogobio polytaenia polytaenia Nichols

Figure 79

![Image of Leucogobio polytaenia polytaenia](Am_Mus_No.8421)

Fig. 79. Leucogobio polytaenia polytaenia Nichols. Type. 76 mm. standard length.

Description:—Depth in length to base of caudal, 3.7; head, 3.7; eye in head, 4 (specimen of 76 mm. standard length). Dorsal rays, 9 or 10; anal, 8; scales, 39.

Leucogobio polytaenia tienmusanensis Chu

Leucogobio tienmusanensis Chu, 1931, China Jour., XV, p. 37, Fig. 10. Tien-mu-san, Chekiang.

Description:—Depth in length to base of caudal, 3.7 to 3.9; head, 4; eye in head, 3.7 to 3.9 (specimens 60 to 86 mm. standard length). Dorsal rays, 9; anal, 8; scales, 36 to 38.

Remarks:—Perhaps indistinguishable from *L. p. polytaenia*, but apparently with shorter paired fins.

Leucogobio polytaenia tsinanensis Mori

Figure 80

Leucogobio polytaenia microbarbus Nichols, 1929, Amer. Mus. Novitates, No. 377, p. 1, Fig. 1. Tsinan, Shantung.

Locality of Material:—Specimens examined from Tsinan, Shantung; and (provisionally so identified) from Hokou, Kiangsi.
Description:—Depth in length to base of caudal, 3.8 to 4.2; head, 3.4 to 3.8; eye in head, 3.8 to 4.8 (specimens 54 to 86 mm. standard length). Dorsal rays, 9; anal, 8; scales, 36 to 39.

Am. Mus. No. 9651.

Fig. 80. Leucogobio polytaenia tsinanensis Mori. Type of Leucogobio polytaenia microbarbus Nichols.

Leucogobio imberbis Nichols

Figure 81

Am. Mus. No. 8439

Fig. 81. Leucogobio imberbis Nichols. Type. 68 mm. standard length.

Locality of Material:—Specimens examined from Anhwei and Shantung.

Description:—Depth in length to base of caudal, 3.7; head, 3.4; eye in head, 4.4 to 4.6 (specimens 68 to 75 mm. standard length). Dorsal rays, 9; anal, 8; scales, 38 to 42.

Leucogobio herzensteini Günther

Description:—Depth in length to base of caudal, 4; head, 4.5; eye in head, 4.5 (specimen 70 mm. long). Dorsal rays, 10; anal, 8; scales, 39.
Genus Gnathopogon Bleeker

More or less elongate and fusiform, active, soft-finned, large-eyed minnows with a pair of rather long and slender terminal maxillary barbels. Breast scaled. Mouth slightly inferior. Closely allied to Gobio. A few allied species in China and adjacent islands.

Vent about midway between bases of ventral and anal, or nearer the anal. Lips thin. Ventral origin under that of the dorsal. Pharyngeal teeth in 2 rows. Lower jaw never sharp-edged nor covered by cartilaginous or bony integument. Anal fin with 5 or 6 branched rays (exceptionally 7).

Vent and anal fin not bordered by a row of enlarged scales. Anal base well behind that of dorsal. No scaleless keel before the anal fin. Upper jaw protractile. Gill membranes attached to the isthmus. Gill rakers not fused. Eye placed in or above the axis of the body.

Gnathopogon is largely a genus of convenience for several very similar free swimming minnows, closely related to the variable genus Gobio. They are probably even more closely related to Leucogobio, though divergent members of these two genera are rather unlike. The type of Gnathopogon is unfortunately somewhat intermediate, but that of Sinigobio, also in some respects intermediate and aberrant, is no better selection.

Key to Chinese Gnathopogon

1. Depth (in standard length), 3.4 to 4; barbel (in head), 6 or more; scales, 35 to 38 ... intermedius
 Depth, more than 4; barbel longer, 5 or less (except in G. sihuensis)

2. Color pale; lower part of opercle white with a narrow blackish margin above;
 an ill-defined plumbeous streak in center of peduncle; smaller specimens
 with about 5 or 6 dark linear marks posteriorly, just above lateral line. Barbel
 in head, about 3; scales, about 38 ... argentatus
 A series of small dark spots above the lateral line (frequently lacking in larger
 individuals) and a faint plumbeous streak in the center of peduncle. Barbel
 in head, 3 to 5 (average, 3.7); scales, 34 to 37
 Resembles G. a. punctatus to which it is closely allied but with a short barbel
 (more than 6 in head), and more gobiod form sihuensis
 Color pale; some black markings along base of dorsal, particularly a black
 spot at its origin; a faint dark stripe in center of peduncle, rising above lateral
 line over ventral; a short dark stripe behind the vent; a faint dark shade
 at the base of each caudal lobe; smaller specimens with scales of back slightly
 outlined in dark; peduncular stripe bolder; marking along lateral line as in
 G. walterstorfi sometimes faintly indicated. The spot at the dorsal origin is
 constant. Barbel in head, about 3; scales, about 36. Hainan atromaculatus
 Close to G. atromaculatus. Barbel in head, about 4; scales, 37 or 38. Shantung
 similis
Color pale; top of head and snout darker; lateral line splitting a row of small dark spots at the tips of the scales; sides above lateral line with less marked, irregular, small, dark spots, irregularly arranged in 2 or 3 horizontal rows.

Gnathopogon intermedius Nichols

Figure 82

Gnathopogon intermedius Nichols, 1929, Amer. Mus. Novitates, No. 377, p. 3, Fig. 2. Tainan, Shantung.

Am. Mus. No. 9652.

Fig. 82. Gnathopogon intermedius Nichols. Type. 65 mm. standard length.

Description:—Depth in length to base of caudal, 3.4 to 4; head, 3.3 to 3.8; eye in head, 3.5 to 4 (specimens 52 to 69 mm. standard length). Dorsal rays, 9; anal, 8; scales, 35 to 38.

Gnathopogon argentatus (Sauvage and Dabry de Thiersant)

Gnathopogon argentatus argentatus (Sauvage and Dabry de Thiersant)

Locality of Material:—Specimens examined from Tungting Lake, Hunan.

Description:—Depth in length to base of caudal, 4.6; head, 3.7; eye in head, 2.9 (specimen of 69 mm. standard length). Dorsal rays, 10; anal, 8; scales, about 38.

Gnathopogon argentatus punctatus Nichols

Figure 83

Locality of Material:—Specimens examined from Foochow, Yenping, and Yungtai Hsien, Fukien.

Description:—Depth in length to base of caudal, 4.3 to 5 (average, 4.7); head, 3.5 to 4.2; eye in head, 2.7 to 3.3 (average, 3); barbel, 3 to 5 (average, 3.7),
in 21 specimens 43 to 76 mm. standard length. Dorsal rays, 9 (rarely 10); anal, 8; scales, 34 to 37.

Am. Mus. No 8423

Fig. 83. Gnathopogon argentatus punctatus Nichols. Type. 46 mm. standard length.

Remarks:—The several species of this genus here recognized are closely interrelated, and G. punctatus seems as distinct as the others, but specimens from Kienning, Fukien, appear to be intermediates between it and G. argentatus. Ten such from 47 to 75 mm. standard length have depth, 4.3 to 5 (average, 4.65); head, 3.7 to 4.2; eye, 3 to 3.5 (average, 3.3); barbel, 3.2 to 4 (average, 3.5); scales, 37 to 40; colors sometimes more like one, sometimes more like the other of these two forms.

Gnathopogon sihuensis (Chu)

Gobio sihuensis Chu, 1932, Fishes of the West Lake, p. 22, Figs. 11, 23. West Lake.

Description:—Depth in length to base of caudal, 4.3 to 4.5; head, 4 to 4.1; eye in head, 3.1 to 3.4; barbel in eye, more than 2 (specimens up to 70 mm. standard length). Dorsal rays, 9; anal, 8; scales, 36 or 37.

Gnathopogon atromaculatus Nichols and Pope

Figure 84

Am. Mus. No. 8442

Fig. 84. Gnathopogon atromaculatus Nichols and Pope. Type. 54 mm. standard length.
Description:—Depth in length to base of caudal, 4.2; head, 3.5; eye in head, 2.8 (specimen of 54 mm. standard length). Dorsal rays, 9; anal, 8; scales, 36.

Gnathopogon similis Nichols

Figure 85

Gnathopogon similis Nichols, 1929, Amer. Mus. Novitates, No. 377, p. 4, Fig. 3. Tsinan, Shantung.

Gnathopogon woterstorffi (Regan)

Locality of Material:—Specimens examined from Chihli.

Description:—Depth in length to base of caudal, 4.5; head, 3.7; eye in head, 3 (specimen 58 mm. standard length). Dorsal rays, 9; anal, 8; scales, 37 or 38.

Genus Gobio Cuvier

Small, soft-finned, more or less bottom living carps. Usually with a single pair of moderate barbels and the mouth more or less inferior. Frequently a scaleless area on the breast. An Eurasian genus abundant in individuals and represented by a number of species, several in northern China, the more specialized approaching the genera Coreius, Rhinogobio, or Saurogobio.

Vent about midway between bases of ventral and anal fins, or nearer the anal. Lips thin, the lower lip never free behind across the chin. Ventral origin under that of the dorsal. Pharyngeal teeth in 2 rows. Lower jaw never sharp-edged nor covered by cartilaginous or bony integument. Anal fin with 5 or 6 branched rays (exceptionally 7).
Vent and anal fin not bordered by a row of enlarged scales. Anal base well behind that of dorsal. No scaleless keel before the anal fin. Upper jaw protractile. Gill membranes attached to the isthmus. Gill rakers not fused. Eye placed in or above the axis of the body.

Key to Chinese Gobio

2. Scales, 40 to 45.
 - Scales, 48 to 52; longest dorsal ray equal to or greater than length of head; barbel small. Scales present on breast forward to a line between the gill clefts.
 - Scales, about 48.

4. Barbel decidedly less than \(\frac{3}{4} \) length of head.
 - Barbel about \(\frac{1}{2} \) length of head, or more.

5. Pectoral not passing ventral origin.
 - Pectoral falciform, passing ventral origin.

6. Breast with scales; scales, about 45; barbel less than diameter of eye.
 - Breast scaleless; scales, about 40 to 41.

7. Barbel greater than diameter of eye; pectoral reaching about \(\frac{3}{4} \) the distance to ventral. Barbel less than diameter of eye; pectoral reaching almost to ventral.

8. Pectoral rounded, not nearly to ventral; barbel, 2.6 to 3.1 in head; dark blotches along the side.
 - Pectoral not reaching ventral; barbel, 2.4 to 2.6 in head; a faint dark longitudinal band along middle of side.
 - Pectoral falcate, passing ventral origin; barbel very long, about 2.3 in head, peduncle with a dark longitudinal shade.

Gobio nitens Günther

Description:—Depth in length to base of caudal, 5; head, 4; eye in head, 3.5 (specimen about 65 mm. long). Dorsal rays, 10; anal, 8; scales, 35.

Gobio nummifer Boulenger

Description:—Depth in length to base of caudal, about 4.7; head, 3.7 or 3.8; eye in head, 3.7 or 3.8 (specimen 102 mm. long). Dorsal rays, 9; anal, 8; scales, 45.

Gobio soldatovi Berg

Gobio gobio var. *soldatovi* Berg, 1914, Faune Russie, Poissons, III (2), p. 461, Fig. 63. Amur River.
SYSTEMATIC ACCOUNT

Gobio soldatovi soldatovi Berg

Gobio gobio var. *soldatovi* Berg, 1914, Faune Russie, Poissons, III (2), p. 461, Fig. 63. Amur River.

Locality of Material:—Specimens examined from Chihli and Anhwei.

Description:—Depth in length to base of caudal, 4.6; head, 3.4; eye in head, 4 (specimen of 76 mm. standard length). Dorsal rays, about 9; anal, 8; scales, about 40.

Gobio soldatovi minulus Nichols

Description:—Depth in length to base of caudal, 4.6; head, 3.5; eye in head, 3.8 (specimen of 57 mm. standard length). Dorsal rays, 9 or 10; anal, 8; scales, 41.

Gobio vaillanti (Sauvage)

Description:—Head in length to base of caudal, 3.5. Dorsal rays, 11; anal, 8; scales, 40.

Gobio rivuloides Nichols

Figure 86

Description:—Depth in length to base of caudal, 5.5; head, 3.7; eye in head, 6 (specimen of 133 mm. standard length). Dorsal rays, 9 or 10; anal, 9; scales, 41 or 42.

Fig. 86. Gobio rivuloides Nichols. 126 mm. standard length.
Gobio coriparoides Nichols

Gobio coriparoides coriparoides Nichols

Fig. 87

Gobio coriparoides coriparoides Nichols. Type. 77 mm. standard length.

Description:—Depth in length to base of caudal, 4.6; head, 3.5; eye in head, 4.5 (specimen of 77 mm. standard length). Dorsal rays, 9 or 10; anal, 8; scales, 42.

Gobio coriparoides tenuicorpus Mori

Description:—Depth in length to base of caudal, 5.4 to 6.1; head, 4 to 4.1; eye in head, 4.7 to 4.9 (specimens 80 to 108 mm. total length). Dorsal rays, 9; anal, 7 to 8; scales, 42 to 43.

Gobio longipinnis Nichols

Gobio longipinnis longipinnis Nichols

Description:—Depth in length to base of caudal, 4.7; head, 3.9; eye in head, 7 (specimen of 95 mm. standard length). Dorsal rays, 10; anal, 9; scales, 52.
Fig. 88. *Gobio longipinnis longipinnis* Nichols. Type. 95 mm. standard length.

Gobio longipinnis roulei (Tchang)

Description:—Depth in length to base of caudal, 4.4; head, 4.2; eye in head, 6 (specimen 195 mm. long). Dorsal rays, 9; anal, 8; scales, 48.

Genus Megagobio Kessler

A doubtful genus with snout much produced and conical, mouth inferior, transverse, eye very small, and ventrals somewhat behind dorsal. It resembles *Rhinogobio* and *Gobio longipinnis* and is probably most nearly related to this last.

Megagobio nasutus Kessler

Locality of Material:—Tsinan, Shantung (Mori, 1928, p. 65).

Description:—Depth in length, 6; head, 4.3; eye in head, 8.5 (specimen 200 mm. long). Dorsal, 10; anal, 8; scales, 48.

Genus Coreius Jordan and Starks

Medium-sized, soft-finned, bottom living carps related to *Gobio*, with a single pair of exceptionally long barbels, small eye a little before the center of the head, and long compressed peduncle.

Vent about midway between bases of ventral and anal fins, or nearer the anal. Lips rather thick, more or less confined to the sides of the lower jaw, in no case forming a free fold across it. Mouth rather small, inferior, transverse, horizontal, curved. Ventral fins placed under the dorsal. Anal with about 6 branched rays, its

Lower jaw not covered by cartilaginous or bony integument. Vent and anal fin not bordered by a row of enlarged scales. No scaleless keel before anal fin. Gill membranes rather broadly attached to the isthmus. Gill rakers not fused. Eye placed above the axis of the body.

Key to Chinese *Coreius*

1. Vent midway between ventral and anal; origin of dorsal midway between end of snout and front of anal .. see 2
 Vent much nearer anal origin than ventral axil; origin of dorsal midway between end of snout and middle of anal base, or a little farther back see 3

2. Profile not concave at the nape; barbel in head, about 1.7; pectoral not quite reaching ventral. More or less well-defined streaks following the rows of scales Profile concave at the nape; barbel in head, 1.2 or 1.3; pectoral passing front of ventral .. cetopsis

3. Interorbital in head, 3 (specimen of 240 mm. standard length); dorsal origin equidistant from end of snout and middle of anal base; back elevated so that profile is slightly concave at the nape septentrionalis
 Interorbital in head, 2.6 (specimen of 74 mm. standard length); dorsal origin equidistant from end of snout and middle of last anal ray; profile not concave at nape .. styani

Coreius cetopsis (Kner)

Labeo cetopsis Kner, 1867, Reise “Novara,” Zool., I, Fische, p. 351, Pl. xv, fig. 2. Shanghai.

Description.—Depth in length to base of caudal, about 5; head, 5; eye in head, about 5 (specimen about 165 mm. long). Dorsal rays, 9; anal, 8; scales, 55.

Coreius zeni Tchang

Coreius zeni Tchang, 1930, Bull. Soc. Zool. France, LV, p. 49, Fig. 3. Szechwan.

Description.—Depth in length to base of caudal, 4.5; head, 4.7 or 4.8; eye in head, 13 (specimen of 350 mm. total length). Dorsal rays, 10; anal, 9; scales, 57.

Coreius septentrionalis (Nichols)

Figure 89

Locality of Material.—Specimens examined from Paotou, Mongolia.

Description.—Depth in length to base of caudal, 4.5; head, 4.8; eye in head, 8.6 (specimen of 240 mm. standard length). Dorsal rays, 9; anal, 8; scales, 55.
Fig. 89. Coreius septentrionalis (Nichols). Type. 240 mm. standard length.

Coreius styani (Günther)

Zezea rathbuni Jordan and Seale, 1905, Proc. U. S. Nat. Mus., XXIX, p. 518, Fig. 2. Shanghai.

-Coreius longibarbus_ Mori, 1928, Japanese Jour. Zool., II, p. 65, Pl. 11, Fig. 2. Tsinan, Shantung.

Locality of Material:—Specimens examined from Tungting Lake, Hunan.

Description:—Depth in length to base of caudal, 5; head, 4.1; eye in head, 6 (specimen of 74 mm. standard length). Dorsal rays, 9 or 10; anal, 8 or 9; scales, 52 to 57.

Remarks:—Called “huang-p’i-tiao-tzu” at Tungting Lake, where it was found in the boats of the shrimp fishermen. It is quite common and could be found at almost any time (C. H. Pope, field notes).

Genus _Agenigobio_ Sauvage

An elongate, bottom living carp from Lake Po-Yang, Kiangsi, China, with the appearance of _Saurogobio_, without barbels, and with the vent placed at the anal origin.

Gill opening wide, extending to under the front margin of the eye. Breast completely scaled. Dorsal and anal without spinous rays, the former with 9 articulated, the latter with more than 7 branched rays. Dorsal opposite the ventrals. Lower jaw with a symphysial knob. Scales, about 75. Pharyngeal teeth in 2 rows, long and pointed.

Vent and anal fin not bordered by a row of enlarged scales. Anal base well behind that of dorsal. No scaleless keel before anal fin. Gill membranes attached to the isthmus. Gill rakers not fused. Eye placed above the axis of the body.
Agenigobio halsoueti Sauvage

Description:—Depth in length, about 7.7; head, 6; eye a little shorter than snout. Dorsal rays, 12; anal, 11; scales, 75.

Genus Rhinogobio Bleeker

Elongate, soft-finned, bottom living carps, with a single pair of moderate barbels and the mouth inferior. Snout long, more or less soft at the tip; scales present on breast, though sometimes small and embedded; the lower lip never free behind across the chin. A Chinese specialization of *Gobio*, not uncommon, two or three poorly differentiated species.

Vent slightly nearer anal than ventrals, or nearer the ventrals; ventral origin slightly behind that of dorsal. Anal fin with 5 or 6 branched rays, exceptionally 7. Scales, 50, or slightly more.

Lower jaw never covered by cartilaginous or bony integument. Vent and anal fin not bordered by a row of enlarged scales. Anal base well behind that of dorsal. No scaleless keel before the anal fin. Upper jaw protractile. Gill membranes broadly joined to the isthmus. Gill rakers not fused. Eye placed above the axis of the body.

Key to Chinese Rhinogobio

Depth in standard length, less than 6; eye in head, 5, more or less; interorbital, 3.6 to 3.8 (specimens 110 to 125 mm. standard length). Scales, about 50 *cylindricus*

Depth in standard length, 6 to 7; eye in head, 3.4 to 4.5; interorbital, 4 to 4.4 (specimens 77 to 200 mm. standard length). Scales, 51 to 53 *tytus*

Depth in standard length, about 9; eye in head, 4.6 or 4.7; interorbital, little more than 3 (specimen 250 mm. total length). Scales, about 50 *dereimsi*

Rhinogobio cylindricus Günther

Locality of Material:—Specimens examined from Tungting Lake, Hunan.

Description:—Depth in length to base of caudal, 5.3; head, 4; eye in head, 5.5 (specimen of 111 mm. standard length). Dorsal rays, 9; anal, 8; scales, about 50.

Remarks:—Called "chin-ch’iu” at Tungting Lake, where it was quite common in the boats of the shrimp fishermen (C. H. Pope, field notes).
Rhinogobio typus Bleeker

Locality of Material:—Specimens examined from Tungting Lake, Hunan; Yenping, Fukien.

Description:—Depth in length to base of caudal, 6 to 6.8; head, 3.7 to 4.3; eye in head, 3.4 to 4.4 (specimens of 77 to 105 mm. standard length). Dorsal rays, 9 or 10; anal, 8; scales, 51 to 53.

Rhinogobio dereimisi Tchang

Rhinogobio dereimisi Tchang, 1930, Cyprinidés du Bassin du Yangtze, p. 96, Pl. II, fig. 4. Tchoung-King [Chung-king].

Description:—Depth in length to base of caudal, 9; head, 5; eye in head, 4.6 or 4.7 (specimen 250 mm. total length). Dorsal rays, 9; anal, 8; scales, 50.

Genus Abbottina Jordan and Fowler

In obvious technical characters this genus resembles Pseudogobio, except that the dorsal is high and convex in the adult. Dorsal and caudal are sharply barred, with a black spot in center of caudal base; sides with regular rows of dark specks. Depth in length, 4 or 5 (specimens of 60 or 70 mm. standard length); scales, about 35.

It comprises abundant small fish, generally distributed in northeast and central China, probably there separable into two or three races or representative species.

Key to Chinese Abbottina

Lower lip with a pair of narrow ended central lobes. Depth, 4.5; interorbital in head, 3.4 to 3.5 (at 65 mm. standard length) ... rivularis

Lower lip with a single central lobe, cleft behind in the middle. Averaging somewhat more slender than the above; interorbital in head, about 3.8 (at 75 mm. standard length) sinensis

Abbottina rivularis (Basilewski)

Locality of Material:—Specimens examined from Chihli, Shansi, and (not typical) from Shantung.

Description:—Depth in length to base of caudal, 4.5; head, 3.4; eye in head, 4.5 (specimen of 65 mm. standard length). Dorsal rays, 8 to 10; anal, 7 or 8; scales, about 36.
Abbottina sinensis (Kner)

Tylognathus sinensis Kner, 1867, Reise "Novara," Zool., I, Fische, p. 354, Pl. xv, fig. 5. Shanghai.

Locality of Material:—Specimens examined from Tungting Lake, Hunan; Shaohsing; Anhwei; Hokou, Kiangsi; Fukien.

Description:—Depth in length to base of caudal, 5; head, 3.6; eye in head, 5 (specimen of 74 mm. standard length). Dorsal rays, 9 or 10; anal, 7 or 8; scales, about 35.

Genus Pseudogobio Bleeker

Small, more or less bottom living, sucker-like carps with the mouth inferior, lips fleshy, the lower lip free behind across the chin. Vent nearer base of ventrals than anal. A single pair of barbels.

Pharyngeal teeth in 1 or 2 rows. Predorsal distance greater than postdorsal. Origin of ventrals behind vertical from origin of dorsal. Anal fin with 5 or 6 branched rays (exceptionally 7). Dorsal and anal without spines.

Dorsal not enlarged, with straight or concave margin. Fins not sharply barred, or sides with regular rows of dark specks. Depth, usually more than 4.5; scales, 34 to 44.

Fishes of this genus are generally uncommon or local, differentiable species occurring in different localities.

Key to Chinese Pseudogobio

1. Barbel small; scales, 42 or less .. see 2
Barbel reaching beyond eye; scales, 42 to 44

2. Scales, 34; depth, 6.4 ... filifer
Scales, 35; depth, 4.9 ... kachekensis
Scales, 35; depth, 5.5; snout in head, 1.8 .. kukiensis
Scales, 36; depth, 5.4. Sharply bicolor, dark above, pale below hsinlungshanensis
Scales, 36; depth, 5.9; interorbital, 3 to 3.6 bicolor
Scales, 37; depth, 4.5; eye, 3.9 .. shangtungensis
Scales, 38; depth, 4.5; eye, 3 .. obtusirostris
Scales, 38; depth, 6.5 ... chaoi
Scales, 39; depth, 5; interorbital, 2.7 ... suifuensis
Scales, 39; depth, 6 ... chinssuensis
tungtingensis
Scales, 39 to 41; depth, 5; interorbital, 4.4 (at 112 mm. standard length); edge of lower jaw rounded, horny, and sharpened exigus

Scales, 40 to 43; depth, 4.8 to 7.5 .. see 3

3. Depth, 4.8 (at 90 mm. standard length). Lower lip with 2 smooth pads larger than the other papillae (as in allied species examined except papillabrus) ... labeoides

Depth, 5 to 5.9; barbel in eye, 1 to 1.3 (specimen 101 to 144 mm. standard length) ... anderssoni

Depth, 6.5 to 7.5 (at 45 to 54 mm. standard length); 5.4 to 6.5 (at 57 to 77 mm.); 4.9 to 5.6; barbel in eye, 1.5 to 1.7 (specimens 111 to 142 mm. standard length). Lower lip evenly papillose with a cross furrow ..

Depth, 5.5; snout long, 1.7 in head (specimen 155 mm. total length); barbel longer than eye; lips uniformly papillose longirostris

Pseudogobio kachekensis Oshima

Description:—Depth in length, 6.4; head, 4.2 or 4.3; eye in head, 3 (specimen 62 mm. long). Dorsal rays, 10; anal, 8; scales, 34.

Pseudogobio fukiensis Nichols

Figure 90

Pseudogobio fukiensis Nichols, 1926, Amer. Mus. Novitates, No. 224, p. 5, Fig. 4. Fukien.
Pseudogobio kiatingensis Wu, 1930, Sinensia, I, p. 70, Fig. 1. Kiating.

Locality of Material:—Specimens examined from Kienning and Yenping, Fukien; Hokou, Kiangsi; up to 78 mm. standard length.

Description:—Depth in length to base of caudal, 4.7 to 5.4; head, 4 to 4.5; eye in head, 3 to 3.2 (specimens 49 to 78 mm. standard length). Dorsal rays, 9 or 10; anal, 7 or 8; scales, 34 to 36.
Pseudogobio bicolor Nichols

Figure 91

Pseudogobio bicolor Nichols, 1930, Amer. Mus. Novitates, No. 440, p. 1, Fig. 1. Hokou, northeastern Kiangsi.

![Am.Mus.9678](image)

Fig. 91. Pseudogobio bicolor Nichols. Type. 60 mm. standard length.

Description:—Depth in length to base of caudal, 5.4; head, 4.5; eye in head, 3 (specimen 60 mm. standard length). Dorsal rays, 9; anal, 7; scales, 36.

Pseudogobio chinssuensis Nichols

Pseudogobio chinssuensis Nichols, 1926, Amer. Mus. Novitates, No. 214, p. 3, Fig. 3. Shansi.

Races of *P. chinssuensis* have the snout blunt, its profile rounding down abruptly and steeply, and a backwardly pointed, more or less heart-shaped pad in the middle of the chin.

Pseudogobio chinssuensis chinssuensis Nichols

Figure 92

Pseudogobio chinssuensis Nichols, 1926, Amer. Mus. Novitates, No. 214, p. 3, Fig. 3. Shansi.

!image

Fig. 92. Pseudogobio chinssuensis chinssuensis Nichols. Type. 50 mm. standard length.

Description:—Depth in length to base of caudal, 5; head, 4.7; eye in head, 4 (specimen of 50 mm. standard length). Dorsal rays, 9; anal, 8; scales, 39.
Pseudogobio chinssuensis shangtungensis Mori

Locality of Material:—Specimens examined from Shantung; up to 43 mm. standard length.

Description:—Depth in length to base of caudal, 5 to 5.9; head, 4.2 to 4.8; eye in head, 3.1 to 4 (specimens 36 mm. standard length to 50 mm. long). Dorsal rays, 9; anal, 8; scales, 36 to 39.

Pseudogobio chinssuensis hsinglungshanensis (Mori)

Description:—Depth in length to base of caudal, 5.5; head, 4.5; eye in head, 3.8 (specimen 54 mm. total length). Dorsal rays, 9; anal, 8; scales, 35.

Pseudogobio obtusirostris Wu and Wang

Description:—Depth in length to base of caudal, 4.5; head, 4; eye in head, 3.9; interorbital, 2.9; barbel slightly shorter than eye (specimen 75 mm. total length). Dorsal rays, 9; anal, 7; scales, 37.

Pseudogobio chaoi Evermann and Shaw

Description:—Depth in length, 4.5; head, 3.5; eye in head, 3 (specimen 97 mm. long). Dorsal rays, 9; anal, 7; scales, 38.

Pseudogobio suifuensis Wu

Pseudogobio suifuensis Wu, 1930, Sinensia, I, p. 71, Fig. 2. Suifu, Szechwan.

Description:—Depth in length to base of caudal, 6.5; head, 4.5; eye in head, 3.8 (specimen 73 mm. total length). Dorsal rays, 9; anal, 7; scales, 38.

Pseudogobio tungtingensis Nichols

_Figure 93

Pseudogobio tungtingensis Nichols, 1926, Amer. Mus. Novitates, No. 214, p. 4, Fig. 4. Tungting Lake.

Description:—Depth in length to base of caudal, 6; head, 4.3; eye in head, 3.2 (specimen of 52 mm. standard length). Dorsal rays, 9 or 10; anal, 8; scales, 39.
Pseudogobio exigus (Lin)

Description:—Depth in length to base of caudal, 5; head, 5; eye in head, 4.4; interorbital, 4.4 (specimen 112 mm. standard length). Dorsal rays, 9; anal, 7; scales, 39 to 41. Edge of lower jaw rounded, horny, and sharpened.

Pseudogobio labeoides Nichols and Pope

Figure 94

Description:—Depth in length to base of caudal, 4.8; head, 3.4; eye in head, 3.7 (specimen of 90 mm. standard length). Dorsal rays, 9; anal, 8; scales, 40.

Pseudogobio anderssoni Rendahl

Description:—Depth in length to base of caudal, 5 to 5.9; head, 3.4 to 3.6; eye in head, 4.9 to 5.6 (specimens 101 to 144 mm. standard length). Dorsal rays, 9; anal, 8; scales, 41 to 42.
Pseudogobio papillabrus Nichols

Figure 95

Pseudogobio papillabrus Nichols, 1930, Amer. Mus. Novitates, No. 440, p. 2, Fig. 2. Kienning, Fukien.

Description:—Depth in length to base of caudal, 6.5 to 7.5; head, 3.5 to 3.7; eye in head, 4 to 4.2 (at 45 to 54 mm. standard length). Depth, 5.4 to 6.5; head, 3.5 to 3.7; eye, 4 to 5 (at 57 to 77 mm.). Depth, 4.9 to 5.6; head, 3.5 to 3.8; eye, 5 (at 111 to 142 mm.). Dorsal rays, 9; anal, 8; scales, 40 to 41.

Remark:—This species may be the same as Pseudogobio andersoni Rendahl, not seen by the author.

Pseudogobio papillabrus probably has closer true relationship with some species of Saurogobio than with other Chinese species of Pseudogobio examined, that is to say, the criterion of scale count for separating these two genera is arbitrary and not altogether satisfactory.

Pseudogobio longirostris Mori

Description:—Depth in length to base of caudal, 5.5; head, 3.6 or 3.7; eye in head, 5.8 (specimen 155 mm. total length). Dorsal rays, 9; anal, 7; scales, 43. Barbel, 1.6 times eye (from fig.); a row of linear dark marks along side.

Pseudogobio (? filifer Garman

Description:—Depth in length, about 7; head, about 5; eye in head, 5. Dorsal rays, 10; anal, 9; scales, 42 to 44.
Genus *Saurogobio* Bleeker

Elongate, bottom living, sucker-like carps with the mouth inferior, lips fleshy, the lower lip free across the chin. Vent nearer base of ventrals than of anal. A single pair of barbels. Scales, more than 45.

Pharyngeal teeth in one row. Dorsal fin far forward so that the predorsal distance is less than the postdorsal. Origin of ventrals behind vertical from origin of dorsal. Anal fin with 5 or 6 branched rays (exceptionally 7). Dorsal and anal without spines.

Lower jaw not sharp-edged, nor covered by cartilaginous or bony integument. Vent and anal fin not bordered by a row of enlarged scales. Anal base well behind that of dorsal. No scaleless keel before anal fin. Upper jaw protractile. Gill membranes attached to the isthmus. Gill rakers not fused. Eye placed above the axis of the body.

Key to Chinese *Saurogobio*

1. Scales, 45 to 50 .. see 2
 Scales, about 55. Barbel more than twice diameter of eye *heterodon*
 Scales, 55 to 65. Barbel short see 4
2. Lower lip in a very narrow fold across chin, not papillose *drakei*
 Lower lip thicker, in a broader fold, papillose see 3
3. Barbel, 6 or 7 times in length of head *productus*
 Barbel, 4 or 5 times in length of head *dabryi*
4. Pectoral passing ventral origin ... see 5
 Pectoral not reaching ventral; breast scaled; a narrow plumbeous lateral stripe ... *dumerilii*

Saurogobio drakei (Abbott)

Locality of Material:—Specimens examined from Tungting Lake, Hunan.

Description:—Depth in length to base of caudal, 5.5; head, 5; eye in head, about 4.3 (specimen 140 mm. long). Dorsal rays, 11; anal, 8; scales, 46 to 48.

Saurogobio productus (Peters)

Pseudogobio productus Peters, 1880, Monatsber. Akad. Wiss. Berlin, p. 1035, Fig. 6 (head). Hong Kong.

Locality of Material:—Specimens examined from Anhwei.

Description:—Depth in length to base of caudal, 6.9; head, 4.1; eye in head, 4 (specimen of 158 mm. standard length). Dorsal rays, 10 or 11; anal, 8 or 9; scales, about 50.
SYSTEMATIC ACCOUNT

Saurogobio dabryi Bleeker

Locality of Material:—Specimens examined from Tungting Lake, Hunan.

Description:—Depth in length to base of caudal, 6.1; head, 4; eye in head, 3.7 (specimen of 73 mm. standard length). Dorsal rays, 9 or 10; anal, 7 to 9; scales, 45 to 50.

Remarks:—Berg (1916, p. 238) synonymizes Gobiosoma amurensis with this species, as have some other recent ichthyologists, but his figure looks more like S. productus or S. dumerili as here understood.

Called “t’u-ma-ku-lin-tzu” at Tungting Lake (C. H. Pope, field notes).

Saurogobio heterodon (Bleeker)

Description:—Depth in length, about 7; head, about 6.3; eye in head, about 5.5 (specimen 210 mm. long). Scales, ?55.

Saurogobio guichenoti Sauvage and Dabry de Thiersant

Description:—Dorsal rays, 9; anal, 9; scales, 57.

Saurogobio dumerili Bleeker

Saurogobio dorsalis Chu, 1932, China Jour., XVI, p. 133, Fig. 30. Shanghai Market.

Locality of Material:—Specimens examined from Tungting Lake, Hunan.

Description:—Depth in length to base of caudal, 7.8; head, 4.8; eye in head, 4 (specimen of 115 mm. standard length). Dorsal rays, 9 or 10; anal, 8 or 9; scales, 55 to 62.

Genus Fustis Lin

An elongate, subcylindrical, soft-finned carp. Abdomen rounded; a shallow dent before nostrils; jaws equal or the lower little longer; mouth wide, slightly protractile downward, maxillary reaching to under front margin of eye. Lips sim-
THE FRESH-WATER FISHES OF CHINA

Fustis vivus Lin

Fustis vivus Lin, 1932, Lingnan Sci. Jour., Canton, XI, p. 517. Southern Kweichow. 1933, ibid., XII, p. 491, Fig. 1.

Description:—Depth in length, 6; head, 4; eye in head, 5.2 (specimen 170 mm. long). Dorsal rays, 10; anal, 7; scales, 104.

Genus Sarcocheilichthys Bleeker

Small, moderately slender, soft-finned carps, abundant and generally distributed in eastern temperate Asia and adjacent islands.

Body not greatly compressed. Lips thick, confined to the corners of the mouth. A single pair of minute barbels present or absent. Mouth small, inferior, more or less transverse. Lower jaw sharpened, with or without horny integument. Suborbital narrow. Pharyngeal teeth in 1 or 2 rows. Anal fin with 5 or 6 branched rays (exceptionally 7).

Vent and anal fin not bordered by a row of enlarged scales. Anal base well behind that of dorsal. No naked keel before anal fin. Upper jaw protractile. Gill membranes attached to the isthmus. Gill rakers not fused. Eye placed in or above the axis of the body.

The intermediate subgenus *Sarcocheilichthys* is primarily Japanese. Minnows of the subgenus *Chilogobio* (moderately compressed, no barbels, lower jaw without horny integument) occur as representative species in various parts of the mainland, where slightly larger fishes of the subgenus *Barbodon* (little compressed, barbels present, horny integument on lower law) represent races of a single species, more confined to the larger rivers. Strangely enough, however, a dwarf species of *Barbodon* has recently been described from Hokou in northeastern Kiangsi, associated there with a larger species of the subgenus *Sarcocheilichthys*.

Key to Chinese Sarcocheilichthys

1. No barbels; lower jaw without a horny tip. Body moderately compressed

(*Chilogobio*) ... see 2
SYSTEMATIC ACCOUNT

Barbels rudimentary; end of lower jaw somewhat callous or slightly horny. Body moderately compressed (Sarcocheilichthys). Scales, 43. A vertical black bar behind the gill opening; dorsal grayish, lower fins pale kiansiensis

A pair of minute barbels; lower jaw with a horny tip (Barbodon) imberbis

2. Slender (depth less than head); ventral under first third versus middle of dorsal see 7

Not as above .. see 3

3. Lower fins pale, unmarked; scales, 39 to 40; depth, 3.7 to 3.8; eye, 3.4 to 3.6; length of peduncle, 1 to 1.1; dark mark on front of dorsal, dark center to caudal lobes. Ventral origin before center of dorsal base see 4

Lower fins grayish, dusky, or largely occupied by blackish blotches; scales, 38 to 42; depth, 3.9 to 4.2; eye, 3.7 to 4; length of peduncle, 1.7 to 1.8; dorsal dusky, more or less darker before and behind, or with extensive black marks before and behind and a pale center; marks on caudal lobes obscure or absent. Ventral origin about under center of dorsal base (S. nigripinnis) see 5

Body and fins pale with sharp blackish marks, such on front and back of dorsal, center of lower fins, center of caudal lobes; scales, 40; depth, 4; eye, 3; length of peduncle, 1. Ventral origin before center of dorsal base hainanensis

4. Pectoral less than head maculatus1 scaphignathus

Mouth horizontal; pectoral, 1

5. Length of peduncle, 1.3 to 1.5; scales, 38 to 42; depth, 3.9 to 4.5; dorsal darker before and behind; body dark with more or less conspicuous blackish bar behind head ... see 6

Length of peduncle, 1.7; scales, 38; depth, 4.1; dorsal black before and behind; pale in center; lower fins largely covered with black blotches nigripinnis

6. Dorsal origin equidistant from tip of snout and middle of peduncle; depth, 4 to 4.5; scales, 38 to 40; length of peduncle, 1.3; pectoral, 1.3 sciistius
dorsal origin equidistant from tip of snout and anal axil; depth, 3.9; scales, 42. Length of peduncle, 1.5; pectoral, 1.4 nungting

7. Scales, about 41. Depth, 3.7; length of mouth, 1.4 in its width; barbel 8 in eye (specimen of 90 mm. standard length) sinensis

Scales, about 41. Depth, 3.7; length of mouth, 0.8 in its width; barbel 6 in eye (specimen of 90 mm. standard length) fukiensis

Scales, 36. Length of mouth equal to its width; barbel minute. A dwarf form parvus

Subgenus Chilogobio Berg

Sarcocheilichthys imberbis (Sauvage and Dabry de Thiersant)

Description:—Depth in length, 5.5; head in length to base of caudal, 4; eye in head, a little more than 4. Dorsal rays, 9; anal, 8; scales, 38.

1 S. (C.) maculatus (Gunther) probably comes here. Depth, 4; head, 4; pectoral slightly less than head; scales, 41; interorbital as wide as orbit.
Sarcocheilichthys maculatus (Günther)

Description:—Depth in length to base of caudal, 4; head, 4; eye in head, slightly more than 4 (specimens up to about 75 mm. long). Dorsal rays, 10; anal, 8; scales, 41.

Sarcocheilichthys hainanensis Nichols and Pope

Figure 96 and Plate I, figure 3

Sarcocheilichthys hainanensis Nichols and Pope, 1927, Bull. Amer. Mus. Nat. Hist., LIV, p. 352, Fig. 21, Pl. xxvi, fig. 3. Hainan.

Description:—Depth in length to base of caudal, 4; head, 4; eye in head, 3 (specimen of 62 mm. standard length). Dorsal rays, 9; anal, 9; scales, 40.

Sarcocheilichthys scaphignathus (Nichols)

Locality of Material:—Specimens examined from Fukien.

Description:—Depth in length to base of caudal, 3.8 to 3.5; head, 4; eye in head, 3.4 to 4 (specimens of 49 to 70 mm. standard length). Dorsal rays, 9 to 10; anal, 8 to 9; scales, 39 to 40.

Sarcocheilichthys nigripinnis (Günther)

Sarcocheilichthys nigripinnis nigripinnis (Günther)

Locality of Material:—Specimens examined from Anhwei.

Description:—Depth in length to base of caudal, 4.1; head, 3.8; eye in head, 3.7 (specimen of 66 mm. standard length). Dorsal rays, 10; anal, 8 or 9; scales, about 38.
Sarcocheilichthys nigripinnis sciistius (Abbott)

Leuciscus sciistius Abbott, 1901, Proc. U. S. Nat. Mus., XXIII, p. 487, Fig. Tientsin.

Locality of Material:—Specimens examined from Tsinan, Shantung; up to 68 mm. standard length.

Description:—Depth in length to base of caudal, 4.5; head, 4; eye in head, 4 (specimen 67 mm. long). Dorsal rays, 10; anal, 8; scales, 38.

Sarcocheilichthys nigripinnis tungting Nichols and Pope

Figure 97

Fig. 97. Sarcocheilichthys nigripinnis tungting Nichols and Pope. 80 mm. standard length.

Description:—Depth in length to base of caudal, 3.9; head, 4; eye in head, 4 (specimen of 80 mm. standard length). Dorsal rays, 9; anal, 8; scales, 42.

Subgenus Sarcocheilichthys Bleeker

Sarcocheilichthys kiangsiensis Nichols

Figure 98

Description:—Depth in length to base of caudal, 4 to 4.6; head, 4.7; eye in head, 4.5 to 4.8 (specimens 129 and 141 mm. standard length). Dorsal rays, 9 or 10; anal, 8 or 9; scales, 43.
Subgenus Barbonon Dybowski

Sarcocheilichthys sinensis Bleeker

Sarcocheilichthys sinensis Bleeker, 1871, Verhandel. Akad. Wetensch., Amsterdam, Afd. Natuurk., XII, p. 31, Pl. iv, fig. 2. Yangtze?

Sarcocheilichthys sinensis sinensis sinensis Bleeker

Plate VI, figure 2

Locality of Material:—Specimens examined from Tuntting Lake, Hunan; and from Anhwei.

Description:—Depth in length to base of caudal, 3.4 to 3.7; head, 4.3 to 4.4; eye in head, 3.5 to 4 (specimens of 90 to 122 mm. standard length). Dorsal rays, 8 or 9; anal, 7 or 8; scales, 41.

Remarks:—Called "huo-shao" at Tungting Lake, where it is very common and may be seen in the fishermen’s boats at any time. It frequently shows bright colors, black bands on a background of gold (C. H. Pope, field notes).

Sarcocheilichthys sinensis fukiensis Nichols

Figure 99

Sarcocheilichthys sinensis fukiensis Nichols, 1925, Amer. Mus. Novitates, No. 185, p. 3. Fukien.

Description:—Depth in length to base of caudal, 3.6; head, 4.4; eye in head, 3.5 (specimen of 90 mm. standard length). Dorsal rays, 9 or 10; anal, 8 or 9; scales, 41.
Sarcocheilichthys parvus Nichols

Figure 100

Locality of Material:—Tien-mu-san, Chekiang (Chu, 1932.1, p. 134, Fig. 31).

Description:—Depth in length to base of caudal, 3.8 to 4; head, 4.6 to 4.8; eye in head, 3.1 to 3.6 (specimens 40 and 57 mm. standard length). Dorsal rays, 9; anal, 8; scales, 36.

Family COBITIDAE

LOACHES

The loaches are closely related to the carps, from which they differ technically in having the air bladder more or less encased in a bony capsule. They have more numerous barbels, scales reduced in size or absent, and sometimes an adipose ridge
developed about precurrent caudal rays, so as to suggest an adipose fin on the hind end of the back. Such characters are, however, only superficially catfish-like. They seem to be in no sense intermediate between catfishes and carps, but rather a specialized offshoot from the true carps.

Their geographic distribution parallels that of the carps but is more restricted. Southwestward they have reached no farther than Abyssinia. Fragmentary remains of a supposed loach are recorded by Cope from a fresh-water Upper Tertiary formation in Idaho, but their identification was probably in error. The group does not now occur in America, and evidence of its ever having crossed to the New World from a probably Asiatic point of origin is inadequate.

The loaches are typically more or less elongate, somewhat eel-like, bottom fishes. One large series of them is armed with a concealed spine on the side of the head, and those of this series are relatively boldly patterned. Botia and allied genera of armed loaches comprise shorter-bodied, free swimming, usually bright-colored forms. The unarmed loaches are usually dull-colored.

Several genera of bottom living loaches are flattened below, with pectoral fins and sometimes body more or less expanded in a horizontal plane. These form a rather natural group and are sometimes recognized as a distinct family, Homalopteridae. They are, however, connected with the more normal type by intermediate forms.

Genus Gobiobotia Kreyenberg

Small, aberrant, gudgeon-like, Chinese, bottom loaches with comparatively large scales (about 42); a pair of barbels on the maxillaries and 3 pairs along the lower jaw; forked caudal fin. Swim bladder in a bony capsule. Rather uncommon, a single species recognized until recently when others have been described. The key to the species which follows is based mostly on Fang and Wang (1931, p. 291).

Key to Chinese Gobiobotia

1. Scales not embedded, 5 or 5.5 above lateral line and 3 or 3.5 below it; abdomen before ventral fins naked .. see 2

 Scales embedded, 8.5 above lateral line and 6.5 below it; abdomen before anal and part of side of body naked; eye smaller than nostril. Dorsal origin about equidistant from end of snout and base of caudal _boulengeri_ see 3

2. Dorsal origin in advance of ventral ... _tungi_
Dorsal origin slightly behind that of ventral, nearer end of snout than base of caudal; pectoral equal to or longer than head; eye larger than nostril

3. Eye larger than nostril, nearer gill opening than tip of snout; second ray of pectoral not longer than the others; insertion of first median pair of barbels behind that of the first lateral pair

Eye larger than nostril, nearer tip of snout than gill opening; second ray of pectoral much longer than any of the rest; first median pair of barbels inserted in advance of first lateral pair

Eye small (9 or more in head), about equidistant from tip of snout and gill opening; abdomen naked to anal origin; form suggesting that of a *Homaloptera*

4. Pectoral fin short, not reaching origin of ventral; barbels short, not reaching base of pectoral; interorbital greater than eye

Pectoral reaching origin of ventral; last pair of barbels to beyond base of pectoral; diameter of eye equal to interorbital

5. Depth, between 4 and 5; origin of dorsal nearer tip of snout than base of caudal. Pectoral shorter than head

Depth, nearly 8; origin of dorsal equidistant from tip of snout and base of caudal

Gobiobotia ichangensis Fang

Gobiobotia ichangensis Fang, 1930, Sinensia, I, p. 58, Fig. 1. Ichang, Hupeh.

Description:—Depth in length to base of caudal, 4.3 or 4.4; head, 3.9 or 4; eye in head, 3.7 (specimen 91 or 92 mm. standard length). Dorsal rays, 9; anal, 8; scales, 42.

Remarks:—Perhaps a synonym of *G. pappenheimi*.

Gobiobotia pappenheimi Kreyenberg

Plate VIII, figure 1

Locality of Material:—Reported from Hainan by Koller (1927, p. 44). Specimens examined from Tungting Lake, Hunan.

Description:—Depth in length to base of caudal, 5; head, 3.6; eye in head, 4.6 (specimen of 39 mm. standard length); or depth, 6; head, 4.5; eye, 3.5 (specimens of 40 to 50 mm.). Dorsal rays, about 9; anal, about 7; scales, about 42.

Remarks:—A small, bottom fish quite commonly found in the boats of the shrimp fishermen at Tungting Lake (C. H. Pope, field notes).

Gobiobotia boulengeri Tchang

Description:—Depth in length to base of caudal, 4.5; head, 3.3 to 3.7; eye in
head, 8 (specimens 139 to 144 mm. total length). Dorsal rays, 9; anal, 8; scales, 44 to 45.

Gobiobotia kiatingensis Fang

Gobiobotia kiatingensis Fang, 1930, Sinensia, I, p. 58, Fig. 2. Kiating, western Szechwan.

Description:—Depth in length to base of caudal, 6.9 or 7; head, 4.3 or 4.4; eye in head, 4.8 (specimen 104 mm. standard length). Dorsal rays, 9; anal, 8; scales, 43.

Gobiobotia abbreviata Fang and Wang

Description:—Depth in length to base of caudal, 4.3; head, 3.8 or 3.9; eye in head, 4.6 or 4.7 (specimen 54 mm. standard length). Dorsal rays, 9; anal, 8; scales, 38. Dorsal origin slightly nearer tip of snout than base of caudal (from fig.).

Gobiobotia longibarba Fang and Wang

Description:—Depth in length to base of caudal, 5.4 or 5.5; head, 3.8; eye in head, 4.2 (specimen 80 mm. standard length). Dorsal rays, 9; anal, 8; scales, 40. Dorsal origin equidistant from tip of snout and base of caudal (from fig.).

Gobiobotia homalopteroidea Rendahl

Description:—Depth in length to base of caudal, 6 or 6.1; head, 3.7 or 3.8; eye in head, 9.1 or 9.2 (specimen 79 mm. standard length). Dorsal rays, 9; anal, 8; scales, 41.

Gobiobotia tungi Fang

Gobiobotia tungi Fang, 1933, Sinensia, III, p. 265, Fig. 1. Chekiang.

Description:—Depth in length to base of caudal, 5.1 to 5.2; head, 4.1 to 4.2; eye in head, 4.5 (specimen 124 mm. standard length). Dorsal rays, 10; anal, 8; scales, 42.

Genus Cobitis Linnaeus

Small, elongate, compressed, blotched or striped loaches with a more or less concealed, erectile spine under the eye. A single widely distributed Eurasian fish with a few local races or species.

Caudal truncate or rounded. Head strongly compressed, its sides without scales. Barbels, 6 or 8 (3 or 4 pairs). Air bladder encapsuled, without a free portion in the ventral cavity.

Key to Chinese Cobitis

1. Peduncle less than twice as long as deep; 90 to 110 scales before the dorsal; dorsal origin equidistant from end of snout and base of caudal; or nearer the latter (C. taenia) ... see 2

 Peduncle more than twice as long as deep; about 135 scales before the dorsal; dorsal origin equidistant from end of snout and middle of peduncle; few (about 6) large quadrate dark marks on the side macrostigma

 Peduncle more than twice as long as deep; scales minute; dorsal origin slightly nearer snout than base of caudal; color typical of Cobitis taenia arenae

2. Deeper; depth, 6 or less; peduncle not conspicuously bordered with adipose keels, its length in head more than 1.5; dorsal origin nearer base of caudal than end of snout ... dolichorrhynchus

 More slender; depth, 6.5 or more; length of peduncle in head, 1.5 or less ..

3. Color sharply marked; (at 65 to 70 mm. length) 12 to 16 lengthwise blotches on side; spot on upper caudal base inconspicuous or absent; a more or less perfect, more extensive dark bar across caudal base. Peduncular keels not well developed; dorsal origin nearer base of caudal than end of snout ... melanoleuca

 Color less sharply marked; small black spot on upper caudal base conspicuous. Peduncle conspicuously bordered with adipose keels; dorsal origin equidistant from end of snout and base of caudal ... sinensis

Cobitis taenia Linnaeus

Cobitis taenia dolichorrhynchus Nichols

Figure 101 and Plate VIII, figure 3

Fig. 101. Cobitis taenia dolichorrhynchus Nichols. 61 mm. without caudal.
THE FRESH-WATER FISHES OF CHINA

Locality of Material:—Specimens examined from Fukien, Kwangtung, Hainan.

Description:—Depth in length to base of caudal, 5.5 to 6; head, 4 to 4.6; eye in head, 4.5 to 6 (specimens of 61 to 81 mm. standard length). Dorsal rays, 9 to 10; anal, 7 to 8; scales before dorsal, about 90.

Cobitis taenia melanoleuca Nichols

Figure 102

Am. Mus. No.8403

Fig. 102. Cobitis taenia melanoleuca Nichols. Type. About 70 mm. standard length.

Description:—Depth in length to base of caudal, 6.8 to 7 (specimens 65 to 72 mm. long).

Cobitis taenia sinensis Sauvage and Dabry de Thiersant

Figure 103 (upper) and Plate IX, figure 3

Locality of Material:—Specimens examined from Tungting Lake, Hunan; Anhwei; not typical from Kweihwa, Shansi; and Hsing-lung-shan, Hopei.

Description:—Depth in length to base of caudal, 7.3; head, 5.4; eye in head, 6 (specimen of 110 mm. standard length). Dorsal rays, 9 to 10; anal, about 8; scales before dorsal, 100 to 110.

Remarks:—At Tungting Lake the Chinese call this loach "hua-ni-ch'iu," "ni-ch'iu" being the name of various forms of Misgurnus. Many were taken from the shrimp fishermen’s boats (C. H. Pope, field notes).

Cobitis macrostigma Dabry de Thiersant

Figure 103 (lower)

Locality of Material:—Specimens examined from Tungting Lake, Hunan.

Description:—Depth in length to base of caudal, 8; head, 5.5; eye in head, 5.5 (specimen of 115 mm. standard length). Dorsal rays, 9 or 10; anal, about 8; scales before dorsal, about 135.

![Image](image-url)

Fig. 103. *Cobitis taenia sinensis* Sauvage and Dabry de Thiersant (upper) and *Cobitis macrostigma* Dabry de Thiersant (lower) compared.

Cobitis arenae (Lin)

Description:—Depth in length, 8.6; head, 4.7; eye in head, 11 (specimen 52 mm. standard length). Dorsal rays, 9; anal, 7; scales minute.

Barbels, 3 on a side plus 2 barbel-like fringes of lower lip; length of peduncle in head, 1.1; its depth, 2.7; predorsal space, 48 per cent of length; caudal truncate. Shape and color characteristic of *Cobitis taenia*, and the ocular spine presumably overlooked.

Genus Acanthopsis Van Hasselt

Small, elongate, compressed loaches with a small, erectile, suborbital spine, situated in advance of, not below the eye as in *Cobitis*. The caudal bilobed, versus truncate or rounded. Barbels, 8. A few species of East Indian affinity not well differentiated from *Cobitis*.

Acanthopsis lachnostoma Rutter

Description:—Depth in length, 7.6; head, 4.7 or 4.8; eye in head, about 6.3 (specimen about 150 mm. long). Dorsal rays, 8; anal, 6; scales minute, about 200.
Genus *Paralepidocephalus* Tchang

An elongate, compressed loach with erectile bifid spine below eye, and color pattern of *Cobitis*, without a conspicuous caudal spot. Six barbels in all, 4 on the snout and 2 on the maxillaries; scales lacking; origin of dorsal behind base of ventrals, caudal truncate.

Paralepidocephalus yui Tchang

Description:—Depth in length to base of caudal, 6.5 to 7.9; head, 5.2 to 5.7; eye in head, 7 (specimens 54 to 70 mm. standard length). Dorsal rays, 7; anal, 6.

Genus *Botia* Gray

Moderate or rather short-bodied, free swimming, frequently bright-colored (blotched or banded) loaches of southern Asia, with a few well-marked species occurring in the valley of the Yangtze.

Caudal forked. Head compressed, its sides mostly without scales. An erectile bifid spine under the eye, sometimes hidden in the skin. Barbels 6 (a maxillary pair and 2 pairs on the snout).

Key to Chinese Botia

1. Dorsal origin midway between base of caudal and about middle of opercle.
 - Color rather uniform. Depth, about 5.9 *compressicauda* see 2
 - Dorsal origin midway between base of caudal and eye or front of eye *citraurea*
 - Dorsal origin midway between base of caudal and middle of snout. Center of back dark with a series of close-spaced, rounded, pale marks. Slender; depth, about 5.5 *purpurea*
 - Dorsal origin midway between base of caudal and end of snout. Dark saddles across the back, sides finely marked. Deeper; depth, less than 4.5

Plate VIII

Fig. 1. *Gobiobotia pappenheimi* Kreyenberg. 39 mm. standard length. Tungting Lake.

Fig. 2. *Lefua costata* (Kessler). Male. 42 mm. standard length. Chin-su, Shansi.

Fig. 3. *Cobitis taenia dolichorhynchus* Nichols. 61 mm. standard length. Noda, Hainan.

Fig. 4. *Lepturichthys fimbriata nicholsi* Hora. 59 mm. standard length. Tungting Lake.
2. Eye very small, more than 3 times in the interorbital, and about 8 times in the snout. No dark cross marks on back or sides. Eye in about the center of head. Depth, about 5 *pratti*

Eye small, 3.5 in interorbital. Dark saddles on back and imperfect bars across caudal lobes. Eye slightly before center of head. Depth, about 4.2 or 4.3 *fangi*

Eye somewhat larger, less than 3 times in the interorbital see 3

3. Eye, about 3.5 times in the snout. Plain colored, with a speckled caudal.
 Eye before the center of head. Depth, about 4.8 *tientainensis*

Eye, about 4 or 5 times in the snout. Dark cross marks on back which may be continuous downward, represented by blotches or absent across the sides. Eye behind the center of head. Depth, about 4.5 see 4

4. About 10 cross marks on the back. Peduncle short and deep *superciliaris*

About 5 to 7 cross marks on the back. Peduncle moderate, its length 1.8 in head *rubrilabris*

Botia compressicauda Nichols

Figure 104

Description:—Depth in length to base of caudal, 5.9; head, 4.7; eye in head, 10 (specimen 91 mm. standard length). Dorsal rays, 9; anal, 7; scales, about 165.

Am.Mus.9682

Fig. 104. *Botia compressicauda* Nichols. Type. 91 mm. standard length.

Botia citrauratea Nichols

Description:—Depth in length to base of caudal, 5.4; head, 3.8; eye in head, 7.8 (specimen of 50 mm. standard length). Dorsal rays, 10; anal, 7; scales minute and embedded.

Botia pratti Günther

Botia pratti Günther, 1892, in Pratt, Snows of Tibet, p. 250, Pl. iv, fig. A. Szechwan.

Description:—Depth in length to base of caudal, rather less than 5; head, 3.5; eye in head, 19.5 or 19.6 (specimens about 200 mm. long). Dorsal rays, 11; anal, 8; scales minute.
THE FRESH-WATER FISHES OF CHINA

Botia fangi Tchang

Description:—Depth in length to base of caudal, 4.2 or 4.3; head, 3.4; eye in interorbital, 3.5 (specimen 170 mm. total length). Dorsal rays, 10; anal, 7.

Botia purpurea Nichols

Botia purpurea Nichols, 1925, Amer. Mus. Novitates, No. 177, p. 4, Fig. 3. Tungting Lake.

Description:—Depth in length to base of caudal, 4.2; head, 4; eye in head, 13.7 or 13.8 (specimen of 132 mm. standard length). Dorsal rays, 10; anal, 8; scales, about 150.

Botia tientainensis Wu

Description:—Depth in length to base of caudal, 4.8; head, 4.3; eye in head, 9.5 (specimen 82 mm. standard length). Dorsal rays, 8; anal, 7.

Botia rubrilabris (Dabry de Thiersant)

Figure 105

Locality of Material:—Specimens examined from Tungting Lake, Hunan.

Fig. 105. Botia rubrilabris (Dabry de Thiersant). 65 mm. without caudal. Tungting Lake.

Description:—Depth in length to base of caudal, 4.5; head, 3.3; eye in head, 10 (specimen of 50 mm. standard length). Dorsal rays, 11; anal, 7; scales very fine, evident only on peduncle.

Botia superciliiaris Günther

Botia superciliiaris Günther, 1892, in Pratt, Snows of Tibet, p. 250, Pl. iv, fig. B. Szechwan.
SYSTEMATIC ACCOUNT

Description:—Depth in length to base of caudal, 4.5; head, 3.5; eye in head, 9.5 (specimens about 150 mm. long). Dorsal rays, 11; anal, 8; scales minute.

Genus Leptobotia Bleeker

Moderately elongate, free swimming, rather bright-colored, banded loaches with a more or less concealed, simple, erectile spine under the eye. Few species—one widely distributed, with center of abundance in the Yangtze Valley.

Key to Chinese Leptobotia

Eye before center of head; 6 broad, irregular, dark cross bars elongata

Eye about in center of head; about 15 blackish cross bars (narrower than the inter-spaces), a black spot on base of caudal and narrow oblique bars on its lobes fasciata

Leptobotia elongata (Bleeker)

Locality of Material:—Specimens examined from Yungtai Hsien, Fukien; up to 98 mm. standard length; from Ichang (in Museum of Comparative Zoölogy, labeled *Botia variegata*), of 300 mm. standard length.

Description:—Depth in length to base of caudal, 6; head, 3.5 to 4; eye in head, 13 to 18 (specimens 300 mm. standard length to about 500 mm. long). Dorsal rays, 9 to 11; anal, 7 or 8; scales very small (215, est.).

Leptobotia fasciata (Dabry de Thiersant)

Parabotia fasciatus (Guichenot) Dabry de Thiersant, 1872, Pisciculture et Pêche en Chine, p. 191, Pl. xliv, fig. 6. Yangtze.

Botia multifasciata, Reeves, 1927, loc. cit.

Parabotia fasciata, Chu, 1931, ibid., p. 70.

Locality of Material:—Specimens examined from Tungting Lake, Hunan; Anhwei; Hokou, Kiangsi; up to 130 mm. or more standard length.

Description:—Depth in length to base of caudal, 6; head, 3.5; eye in head, 6.5 (specimen of 87 mm. standard length). Dorsal rays, about 12; anal, about 7; scales very small.
Remarks:—Called "hua-chin-ch'iu" at Tungting Lake, where it was never found in numbers, only now and again one in the boat of a shrimp fisherman. Its maximum size seemed to be about 5 inches (C. H. Pope, field notes).

Genus Misgurnus Lacépède

More or less anguilliform, dull-colored, bottom living loaches of Europe and Asia. An uncertain number of variable, difficult species and races.

Ten barbels (5 pairs). No erectile spine below the eye.

Loaches of this genus seem to be abundant everywhere in China, very variable, separable into mostly ill-defined, more or less geographical forms. *M. mizolepis* Günther and *M. m. fukien* Nichols are comparatively well marked. A difficulty in considering the various forms examined races of a single species (*anguillicaudatus*), is that three different ones, *mizolepis*, *leopardus*, and *tungting*, occur together in the Yangtze basin. Hence the concept that three series or species are present: one northern and highland (*mohoity*), one central (*anguillicaudatus*), and one southern (*mizolepis*), in origin.

The following analysis of Chinese *Misgurnus* is based on considerable material from different parts of that country, but no doubt other areas from which there has not been opportunity to study adequate material will provide other forms that are comparably distinct. It may eventually be best to recognize fewer forms, only one basic, very variable, widely distributed one, and the few others which are more or less local and most different, as subspecies of it. Any treatment is at present admittedly unsatisfactory.

The following nominal species in the "Index Piscium Sinensium" by Chu (1931.6, pp. 68–69) are unidentifiable: *Misgurnus dichachrous*, *M. maculatus*, *M. polynema*, *M. spilurus*.

Key to Chinese *Misgurnus*

1. Skin not thickened, scales rather regular and fully exposed see 2
 Skin more or less thickened and scales more or less embedded (sometimes exposed in *hainan*) ... see 4
2. Striae on scales well radiating. Scales moderate (about 130); depth moderate (about 6.5); head large (about 5.5); peduncle moderate (about equal to head); dorsal origin equidistant from base of caudal and gill cleft (*Misgurnus mohoity*, Tungting; Yunnan) see 3
 Striae on scales little radiating. Scales moderate (about 145); elongate (depth, over 7.5); head large (about 5.5); peduncle moderate (slightly less than head); dorsal origin equidistant from base of caudal and middle of opercle. Sides finely marked with dark, tending to form a broad band anteriorly ... *tungting*
Head small (about 6); dorsal origin midway in the body length; rose colored with violet spots, smaller on the head, dorsal and caudal with dark marks. A poorly described species which probably comes here

3. Color, freckled olive above, pale below, without dark marking on body. Compressed; width of body, 2 in head. Color, back and sides with contrasting dark spots, rather regular and increasing in size upward to the diameter of eye along the back. Very little compressed (width, 1.6).

4. Moderate or elongate, peduncular keels about pre-current caudal rays sometimes fleshy, not excessively developed. Deep (depth, usually less than 6). Skin very thick, peduncular keels greatly developed, fleshy. Black spot at upper caudal base, faint or wanting.

5. Head large (less than 6). Dusky spotting on sides vague and irregular, the arrangement and size of spots variable; peduncle short, less than head; compressed (width, about 2); scales fine and irregular.

Head variable (5.3 to 6.8); peduncle longer than head; color lightly marbled with dark marks tending to form longitudinal bands, or with numerous dark spots and a black spot at the upper caudal base; very elongate (depth, 8.5 to 11).

Head small (6 or more). Dark markings on side usually contrasted; peduncle long (slightly longer than head), or else little compressed (width of body, less than 2), black spot at upper caudal base faint or wanting (Misgurnus mizolepis, Hainan, Fukien, Szechwan, Tungting in Hunan).

6. Spots on sides irregular, varying in size, some as large as eye. Compressed (width, 2).

Spots on sides small, blackish, or irregular, and not bold; very little compressed (width, less than 2).

Uniform yellowish red without spots; eye and fins, excepting dorsal, red.

7. Depth, more than 7.5. Brownish, irregular spots and bands on upper sides, dorsal, and caudal.

Depth, less than 7.5.

8. Spots on sides irregular, that on upper caudal base ill defined or absent.

Spots on sides fine, regular, blackish, that on upper caudal base usually sharply marked.

Finely speckled with black, base of the caudal above with no black spot. A form, of which no specimen has been examined by the writer, probably belongs here, perhaps intermediate between fukien and hainan.

Misgurnus anguillicaudatus (Cantor)

Misgurnus anguillicaudatus anguillicaudatus (Cantor)

1 This species, which is imperfectly described, probably comes here.
Locality of Material:—Specimens examined from Anhwei and Fukien.

Description:—Depth in length to base of caudal, 7.5; head, 5.8; eye in head, 5.4 (specimen of 130 mm. standard length). Dorsal rays, about 9; anal, 7 or 8; scales, about 155.

Misgurnus anguillicaudatus tungting Nichols

Figure 106

Locality of Material:—Specimens examined from Tungting Lake, Hunan; Hokou, Kiangsi; up to 114 mm. standard length.

Am. Mus. No. 8393

Fig. 106. Misgurnus anguillicaudatus tungting Nichols. Type. 89 mm. standard length.

Description:—Depth in length to base of caudal, 7.7; head, 5.6; eye in head, 5.2 (specimen of 89 mm. standard length). Dorsal rays, 9; anal, 8; scales, about 143.

Misgurnus erikssoni Rendahl

Description:—Depth in length to base of caudal, 8.5 to 11; head, 5.3 to 6.8; peduncle, 4.3 to 5.1; eye in head, 5.5, at 57 mm. total length (specimens 51 to 144 mm. long). Dorsal rays, 9; anal, 7; scales, very small, embedded.

Remarks:—Possibly based on more than one form.

Misgurnus mizolepis Günther

Plate IX, figure 2

Locality of Material:—Specimens examined from Tungting Lake, Hunan; Anhwei.

Description:—Depth in length to base of caudal, 5.5; head, 5.5; eye in head, 7.5 (specimen of 167 mm. standard length). Dorsal rays, about 7; anal, about 7; scales, about 135.
SYSTEMATIC ACCOUNT

Misgurnus mizolepis grangeri Nichols

Figure 107

Description:—Depth in length to base of caudal, 6.8; head, 5.9; eye in head, 7.8 (specimen of 117 mm. standard length). Dorsal rays, 9; anal, 7; scales, about 140.

Misgurnus mizolepis fukien Nichols

Figure 108

Locality of Material:—Specimens examined from Fuching Hsien and Yen-ping, Fukien; up to 160 mm. standard length.

Description:—Depth in length to base of caudal, 7.1; head, 6.6; eye in head, 6.5 (specimen of 127 mm. standard length). Dorsal rays, 8; anal, 7; scales, about 140.

Misgurnus mizolepis punctatus Oshima

Locality of Material:—Specimens examined from Foochow, Fukien; 100 to 107 mm. standard length, provisionally this.

Description:—Depth in length to base of caudal, 6.5; head, 6.5; eye in head, 6 (specimen 132 mm. long). Dorsal rays, 8; anal, 7; scales, about 140.
THE FRESH-WATER FISHES OF CHINA

Misgurnus mizolepis hainan Nichols and Pope

Figure 109 and Plate I, figure i

Misgurnus mizolepis hainan Nichols and Pope, 1927, Bull. Amer. Mus. Nat. Hist., LIV, p. 336, Fig. 9, Pl. xxvi, fig. i. Hainan.

Locality of Material:—Specimens examined from Hainan and from near Canton.

Description:—Depth in length to base of caudal, 7.5; head, 6; eye in head, 5.2 (specimen of 83 mm. standard length). Dorsal rays, 9; anal, 7; scales, about 150.

![Figure 109. *Misgurnus mizolepis hainan* Nichols and Pope. Type. 83 mm. without caudal.](image)

Remarks:—Some specimens from near Canton match this species, as described from Hainan, closely; in others there is a tendency for the markings to become finer and streaky along the rows of scales, and these suggest *M. a. tungting* of the Yangtze Valley, from which, however, they differ in various ways.

Misgurnus mizolepis unicolor Lin

Description:—Depth in length to base of caudal, 6.5; head, 6; eye in head, 7 (specimen 85 mm. standard length).

Depth of peduncle, 1.4; its length, 0.8 or 0.9. Uniform yellowish red without spots; eye and fins excepting dorsal, red. So far as the type description goes, color is the most diagnostic character of this species, based on a single, possibly erythristic, specimen.

Misgurnus mizolepis elongatus Kimura

Description:—Depth in length to base of caudal, 7.8; head, 6.7; eye in head, 7 (specimen 210 mm. total length). Dorsal rays, 6; anal, 6; scales, about 150.

Scales partly embedded, peduncular keels moderate; peduncle longer than head; dorsal origin equidistant from base of caudal and front of eye.

Misgurnus mohoity (Dybowski)

SYSTEMATIC ACCOUNT

Misgurnus mohoity yunnan Nichols

Figure 110

Am.Mus. No. 8396

Fig. 110. Misgurnus mohoity yunnan Nichols. Type. 123 mm. standard length.

Description:—Depth in length to base of caudal, 6.6; head, 5.4; eye in head, 6 (specimen of 123 mm. standard length). Dorsal rays, 9; anal, 7; scales, about 130.

Misgurnus mohoity leopardus Nichols

Figure 111

Am. Mus. No 8397

Fig. 111. Misgurnus mohoity leopardus Nichols. Type. 105 mm. standard length.

Description:—Depth in length to base of caudal, 6.5; head, 5.6; eye in head, 5.4 (specimen of 105 mm. standard length). Dorsal rays, 8; anal, 8; scales, about 135.

Misgurnus crossochilus Sauvage

Description:—Head in length to base of caudal, 6; eye small, smaller than interorbital. Dorsal rays, 9; anal, 7.

Genus Paramisgurnus Sauvage

A dull-colored Chinese loach, imperfectly known, related to *Misgurnus*. Eight barbels (4 pairs), 2 on the upper and 6 on the lower jaw. Adipose dorsal
and anal fins confluent with the pointed caudal. Ventrais opposite dorsal, retractile in a groove. Scales rather large. No erectile spine below the eye.

Paramisgurnus dabryanus Sauvage

Description:—Depth in length to base of caudal, 6.5; head, 6.5; eye equal to interorbital and \(\frac{3}{2} \) snout. Dorsal rays, 8; anal, 6; scales comparatively large.

Genus Oreonectes Günther

A small Chinese loach, with broad, depressed head, 6 barbels, no erectile suborbital spine, the dorsal fin at some distance behind the ventrais, its origin considerably nearer to the root of the caudal than to the opercle.

Key to Chinese Oreonectes

Dorsal rays, 9; scales conspicuous ... *platycephalus*
Dorsal rays, 7; scales very small, embedded *yenlingi*

Oreonectes platycephalus Günther

Oreonectes platycephalus Günther, 1868, Cat. Fishes Brit. Mus., VII, p. 369. From a small stream near the top of Hong Kong Mountains (?).

Description:—Depth in length to base of caudal, 6 to 7; head, a little more than 5; eye very small (specimens up to about 70 mm. long). Dorsal rays, 9; anal, 7; scales conspicuous.

Oreonectes yenlingi Lin

Description:—Depth in length to base of caudal, 6.8; head, 4.6; eye small (specimen 48 mm. standard length). Dorsal rays, 7; anal, 6; scales very small, embedded.

Genus Nemacheilus Van Hasselt

More or less free swimming, small, fine-scaled loaches of southern Asia and the East Indies, frequently prettily barred, blotched, or spotted.
Moderate or short-bodied and symmetrical. Scalation evident, though sometimes incomplete, with non-imbricate scales. Barbels 6 (3 pairs, none at nostrils). No erectile spine (concealed or otherwise) below the eye. Head not laterally compressed. Lateral line complete or incomplete. Caudal margin slightly forked.

The East Indian subgenus Nemacheilus, with scalation and lateral line complete, nostrils close together, well before the eye, the anterior in an even-margined tube, has a species in Hainan Island. The subgenus Yunnanilus, with scales non-imbricate, lateral line imperfect, nostrils separated by a greater distance than that of the posterior from eye, the anterior in a flap-like tube, has two or more species in Yunnan.

Key to Chinese Nemacheilus

1. Nostrils close together, well before the eye, the anterior in an even-margined tube (Nemacheilus). A series of small dark cross marks in middle of side continued as larger, broader blotches on the peduncle, and a black spot in the center of caudal base; front of dorsal and caudal (above and below) with submarginal dark streaks ... pulcher

Nostrils separated by a distance greater than that of the posterior from eye, the anterior in a flap-like tube (Yunnanilus) ... see 2

2. Depth, 3.5 to 4; lateral line obscure or absent; back and sides tending to be blotched and marbled with dark, with narrower pale interspaces; eye less than interorbital ... nigromaculatus

Depth, about 4.5; lateral line evident, incomplete; markings fewer on a broader pale ground; eye about equal to interorbital ... pleurotaenia

Depth, 3.5 (4.5 in fig.); lateral line evident, incomplete; markings as above; eye in interorbital, about 1.5 ... salmonides

Subgenus Nemacheilus Van Hasselt

Nemacheilus pulcher Nichols and Pope

Figure 112 and Plate I, figure 2

Nemacheilus pulcher Nichols and Pope, 1926, Bull. Amer. Mus. Nat. Hist., LIV, p. 338, Fig. 10, Pl. xxvi, fig. 2. Hainan.

Locality of Material:—Canton; Poseh, Kwangsi (Lin, 1935, pp. 312-313, Figs. 7, 8).

Description:—Depth in length to base of caudal, 4.5; head, 3.8; eye in head, 3.5 (specimen of 42 mm. standard length). Dorsal rays, 14; anal, 8; scales, about 100.
Fig. 112. *Nemacheilus pulcher* Nichols and Pope. Type. 42 mm. without caudal.

Subgenus *Yunnanilus* Nichols

Nemacheilus nigromaculatus Regan

Locality of Material:—Specimen examined from Yunnan.

Description:—Depth in length to base of caudal, 3.5; head, 3.5; eye in head, 5 (specimen of 73 mm. standard length). Dorsal rays, 11 or 12; anal, about 8; scales, about 125.

Nemacheilus pleurotaenia Regan

Locality of Material:—Specimens examined from Yunnan.

Description:—Depth in length to base of caudal, 4.5; head, 3.9; eye in head, 5 (specimen of 52 mm. standard length). Dorsal rays, 11 or 12; anal, about 7; scales small, isolated.

Nemacheilus salmonides Chaudhuri

Nemachilus salmonides Chaudhuri, 1911, Rec. Indian Mus., Calcutta, VI, p. 18, Pl. 1, figs. 3, 3a. Yunnan.

Description:—Depth in length to base of caudal, 3.5 (about 4.5 in fig.); head, 4; eye in head, 4.6 (specimen 56 mm. long). Dorsal rays, 10; anal, 6.

Genus *Lefua* Herzenstein

Small loaches with a rounded caudal fin; no erectile spine below the eye; 8 barbels (4 pairs). A few species, which are questionably distinct from one another, in northeast temperate Asia.

A pair of small, slender, well-defined barbels near the anterior nostrils. Air bladder with a free portion in the ventral cavity. Head not compressed.
SYSTEMATIC ACCOUNT

KEY TO CHINESE Lefua

No bold black lateral stripe ... costata
A bold black stripe from the eye to the middle of the caudal fin andrewsi

Lefua costata (Kessler)

Figure 113 and Plate VIII, figure 2

Fig. 113. Lefua costata (Kessler). Type of Lefua andrewsi Fowler. After Fowler. (See page 276.)

Locality of Material:—Specimens examined from Chihli and Shansi.

Description:—Depth in length to base of caudal, 6.6; head, 4.5; eye in head, 5.8 (specimen of 53 mm. standard length). Dorsal rays, about 8; anal, about 7; scales small, little evident.

Lefua andrewsi Fowler

Locality of Material:—Specimens examined from Chihli and Shansi.

Description:—Depth in length to base of caudal, 6.6; head, 4; eye in head, 5 (specimen 42 mm. standard length). Dorsal rays, about 9; anal, about 8; scales small, little evident.

Remarks:—Vladykov (in MS) considers the difference between Lefua andrewsi and Lefua costata merely one of sex, an opinion in which the author concurs.

Genus Barbatula Linck

More or less elongate, little compressed, dull-colored, small loaches without noticeable scales, particularly abundant and varied in high central Asia, the species and races numerous and difficult. Several occur in northern and western China.

Barbels 6 (3 pairs, none at nostrils). No erectile spine (concealed or other-
wise) below the eye. Head not laterally compressed. Lateral line distinct, complete or essentially so. Nostrils narrowly separated from eye, close together, the anterior with a flap behind, its rim little raised in front. Caudal variously rounded, truncate or slightly indentate.

The extralimital subgenus Diplophysa has the posterior part of the air bladder free, only the anterior part enclosed in a bony capsule. The subgenus Homatula has somewhat the appearance of Homaloptera, head well depressed, tail strongly compressed. Jaws peculiar, premaxillaries fused in a rounded point above, each mandible firm, curved, prominent, the two separated by a notch.

Key to Chinese Barbatula

1. Head not particularly depressed, nor pectorals expanded in a horizontal plane; jaws not peculiar (Barbatula) .. see 2
 Head well depressed, tail deep and compressed; pectorals expanded in a horizontal plane so as to suggest Homaloptera. Premaxillaries fused in a rounded point above; mandibles prominent, separated by a notch (Homatula) .. see 10
2. Scales well marked ... see 3
 Scales obscure or absent .. see 4
3. Depth, a little more than 7. A violaceous band along the back and pale spots on the sides .. livida
 Depth, 1 1/2. Marked with large brown blotches forming a series of bands variegata
4. Caudal pointed, with 3 dark bands .. bleekeri
 Caudal slightly rounded. Yellowish marbled with darker, dorsal and caudal marbled .. dabryi
 Caudal more or less emarginate .. see 5
 Caudal forked for more than 1/3 of its length; ventral origin under or very slightly behind that of dorsal; head triangular .. cuneicephalus
5. Deeper; depth, less than 6. Broad transverse dark bars on the back; dorsal and caudal with 1 to 3 series of dark spots on the rays .. grahami
 Less deep; depth, more than 6 .. see 6
6. Deeper; depth, less than 8 .. see 7
 More slender; depth, more than 8 .. see 8
7. Two distinct membranous keels at the chin see 9
 Without distinct membranous keels at the chin. Broad dark saddles along the back and irregular blotches on sides .. sellaefer
8. Ventral axil about under dorsal origin. Blotches forming an irregular, broad, almost or quite continuous dark band along the side; dorsal and caudal faintly barred .. toni
 Ventral placed below front part of dorsal. Many vague broken dark bars on sides, and faint ones on dorsal and caudal .. fowleri
 Ventral under hind part of dorsal, their axils apposed. A series of more or less confluent, small, obscure, dark blotches along the lateral line .. posteroventralis
9. Ventral origin slightly before that of dorsal; ventrals not nearly reaching to anal .. robusta
 Ventral origin slightly behind that of dorsal; ventrals reaching nearly to anal .. stoliczka
10. Depth, 8 or more; caudal rounded; body with 15 or more dark cross bands
 Depth, about 7; caudal truncate or slightly forked see 11
 Depth, little more than 6; caudal slightly forked; no cross bands see 12
 Depth, 5.8 to 6.3; caudal emarginate; 12 or 13 broad, dark cross bands .. incerta
11. Head, 5 to 5.25; cross bands, about 15, 5 on caudal region oxygnatha
 Head, about 6; about 9 cross bands on caudal region potanini
12. Caudal truncate; a dark bar across caudal base but without conspicuous cross bands .. fasciolata

Subgenus Barbatula Linck

Barbatula bleekeri (Sauvage and Dabry de Thiersant)

Description:—Depth in length, more than 5.5; head, 5.5; eye in head, 4 (specimen 25 mm. long). Dorsal rays, 9; anal, 8; scales invisible.

Barbatula (?) dabryi (Sauvage)

Locality of Material:—China (Sauvage and Dabry de Thiersant, 1874, p. 5).

Description:—Head in length to base of caudal, about 4.7; eye small, little more than half interorbital. Dorsal rays, 10; anal, 9; body scaleless.

Barbatula (?) livida (Sauvage and Dabry de Thiersant)

Description:—Depth in length, a little more than 7; head, 7; eye in head, about 5.5. Dorsal rays, 9; anal, 7; scales comparatively large.

Barbatula (?) variegata (Sauvage and Dabry de Thiersant)

Description:—Depth in length, 11; head, 6; eye small (specimen 110 mm. long). Dorsal rays, 9; anal, 6; scales well visible.

1 Barbatula humilis probably comes here. Side of body with 14 or 15 narrow, vertical bands.
Barbatula grahami (Regan)

Description:—Depth in length to base of caudal, about 5.3; head, 4 to 4.3; eye in head, 4.5 to 4.7 (specimens 70 to 82 mm. long). Dorsal rays, 11; anal, 8.

Barbatula toni (Dybowski)

Barbatula toni toni (Dybowski)

Description:—Depth in length to base of caudal, 6.5 to 8.7; head, 4.4; eye in head, 9 (specimen about 120 mm. total length). Dorsal rays, 8 or 9; anal, 6 or 7; scales fine and inconspicuous.

Barbatula toni fowleri Nichols

Figure 114

Am.Mus.No.8409

Fig.114. Barbatula toni fowleri Nichols. Type. 85 mm. standard length.

Description:—Depth in length to base of caudal, 6.2; head, 4.6; eye in head, 5.7 (specimen of 85 mm. standard length). Dorsal rays, 9; anal, 7 or 8; scales very fine, only evident on peduncle.

Barbatula toni posteroventralis Nichols

Figure 115 and Plate VII, figures 3 and 4

Description:—Depth in length to base of caudal, 7.3; head, 4; eye in head, 5.3 (specimen of 66 mm. standard length). Dorsal rays, 9; anal, 7 or 8; no evident scales.
SYSTEMATIC ACCOUNT

Barbatula yarkandensis (Day)

Barbatula yarkandensis sellaefer Nichols

Figure 116 and Plate VII, figures 1 and 2

Description:—Depth in length to base of caudal, 6.8; head, 3.9; eye in head, 6.2 (specimen of 73 mm. standard length). Dorsal rays, 9; anal, 6; no evident scales.

Barbatula robusta (Kessler)

Description:—Depth in length to base of caudal, 8.4 to 9.7; head, 4.6 to 5; eye in head, 6.7 to 7.3 (specimens up to 158 mm. long). Dorsal rays, 10; anal, 7; no evident scales.

Barbatula stoliczkai (Steindachner)

Plate IX, figure 1

Locality of Material:—Specimens examined from Shansi.

Description:—Depth in length to base of caudal, 9; head, 4.5; eye in head, 6 (specimen of 78 mm. standard length). Dorsal rays, 10; anal, 7; no evident scales.

Barbatula cuneicephalus Shaw and Tchang

Description:—Depth in length to base of caudal, 8 to 8.3 (once 10); head, 4.4 to 4.7; eye in head, 5 to 6.3 (specimens 47 to 92 mm. standard length). Dorsal rays, 9 to 11; anal, 7 or 8; scales not appreciable. Caudal forked for more than 3/5 of its length; ventral origin under or very slightly behind that of dorsal; head triangular.

Remarks:—This is a doubtful species; the figure by Shaw and Tchang does not agree with the description and measurements, showing depth, about 5.4; head, 4.3; eye, 7.4; dorsal, 8 1/2; anal, 7.

Subgenus Homatula Nichols

Barbatula oxygnatha (Regan)

Description:—Depth in length, 8 to 9.5; head, 5 to 5.3; eye in head, 6 (specimens 102 to 131 mm. long). Dorsal rays, 11; anal, 7; body with small scales behind the level of the dorsal fin; farther forward, rudimentary scales on sides.

Barbatula berezowskii (Günther)

Description:—Depth in length to base of caudal, 8; head, 6 (specimen of 122 mm. standard length). Dorsal rays, 11; anal, 6.

Barbatula potanini (Günther)

Locality of Material:—Specimens examined from Szechwan.

Description:—Depth in length to base of caudal, 7; head, 4.4; eye in head, 5.3 (specimen of 75 mm. standard length). Dorsal rays, 10; anal, 7; no evident scales.
Barbatula incerta Nichols

Figure 117

Barbatula (Homatula) incerta Nichols, 1931, Lingnan Sci. Jour., Canton, X, p. 458, Fig. 2. Kwangtung.

![Image of Barbatula incerta](image)

Fig. 117. Barbatula incerta Nichols. Type. 63 mm. standard length.

Description:—Depth in length to base of caudal, 6.2; head, 4.4; eye in head, 6.5 (specimen 63 mm. standard length). Dorsal rays, 9; anal, 7; scales, about 100 behind dorsal origin.

Barbatula hingi (Herre)

Description:—Depth in length, 5.8 to 6.3; head, 3.7 to 4; eye in head, 6.2 to 6.6 (specimens 25 to 58 mm. long). Dorsal rays, 10; anal, 7; scales, about 130.

Barbatula fasciolata (Nichols and Pope)

Figure 118

![Image of Barbatula fasciolata](image)

Fig. 118. Barbatula fasciolata (Nichols and Pope). 60 mm. without caudal.

Description:—Depth in length to base of caudal, 7; head, 4.4; eye in head, 6 (specimen of 60 mm. standard length). Dorsal rays, 10; anal, 7; scales very fine, scarcely evident except on sides posteriorly.

Barbatula humilis (Lin)

Description:—Depth in length to base of caudal, 6.6; head, 4; eye in head,
10 (specimen 60 mm. standard length). Dorsal rays, 9; anal, 6; scales minute, embedded.

Caudal emarginate; side of body with 14 or 15 narrow, vertical bands. Apparently related to *fasciolata*, but description unsatisfactory.

Genus Homaloptera Van Hasselt

Small, moderate or elongate, bottom loaches with the head more or less depressed and the body compressed. Flattened below anteriorly and with the paired fins, particularly the pectorals, expanded and rounded, lying in a horizontal plane. Eye small; orbital rim free. Mouth small, inferior, transverse. Scales fine, appreciable; lateral line complete. No erectile spine below the eye. Six barbels (2 pairs on snout and 1 at corners of mouth). Ventrals separate, with 8 to 11 rays.

Numerous species in southern Asia and the East Indies.

Key to Chinese Homaloptera

1. Caudal rounded; 4 pairs of barbels .. see 2
 Caudal truncate or subtruncate; peduncle a little deeper than long. Scales, about 85 .. stenosoma
 Caudal obliquely emarginate; peduncle moderately longer than deep; scales, about 70; zigzag bands and large spots on back see 3
 Caudal forked ... disparis
2. Eye, about 5; dorsal, 6; scales, more than 120 rotundicauda
 Eye, 8 or 10; dorsal, 8; scales, less than 120 hofmanni
3. Peduncle moderately longer than deep .. see 4
 Peduncle slender, much (4 times) longer than deep sinensis
4. A bold black lateral stripe. Scales, about 150 coldwelli
 No black lateral stripe. Scales, 65 to 75 .. see 5
5. Scales, about 66; dorsal scales keeled ... kwangsiensis
 Scales, about 71 or 72; dorsal scales smooth yaotanensis
 Ventrolateral scales spinous; caudal lobes rounded acuticauda
 Ventrolateral scales smooth; caudal lobes pointed subgenus Octonema Martens

It is possible that this subgenus belongs in *Barbatula* and should replace subgenus *Homatula* Nichols.

Homaloptera rotundicauda Martens

Description:—Depth in total length with caudal, 7.2; head, 5.4; eye in head, 5 (specimen of 54 mm. total length). Dorsal rays, 6; anal, 6; scales, more than 120.

Homaloptera hoffmanni (Herre)

Description:—Depth in length, 5.7 to 6.3; head, 4.4 to 4.6; eye in head, 8.5 to 9.3 (specimens 35 to 76 mm. long). Dorsal rays, 8; anal, 7; scales, 115 to 118, 85 to 88 predorsal.

Subgenus *Vanmanenia* Hora

Homaloptera stenosoma (Boulenger)

Description:—Depth in length to base of caudal, 6; head, 5.5; eye in head, 6 (specimen 105 mm. long). Dorsal rays, 9; anal, 7; scales, 85.

Subgenus Sinohomaloptera Fang

Homaloptera caldwelli Nichols

Figure 119

Vanmanenia caldwelli, Fang, 1935, Sinensia, VI, p. 68.

Locality of Material:—Specimens examined from Chungan Hsien (many), Fuching Hsien, and Yenping, Fukien; up to 85 mm. standard length.
Description:—Depth in length to base of caudal, 5; head, 4.6; eye in head, 5 (specimen of 48 mm. standard length). Dorsal rays, 10; anal, 7; scales, about 150.

Remarks:—This species has a forked caudal, more or less banded, not as figured from the type specimen (Nichols, 1928, p. 47, Fig. 42) which had an imperfect caudal fin.

Homaloptera kwangsiensis Fang

Description:—Depth in length to base of caudal, 6.4 or 6.5; head, 4.7 or 4.8; eye in head, 5.4 or 5.5 (specimen 77.5 mm. standard length). Dorsal rays, 10; anal, 7; scales, 66.

Homaloptera yaotanensis (Fang)

Sinohomaloptera yaotanensis Fang, 1931, Sinensia, I, p. 138, Fig. 1.

Homaloptera yaotanensis yaotanensis (Fang)

Sinohomaloptera yaotanensis Fang, 1931, Sinensia, I, p. 138, Fig. 1. Yao-tan, Wa-chang, Luchow, Szechwan.

Description:—Depth in length to base of caudal, 7.5; head, 4.8; eye in head, 6.2 or 6.3 (specimen 60 mm. standard length). Dorsal rays, 10; anal, 7; scales, about 71.

Remarks:—“The fishes of this species are found very numerous in the streams during the late spring and summer, all adhering on rock surface. They become rare in the winter... In the summer, these fishes are scraped off from the rocks with thin knives and collected in saxes [sic] by the natives. They are either dried or pickled for sale” (Fang, 1931.1, p. 143).

Homaloptera yaotanensis acuticauda (Fang)

Sinohomaloptera yaotanensis acuticauda Fang, 1931, Sinensia, I, p. 143, Fig. 5. Yao-tan, Wa-chang, Luchow, Szechwan.

Description:—Depth in length to base of caudal, 7.5 or 7.6; head, 4.7; eye in head, 5.6 or 5.7 (specimen 53 mm. standard length). Dorsal rays, 10; anal, 7; scales, about 72.

Subgenus Liniparhomaloptera Fang

SYSTEMATIC ACCOUNT

Homaloptera disparis (Lin)

Description:—Depth in length, 5.8; head, 5.2; eye in head, 8 (specimen 52 mm. standard length). Dorsal rays, 10; anal, 7; scales, about 70.

Three pairs of snout and one of larger maxillary barbels; a rostral groove before the mouth; paired fins with a single unbranched anterior ray.

Subgenus Homaloptera Van Hasselt

Homaloptera sinensis (Sauvage and Dabry de Thiersant)

Psilorhynchus sinensis and abbreviata, Hora, 1932, Mem. Indian Mus., Calcutta, XII, pp. 300, 301.

Description:—Depth in length to base of caudal, 7 to 8; head, 5.1; eye in head, 7 (specimens about 70 mm. standard length). Dorsal rays, 10 or 11; anal, 7; scales, about 65 or 75.

Genus Lepturichthys Regan

Slender, depressed, bottom loaches with lower surface flat, paired fins broad and rounded, in a horizontal plane. The peduncle is long and slender, making about one-third of the head and body length, its least depth about equal to the diameter of the small eye. Mouth small, transverse, on the lower side of the head. Lips fringed, papilllose, 2 or more rows of barblets before and behind, as well as 2 or 3 pairs of short barbels about the mouth. Caudal well forked. One or two species in the valley of the Yangtze, rather uncommon.

Lepturichthys fimbriata (Günther)

The key to the races of Lepturichthys fimbriata which follows is from Hora (1932, p. 293).

KEY TO CHINESE Lepturichthys fimbriata

1. Greater part of dorsal surface of head and body smooth; low keels on scales in tail region and some scales on anterior part of body provided with spinous projections at their ends .. see 2
Entire dorsal surface of head and body covered with wart-like spinous processes; larger scales in front of dorsal with 3 or 4 warts on their distal borders *nicholsi*
2. Seven anterior simple rays in pectoral; longest ray of dorsal shorter than head ... *fimbriata*
Nine anterior simple rays in pectoral; longest ray of dorsal much longer than head *güntheri*

Lepturichthys fimbriata fimbriata (Günther)

Description:—Depth in length to base of caudal, 12.6; head, 6.3; eye in head, 6.4 (specimen 101 mm. standard length). Dorsal rays, 11; anal, 7; scales, about 82 (pores).

Lepturichthys fimbriata güntheri Hora

Lepturichthys güntheri Hora, 1932, Mem. Indian Mus., Calcutta, XII, p. 295, Pl. x, fig. 7. Mountain streams running into the Min River, Szechwan.

Description:—Depth in length to base of caudal, 11.1 to 11.8; head, 6.2 to 6.9; eye in head, 6.6 to 7.8 (specimens 96 to 100 mm. standard length). Dorsal rays, 11; anal, 7; scales, about 88 (pores).

Lepturichthys fimbriata nicholsi Hora

Plate VIII, figure 4

Lepturichthys nicholsi Hora, 1932, Mem. Indian Mus., Calcutta, XII, p. 297, Pl. x, fig. 8, Pl. xii, fig. 3. Tungting Lake, Hunan.

Locality of Material:—Specimens examined from Tungting Lake, Hunan.

Description:—Depth in length to base of caudal, 10.4 to 11.2; head, 5.9 to 6.1; eye in head, 5 to 6.3 (specimens 58 to 73 mm. standard length). Dorsal rays, 9 to 11; anal, 6 or 7; scales, about 145 (total).

Remarks:—The largest secured at Tungting Lake was under 4 inches long. Each Chinese shrimp fisherman has a sort of drag-net which he drags down stream along the lake bottom all day. Dozens of these fishermen were at work, and daily for about a month we examined the bottoms of their boats for rare fish, as many small fish are taken along with the shrimp. The present species was secured in this way. It was never seen in numbers, and often many boats would be searched without a single one being found (C. H. Pope, field notes).

Genus Praeformosania Fang

This genus is intermediate between *Vanmanenia*, here considered a subgenus of *Homaloptera*, and *Crossostoma*. It has 7 rostral barbels, the 3 additional ones,
according to Fang, secondary modifications of the rostral lobe. Some individuals of one of his species (*P. intermedia*) even have barbels more as in *Vanmanenia*. Through species of *Crossostoma* which approach *Praeformosania* (such as *C. fascicu-{
cauda* in China, placed in the genus *Formosania*, here not considered worth even subgeneric recognition) there is a natural series of intermediates between *Homalooptera stenosoma* and *Crossostoma davidi*.

Key to Chinese *Praeformosania*

Distance from the vent to the anal ⅔ that from the vent to the ventral axil *pingchowensis*

Distance from the vent to the anal ⅔ that from the vent to the ventral axil *intermedia*

Distance from the vent to the anal but slightly less than that from the vent to the ventral axil *lineata*

Praeformosania pingchowensis Fang

Praeformosania pingchowensis Fang, 1935, *Sinensia*, VI, p. 72, Figs. 3c, 9. Pingchow-hsien, southern Kweichow, mountain streams tributary to the Si-Kiang or West River.

Description:—Depth in length to base of caudal, 6.7 to 6.9; head, 4.6 to 4.8; eye in head, 6.3 to 6.6 (specimens 79 to 88 mm. standard length). Dorsal rays, 10; anal, 7; scales, approximately 101 to 102. Somewhat mottled, the fins barred.

Praeformosania intermedia Fang

Praeformosania intermedia Fang, 1935, *Sinensia*, VI, p. 75, Fig. 10. Tu-yuen-hsien, southern Kweichow, mountain streams running into Tungting Lake.

Description:—Depth in length to base of caudal, 5.5 to 7.3; head, 4.3 to 4.8; eye in head, 4.4 to 6.4 (specimens 50 to 61 mm. standard length). Dorsal rays, 10 to 11; anal, 7 to 8; scales, approximately 97 to 102. Color much as in *pingchowensis*.

Praeformosania lineata Fang

Praeformosania lineata Fang, 1935, *Sinensia*, VI, p. 78, Fig. 11. Kwang-Lau, Ling-yuen-hsien, northwestern Kwangsi.

Description:—Depth in length to base of caudal, 5.6 or 5.7; head, 4.8 or 4.9; eye in head, 7 (specimen 68 mm. standard length). Dorsal rays, 10; anal, 7; scales, approximately 92 pores. Body and peduncle with 2 dark brownish dorsolateral stripes from head to caudal base at each side.

Genus *Crossostoma* Sauvage

Moderately elongate, small, bottom loaches with a fringe of some 13 barbels before the small, inferior, transverse, curved mouth. Apparently common in Fu-
kien, China, where three rather unlike but seemingly closely related forms are known, one of which parallels a Formosan fish.

Head depressed, body compressed; flattened below as far back as the ventrals. Pectorals somewhat expanded. Fine scales evident, and lateral line complete. The eye small, with a free rim. A pair of barbels at the end of the maxillaries, in addition to those before the mouth. No spine below the eye. Caudal obliquely truncate or notched.

Key to Chinese Crossostoma

1. Mouth relatively large (its width in head, less than 3); barbels hanging freely, the longest about equal to eye in length. Usually marked with large irregular dark blotches .. *davidi*

 Mouth small (its width in head, 3 or more); barbels reduced in size and distinctness .. see 2

2. Maxillary barbel about equal to eye in length; caudal slightly lunate; caudal crossed by about 4 black bands\(^1\) .. *fascicauda*

 Maxillary barbel \(\frac{1}{2}\) or less than \(\frac{1}{2}\) length of eye .. see 3

3. Caudal forked for about \(\frac{3}{4}\) of its length; irregular isolated dark blotches on body and upper and lower caudal margins .. *stigmata*

 Caudal obliquely truncate, its margin little if at all concave; dorsal and paired fins with blackish borders .. *fangi*

Crossostoma davidi Sauvage

Figure 120

Locality of Material:—Specimens examined from Chungan Hsien and Yen-ping, Fukien; up to 89 mm. standard length.

Description:—Depth in length to base of caudal, 6.4; head, 4.4; eye in head,

\(^1\) *Crossostoma tinkhami* apparently comes here. Caudal with 2 or 3 blackish cross bands.
6 (specimen of 65 mm. standard length). Dorsal rays, 10; anal, 8; scales, about 120.

Crossostoma fascicauda Nichols

Figure 121

_Crossostoma fascicau**da** Nichols, 1926, Amer. Mus. Novitates, No. 224, p. 2, Fig. 2. Fuching Hsien, Fukien.

Description:—Depth in length to base of caudal, 6; head, 4.1; eye in head, 7.2 (specimen of 81 mm. standard length). Dorsal rays, 11; anal, 8; scales, about 95.

![Fish illustration](image)

Fig. 121. Crossostoma fascicauda Nichols. Type. 81 mm. standard length.

Remarks:—We have many specimens referred to this form but not typical of it, as well as many specimens of *Crossostoma davidi*, from Chungan Hsien, north-western Fukien. A majority of these Chungan Hsien *C. fascicau**da** are much like Fuching Hsien *C. fascicau**da** and quite unlike *C. davidi*, but a small minority are intermediate between these two forms.

Crossostoma tinkhami Herre

Description:—Depth in length, 6.6 to 6; head, 4; eye in head, 6.4 to 7.2, in snout, 4 (specimens 36 to 66 mm. long). Dorsal rays, 10; anal, 7; scales, 93 or 94.

Caudal emarginate to lunate; a double row of 6 + 5 barbels on snout, the outermost 2 larger, as large as another pair at angle of mouth. Blackish above, whitish below; dorsal and caudal with 2 or 3, anal with a single blackish cross band.

Crossostoma stigmata Nichols

Figure 122

_Crossostoma stigmata** Nichols, 1926, Amer. Mus. Novitates, No. 224, p. 4, Fig. 3. Fukien.
_Formosania stigmata**, Fang, 1935, Sinensia, VI, p. 85, Fig. 14. Yenping, Fukien.
Crossostoma stigmata Nichols. Type. 53 mm. standard length.

Description:—Depth in length to base of caudal, 6; head, 4.5; eye in head, about 4 (specimen of 53 mm. standard length). Dorsal rays, 10; anal, 8; scales, about 90.

Crossostoma fangi Nichols

Figure 123

Crossostoma fangi Nichols, 1931, Lingnan Sci. Jour., Canton, X, p. 263, Fig. Near Canton.
Pseudogastromyzon fangi, Fang, 1934, Sinensia, IV, p. 46, Fig. 2.

Fig. 123. Crossostoma fangi Nichols. Cotype. 54 mm. standard length.

Description:—Depth in length to base of caudal, 5.4 to 5.5; head, 5; eye in head, 5.4 (specimens 52 and 54 mm. standard length). Dorsal rays, 10 or 11; anal, 7; scales, about 95 behind pectoral axil.

Genus Hemimyzon Regan

Small, short-bodied, bottom loaches, flattened below, approaching *Gastromyzon* in form and fins, but less specialized in that direction. Ventrals with 9 to 15 rays, not united.
VENTRAL surface of head and body flat, the bases of the expanded pectorals confluent with same; the ventrals similarly expanded, overlapped by the free ends of the pectorals. Head depressed; tail compressed. Mouth inferior, small, transverse.

An extralimital species (from Formosa) representing the subgenus Hemimyzon has ventral with 15 rays, caudal forked. A species from Fukien representing the subgenus Pseudogastromyzon has ventral with 9 to 11 rays, caudal obliquely truncate.

Key to Chinese Hemimyzon

Pectoral, 21; ventral, 10; scales, about 90; narrow, pale, somewhat oblique bars on flanks .. *zebroidus*

Pectoral, 18; ventral, 9; scales, about 70; a dark spot on the caudal base *myersi*

Subgenus Pseudogastromyzon Nichols

Hemimyzon zebroidus Nichols

Figure 124

Hemimyzon zebroidus Nichols, 1925, Amer. Mus. Novitates, No. 167, p. 1, Fig. 1. Near Yenping, Fukien.

Locality of Material:—Specimens examined from Chungan Hsien, Fuching Hsien, and Yenping, Fukien.

Fig. 124. Hemimyzon zebroidus Nichols. Type. 63 mm. standard length.
Description:—Depth in length to base of caudal, 6; head, 4.4; eye in head, 5 (specimen of 63 mm. standard length). Dorsal rays, 9 or 10; anal, 8; scales, about 90.

Hemimyzon myersi (Herre)

Pseudogastromyzon myersi Herre, 1932, Lingnan Sci. Jour., Canton, XI, p. 430, Fig. 1. Hong Kong Island.

Description:—Depth in length, 8.1; head, 4.4 or 4.5; eye in head, 4.3 (specimen 29 mm. long). Dorsal rays, 9; anal, 6; scales, about 70.

Genus _Gastromyzon_ Günther

Small, short-bodied, bottom loaches, flattened below. The ventrals with 18 to 23 rays, united to form a suctorial disk. Several East Indian species; a few in southern China.

Ventral surface of head and body flat; the bases of the pectorals united with the lower surface of the body to form an oval disk; the ventrals so united to form a circular disk, overlapped by the free ends of the pectorals behind their axils. Head and body before dorsal depressed, evenly convex above; peduncle compressed. Mouth inferior, small, semicircular, transverse.

Key to Chinese _Gastromyzon_

1. Caudal obliquely emarginate; scales, about 70 or 75 .. see 2
 Caudal obliquely truncate; scales, 110 to 120 ... see 3
 Caudal obliquely emarginate; scales, about 137 ... _szechuanensis_

2. Vent overlapped by ventrals. Color plain, little spotted; dorsal and caudal barred .. _leveretti_
 Vent just at posterior border of ventrals. Body with distinct close-spaced black spots; paired fins with black and white margins ... _kweichowensis_

3. Vent behind posterior border of ventrals; without noticeable cross bars on body ... _pingi_
 Vent at posterior border of ventrals; color pale with about 15 more or less perfect, narrow, dark cross bars ... _zebroidus_

Gastromyzon leveretti Nichols and Pope

Gastromyzon leveretti leveretti Nichols and Pope

Figure 125

Gastromyzon leveretti leveretti Nichols and Pope. Type. 50 mm. without caudal.

Description:—Depth in length to base of caudal, 5.6; head, 4; eye in head, 5 (specimen of 50 mm. standard length). Dorsal rays, 10; anal, 9; scales, about 75.

Gastromyzon leveretti kweichowensis Fang

Gastromyzon leveretti kweichowensis Fang, 1931, Sinensia, II, p. 41, Fig. 1. San-ho-hsien, Kweichow.

Description:—Depth in length to base of caudal, 5.4; head, 4 or 4.1; eye in head, 6.3 (specimen 54 mm. standard length). Dorsal rays, 10 (first 2 simple); anal, 6 (first 2 simple); scales, about 70.

Remarks:—Found in mountain streams together with *Sinogastromyzon san-hoensis*.

Gastromyzon pingi Fang

Gastromyzon pingi pingi Fang

Description:—Depth in length to base of caudal, 5.5 or 5.6; head, 4.5; eye in head, 6.4 (specimen 61 mm. standard length). Dorsal rays, 8; anal, 6; scales, 119.

Gastromyzon pingi zebroidus Fang

Description:—Depth in length to base of caudal, 5.4; head, 4 or 4.1; eye in head, 5.9 (specimen 54 mm. long). Dorsal rays, 8; anal, 6 or 7; scales, 112.

Gastromyzon szechuanensis Fang

THE FRESH-WATER FISHES OF CHINA

Description:—Depth in length to base of caudal, 5.2; head, 4.9; eye in head, 7.7 or 7.8 (specimen 73 mm. standard length). Dorsal rays, 10; anal, 6; scales, 137.

Genus Sinogastromyzon Fang

Sinogastromyzon Fang, 1930, Sinensia, I, p. 35. Type: Sinogastromyzon wui Fang.

This genus resembles Gastromyzon but differs from it in the following particulars. The ventrals are completely and evenly united behind, whereas in Gastromyzon there is a notch between them; the gill cleft is elongate on the side of the head; there is no dermal flap above the ventrals, and there are two small barbels instead of one at the angle of the mouth.

Key to Chinese Sinogastromyzon

1. Dorsal side of muscular bases of pectoral and ventral fins and area before ventral origin without scales; 2 simple anal rays or a spine of 2 coalescent rays Pectoral and ventral bases and area above and before origin of ventral scaly; anal with a strong, laterally grooved spine, of 2 coalescent anterior simple rays .. see 2

2. Anal with 2 simple rays; side of body covered by free portion of pectoral partly scaly; scales keeled .. szechuanensis

3. Side of body before ventral origin and below the line drawn from it to posterior insertion of pectoral, naked; scales, about 6.1 .. intermedius

4. Scales, about 62 .. sanhoensis

Sinogastromyzon wui Fang

Sinogastromyzon wui Fang, 1930, Sinensia, I, p. 36, Pl. II, figs. 3-4. Kwangsi.

Description:—Depth in length to base of caudal, 6 or 6.1; head, 4.3 or 4.4; eye in head, 4.7 or 4.8 (specimen 91 mm. standard length). Dorsal rays, 10; anal, I, 5; scales, 63.

PLATE IX

Fig. 1. Barbatula stoliczkai (Steindachner). 78 mm. standard length. Mai Tai Chao, Shansi.

Fig. 2. Misgurnus mizolepis mizolepis Günther. 167 mm. standard length. Tungting Lake.

Fig. 3. Cobitis taenia sinensis Sauvage and Dabry de Thiersant. 47 mm. standard length. Tungting Lake.

Fig. 4. Gobius cliffordpopei Nichols. Type. 34 mm. standard length. Tungting Lake.
Sinogastromyzon szechuanensis Fang

Description:—Depth in length to base of caudal, 7.4; head, 4.9; eye in head, 5.8 (specimen 71 mm. standard length). Dorsal rays, 10; anal, 7; scales, 64.

Sinogastromyzon hsiashiensis Fang

Sinogastromyzon hsiashiensis Fang, 1931, Sinensia, II, p. 48, Fig. 3. Mountain stream, Hsia-shih, Ma-ha-hsien, Kweichow, altitude about 1200 feet; tributary of an affluent of Tungting Lake.

Description:—Depth in length to base of caudal, 5.9; head, 4.5; eye in head, 5.4 (specimen 65 mm. standard length). Dorsal rays, 10 (first 2 simple); anal, 7; scales, 57.

Sinogastromyzon intermedius Fang

Sinogastromyzon intermedius Fang, 1931, Sinensia, II, p. 54, Fig. 7. Tung-kwei, Lungchow, southwestern Kwangsi.

Description:—Depth in length to base of caudal, 6; head, 3.7 or 3.8; eye in head, 5.9 (specimen 60 mm. standard length). Dorsal rays, 10 (first 2 simple); anal, 6 (I, 5); scales, 61.

Sinogastromyzon sanhoensis Fang

Sinogastromyzon sanhoensis Fang, 1931, Sinensia, II, p. 56, Fig. 9. San-ho-hsien, south Kweichow.

Description:—Depth in length to base of caudal, 6.4; head, 4.9; eye in head, 5.6 or 5.7 (specimen 81 mm. standard length). Dorsal rays, 10 (first 2 simple); anal, 6 (I, 5); scales, 53.

Family CYPRINODONTIDAE

TOOTH-CARPS

Small fishes with a single, short, soft-rayed back fin rather posterior in position; the ventrals inserted well behind the pectorals, the mouth usually small, more or less transverse, and directed somewhat upwards; with small teeth; the caudal usually more or less rounded, head flattened, eye large, scales moderate, smooth.

This family and its allies are characteristic of lowland fresh waters and brackish estuaries, though some species are found in the sea. They form an appreciable factor, though not a large one, of the fresh-water faunas of southern Asia and of Africa, but are poorly represented in China.
THE FRESH-WATER FISHES OF CHINA

Genus Aplocheilus McClelland

Small, compressed, large-eyed, fresh-water, minnow-like fishes of the Old World, with a single, small, spineless, posteriorly placed, dorsal fin; the mouth small, transverse, with projecting lower jaw; the teeth small, pointed in a narrow band on the jaws. Anal fin longer than the dorsal, unmodified. Ventral present.

The subgenus Oryzias includes one or two species characteristic of large islands not far from the coast of China. They have premaxillaries not protractile; orbital rim adnate or with a very slight fold; gill membranes narrowly joined under the hind margin of the eye, free from the isthmus; caudal truncate or slightly emarginate. There is also a species of the Indian subgenus Panchax, Aplocheilus rubropunctatus Steindachner, probably erroneously recorded from China (Rendahl, 1928, p. 176).

Key to Chinese Aplocheilus

1. No teeth on vomer; anal, with 17 to 25 rays; no cross bands. Caudal truncate or slightly emarginate ... see 2
 Anal rays, 17 to 20 .. latipes
 Anal rays, about 25 .. curvinotus

Subgenus Oryzias Jordan and Snyder

Aplocheilus latipes (Temminck and Schlegel)

Poecilia latipes Temminck and Schlegel, 1846, in Siebold, Fauna Japonica, Pisces, p. 224, Pl. ciii, fig. 5. Japan.

Locality of Material:—Specimens examined from Shantung; up to 29 mm. standard length.

Description:—Depth in length to base of caudal, 3.5 to 3.9; head, 3.5 to 4; eye in head, 2.7 to 3 (specimens 20 to 29 mm. standard length). Dorsal rays, 6; anal, 16 to 20; scales, 29 to 32.

Aplocheilus curvinotus Nichols and Pope

Figure 126

Aplocheilus curvinotus Nichols and Pope, 1927, Bull. Amer. Mus. Nat. Hist., LIV, p. 380, Fig. 43. Hainan.
SYSTEMATIC ACCOUNT

Description:—Depth in length to base of caudal, 3.4; head, 3.4; eye in head, 2.6 (specimen of 23 mm. standard length). Dorsal rays, 6; anal, 25; scales, about 35.

Fig. 126. Aplocheilus curvinotus Nichols and Pope. Type. 23 mm. without caudal.

Family HEMIRAMPHIDAE
HALFBEAKS

Slender, active, marine, surface fishes, with the upper jaw short, the lower prolonged beyond it, toothless and spear-like. The halfbeaks have presumably been derived from the young of the needlefishes (Belonidae), which, in varying degree, pass through a half-beak condition, doubtless correlated with feeding habits.

Genus Hyporhamphus Gill

Slender, actively free swimming, marine, shore, or estuarine fishes, wherein the upper jaw is short, the lower jaw ends in a long spear-like prolongation and is toothed only at the base. Numerous species, representatives in all warm seas, a few only distinctively fresh-water.

Dorsal and anal fins low, alike in size and relative position; ventrals small, inserted about midway between gill opening and caudal base, considerably in advance of the dorsal; caudal fin more or less forked, its lobes equal. Scales rather large, deciduous. Teeth small, tricuspid. Gill rakers long and slender. Air bladder large and simple. Sides with a silvery band. Food mostly green algae.

The genus Hyporhamphus occurs in shallow water coastwise. One species is well established in Chinese fresh waters, and others (not included here) very likely enter the mouths of rivers to some extent.

Hyporhamphus sinensis (Günther)

Locality of Material:—Specimens examined from Tungting Lake, Hunan.
Description:—Depth in length (from tip of upper jaw) to base of caudal, 10.8; head (from tip of upper jaw), 4.5; eye in head, 4 (specimen of 70 mm. standard length). Dorsal rays, 15 to 17; anal, 15 to 20; scales, about 55.

Remarks:—Called “chen-yü” at Tungting Lake, where it is one of the common fish of the lake but too small to be of economic importance. Though sometimes larger, the average size seems to be about 6 inches. It may be picked out in any large mixture of small fry; and taking a place at random, half-an-hour’s fishing with a small one-man Chinese dip net netted half a dozen specimens. It has a silver stripe on the side (C. H. Pope, field notes).

Family GASTEROSTEIDAE

STICKLEBACKS

Very small fishes, with the first dorsal of more or less isolated spines. Pelvic bones fused, the ventral with a strong spine. Snout not excessively elongate. Skin naked or covered with thin bony plates. Peduncle with or without a keel. Gill membranes united in a free fold across the isthmus. Pectoral and caudal fins rounded.

Boreal and north temperate forms; one species recorded from China, rare.

Genus Pygosteus Gill

Sticklebacks with 7 to 12 dorsal spines, directed more or less to the sides in a zigzag manner. A representative species of this genus will be found in the fresh waters of most north temperate or boreal regions, also entering the sea.

Pygosteus pungitius (Linnaeus)

Pygosteus pungitius sinensis (Guichenot)

Description:—Depth in length to base of caudal, 4.2 to 5.4; head, 3.3 to 4.7; eye in head, 2.5 to 3.7. Dorsal rays, VII to IX, 8 to 11; anal, I, 8 to 10; anterior part of body with vertical bony plates, caudal peduncle with a well-developed lateral keel.
SYSTEMATIC ACCOUNT

Family OPHICEPHALIDAE

SNAKE-HEADS

The snake-heads possess accessory breathing organs, as do the related labyrinth fishes, but of a simpler character, a pair of simple cavities, pouches of the pharynx, lined with a thickened, puckered, vascular membrane. They are extremely tenacious of life, survive for considerable periods out of water, and can make some progress on land by the aid of rowing movement of the pectoral fins. They inhabit sluggish streams, ponds, and marshes, and when these latter dry up frequently remain in a torpid state in the mud until the rains come again.

Most belong to the genus *Ophicephalus*, and all are closely related to it.

Genus *Ophicephalus* Bloch

Elongate, more or less cylindrical, large-mouthed fishes of moderate size, with an undifferentiated dorsal fin running the length of the back, a similar anal fin along the posterior portion of the body below, caudal rounded, ventral fins present. Mouth terminal, or usually the lower jaw projecting. Scales small or of moderate size. Abundant, represented by a number of usually closely related species in Asia, Africa, and the East Indies, particularly in the tropics.

Key to Chinese *Ophicephalus*

1. Head not especially broad, interorbital in its length, 4 or more .. see 2
 Head broad, interorbital in its length, 3 to 3.5; dorsal rays, less than 40; anal, less than 25; scales, 40 to 45 *gachua*
2. Dorsal rays, about 30; anal, less than 25; scales, about 40 *punctatus*
 Dorsal rays, 40 or more; anal, more than 25; scales, more than 50 see 3
3. Fins not spotted with white (except sometimes posteriorly in *striatus*), no ocellus on base of caudal in adult ... *marulius*
 Vertical fins irregularly spotted with white and usually an ocellus on the base of the caudal fin ... see 4
4. Scales, 55 to 60; dorsal rays, 40 to 46 *argus*
 Scales, 62 to 67; dorsal rays, 49 to 52; several faintly ocellated blotches above the posterior part of the lateral line *striatus*
5. Scales on top of the head rather large, 8 or 10 series between the orbit and pre-opercular angle; vertical dark marks on the lower sides *aspilotus*
 Scales on top of the head rather large; greenish olive, darker on head and back, unmarked ... *maculatus*
Ophicephalus argus Cantor

Locality of Material:—Specimens examined from Yunnan; Anhwei; Hokou, Kiangsi; up to 184 mm. standard length.

Description:—Depth in length to base of caudal, 5.6; head, 3.1; eye in head, 8 (specimen of 182 mm. standard length). Dorsal rays, 49 to 52; anal, 32 to 33; scales, 62 to 67.

Ophicephalus striatus Bloch

Locality of Material:—South China (fide Gee).

Description:—Depth in total length, nearly 7; head, 3.7 or 3.8. Dorsal rays, 40 to 45; anal, 26 or 27; scales, about 57.
SYSTEMATIC ACCOUNT

Ophicephalus aspilotus Sauvage and Dabry de Thiersant

Description:—Depth in length, 7; head, about 2.3; eye in head, 5. Dorsal rays, 45; anal, 30; scales, 60.

Ophicephalus punctatus Bloch

Description:—Depth in length, 6; head, 3.6 or 3.7. Dorsal rays, 29 to 31; anal, 20 to 22; scales, about 40.

Ophicephalus gachua Hamilton-Buchanan

Figures 128, 129 and Plate X, figure 3

Ophicephalus gachua Hamilton-Buchanan, 1822, Fishes in Ganges, p. 68, Pl. xxi, fig. 21. Ganges River.

Locality of Material:—Specimens examined from near Canton; Hainan Island.

![Fig. 128. Ophicephalus gachua Hamilton-Buchanan. 120 mm. without caudal.](image)

![Fig. 129. Ophicephalus gachua Hamilton-Buchanan. 100 mm. standard length.](image)

Description:—Depth in length to base of caudal, 5.5; head, 3.2; eye in head, 5.3 (specimen of 50 mm. standard length). Dorsal rays, 32 to 37; anal, 21 to 23; scales, 40 to 45.
Ophicephalus marulius Hamilton-Buchanan

Locality of Material:—Generally credited to China.

Description:—Depth in total length, 7; head, 4. Dorsal rays, 49 to 55; anal, 31 to 36; scales, about 60.

Genus Channa Scopoli

An elongate, more or less cylindrical, large-mouthed fish of moderate size, with an undifferentiated dorsal fin running the length of the back, a similar anal fin along the posterior portion of the body below, caudal rounded, ventrals absent; scales rather small. Apparently a single species, perhaps with differentiable forms, abundant in southeastern Asia. Differs from Ophicephalus by the absence of ventral fins.

Channa asiatica (Linnaeus)

Locality of Material:—Swatow (fide Gee). Specimens examined from Tungting Lake, Hunan; Anhwei; Fukien; near Canton; Hainan Island; up to 255 mm. long.

Description:—Depth in length to base of caudal, 6.2; head, 3.3; eye in head, 5.2 (specimen of 87 mm. standard length). Dorsal rays, about 46; anal, about 28; scales, about 60.

Remarks:—Called "hua-t'sai-yü" at Tungting Lake. It was never seen for sale on the streets, nor was it seen in any of the fishermen's boats. An old fellow
brought in 5 in water and said he caught them at some distance—perhaps in a mountain stream (C. H. Pope, field notes).

Family OSPHRONEMIDAE
GOURAMIS AND PARADISE FISHES

Small, brightly colored fishes of sluggish south Asiatic and East Indian fresh waters. They have an accessory air-breathing apparatus above the gills on either side of the head, a more or less rosette-like structure made up of shelly plates richly supplied with fine blood vessels. The related climbing perches have a similar structure, from which these two families get the name labyrinth fishes, with which the snake-heads are sometimes included.

Various species of labyrinth fishes construct a floating nest or raft of mucus-coated bubbles, beneath which the eggs and larvae adhere until able to shift for themselves, meanwhile being sedulously guarded by one or both parents.

Genus Macropodus Lacepède

Small, highly colored labyrinth fishes (with a cavity above the third or upper portion of the first branchial arch, containing an elaborate apparatus consisting of thin laminae of bone, covered by a vascular mucous membrane, and employed as an auxiliary organ of respiration) of the fresh waters of southern and eastern Asia and adjacent islands. They build a floating nest of bubbles and are frequently kept in balanced aquaria under the name of paradise fish. A few varied but puzzling species.

Rather short-bodied, compressed. Eye rather large, mouth small. Dorsal and anal rather long, evenly continuous, of spines and rays, the spines more numerous than the rays. Scales of moderate size, ctenoid. Lateral line interrupted or absent. Ventral I, 5. No teeth on the palate.

Key to Chinese Macropodus

Caudal rounded or acuminate; cross bands faint or absent chinensis
Caudal concave behind, its corners produced; about 8 narrow, vertical, blackish bands on body viridiauratus

Macropodus chinensis (Bloch)

Chaetodon chinensis Bloch, 1790, Ausl. Fische (and Ichthyologie), IV, p. 5, Pl. ccxvii, fig. 1.
Macropodus chinensis, Myers, 1926, Copeia, No. 150, p. 99.
Locality of Material:—Ningpo; Shanghai; Chihli (fide Gee).
Specimens examined from Tungting Lake, Hunan; Anhwei; Shantung.

Description:—Depth in length to base of caudal, 2.5 to 2.7; head, 2.9; eye in head, 4 to 4.5 (specimens of 43 to 49 mm. standard length). Dorsal rays, XIV to XVII, 7 to 8; anal, XVIII to XX, 10 to 12; scales, 26 to 31.

Macropodus viridiauratus Lacépède

Figure 131

Locality of Material:—Specimens examined from Fukien; Lung T'au Shaan and near Canton, Kwangtung; Hainan Island.

Fig. 131. Macropodus viridiauratus Lacépède. 36 mm. without caudal.

Description:—Depth in length to base of caudal, 2.8; head, 2.8; eye in head, 3.9 (specimen of 36 mm. standard length). Dorsal rays, XIII to XV, 6 to 8; anal, XVII to XVIII, 15 to 16; scales, about 35.

Remarks:—Four specimens from Hokou, Kiangsi, referable to this form are not typical of it, and may be that it varies into the preceding, northward. They measure 40 to 47 mm. standard length; depth, 2.5 to 2.8; head, 2.9 to 3.1; eye, 4 to 4.5; dorsal, XI to XIV, 6 to 8; anal, XVII to XX, 11 to 14; scales, 29 to 30; caudal fork varying in depth and color bands in strength.

Genus Osphronemus Lacépède

Short-bodied, compressed labyrinth fishes with a short posterior dorsal fin, a
long anal fin with fewer spines than rays, ventral with a spine and 5 differentiated rays, of which the first is filamentous, the others more or less rudimentary. A few species in tropical Asia, one recorded from China.

No teeth on the palate. Scales of moderate size, ctenoid. Lateral line, when present, uninterrupted.

Osphronemus goramy Lacépède

Locality of Material:—Generally credited to China.
Description:—Depth in length to base of caudal, about 2.6; head, about 3.3; eye in head, about 4.4. Dorsal rays, XI to XIV, 11 to 12; anal, IX to XII, 19 to 21; scales, 30 to 38.
Remarks:—A food fish commonly introduced in the tropical Orient.

Family ANABANTIDAE

CLIMBING PERCHES

The climbing perches are classified in a single genus, Anabas, sometimes included in the preceding family (to which the name Anabantidae then applies).

Genus Anabas Cuvier

Small or rather small, usually dull-colored, fusiform labyrinth fishes found in the fresh waters and estuaries of India and the Malay region, and represented by numerous closely related species in the fresh waters of Africa.

Short or rather long-bodied, usually compressed behind, little compressed in front. Eye rather large, mouth moderate. Dorsal and anal rather long, evenly continuous, of spines and rays, the dorsal spines more numerous than, and the anal about equaling, the rays in number. Scales of moderate size, ctenoid. Lateral line interrupted. Opercles and preorbital serrate. Teeth on the palate.

Anabas scandens (Daldorff)

Locality of Material:—Haiho [Hoihow], Hainan (Oshima, 1926, p. 21).

Description:—Depth in total length (with caudal), 3 to 4; head, 3.5 to 3.7; eye in head, 4.5 to 5. Dorsal rays, XVII to XVIII, 8 to 10; anal, IX to X, 9 to 11; scales, 28 to 32.

Remarks:—When in the water the climbing perch frequently comes to the surface to breathe, and it will suffocate if deprived of this access to atmospheric air. It often comes out of water at night and after showers, to travel from pond to pond or to feed. In traveling overland it grips the ground with its spiniferous gill covers and pushes with pectoral fins and tail. Its tree climbing powers are presumably mythical, perhaps credited to it from instances of specimens left in the trees by predatory birds. It sometimes aestivates in the mud of dried swamps, ponds, or streams.

Not plentiful or generally distributed in China, where it has perhaps been introduced by the natives.

Family AMBASSIDAE

AMBASSIDS

Genus Ambassis Cuvier and Valenciennes

Small Indian and East Indian perch-like fishes, with the body elevated, compressed, more or less diaphanous. Lower limb of preopercle with a double serrated edge, opercle without prominent spine. A forwardly directed recumbent spine in front of the dorsal. Spinous and soft dorsals distinct or with slight connection at the base. Dorsal with VII spines, anal with III. Caudal well forked. Mouth oblique, the lower jaw projecting. Scales smooth, rather small, frequently deciduous. Common, a number of species recognized typically marine, but some species found only in fresh water and others entering fresh water freely, as is presumably the case with the single form here recorded.

Ambassis gymnocephalus (Lacépède)

Lutjanus gymnocephalus Lacépède, 1802, Hist. Nat. Poissons, III, Pl. xxiii, fig. 3. Sumatra.

Locality of Material:—Kachek River, Hainan (Oshima, 1926, p. 19).

Specimen examined from Kwangtung.

Description:—Depth in total length (with caudal), 3.5; head, 4 to 4.5; eye in head, 2.5 to 3. Dorsal rays, VII–I, 9 or 10; anal, III, 8 to 10; scales, 27 to 29.
SYSTEMATIC ACCOUNT

Family SERRANIDAE

SEA BASSES

A large family of conventional, modern, spiny-rayed, perch-like fishes, mostly marine, but with some genera and species equally at home in fresh water, and others which pertain exclusively thereto. Those, the occurrence of which in fresh water may be considered fortuitous (as *Epinephelus susuki*, Nichols, 1928, p. 52), are excluded from consideration here.

Genus *Lates* Cuvier and Valenciennes

Large, tropical, fresh-water and estuarine basses of Africa and Asia; few species, one found in the mouths of rivers in the Indian Ocean recorded from Hainan Island.

Spinous and soft dorsal fins separate. Scales rough, of moderate or small size. Caudal rounded. Three anal spines. Mouth large, oblique; eye far forward. Teeth villiform. Preorbital and shoulder bone serrated; preopercle with strong spines at its angle, and denticulated along its horizontal border.

Pseudobranchiae well developed. Ventral fins without a scaly flap at their base. Upper corner of operculum with 1 or 2 more or less obscure, flattened spines. Ventral rays, I, 5.

Lates calcarifer (Bloch)

Locality of Material:—Kachek River, Hainan (Oshima, 1926, p. 20).

Description:—Depth in total length (with caudal), 3.5 to 3.7; head, 3.7 to 4; eye in head, 5 to 6. Dorsal rays, VII or VIII–I, 10 to 12; anal, III, 8 to 9; scales, 52 to 60.

Genus *Lateolabrax* Bleeker

A spotted estuarine bass of eastern Asia, reaching a large size and running into both fresh and salt water.

Spinous and soft dorsal fins separate, narrowly joined at the base. Caudal emarginate. Scales small and rough. Three anal spines. Teeth fine. Mouth large, the lower jaw projecting. Opercle with a well-developed spine; upper limb of preopercle finely serrate, its corner and lower limb with several antrorose spines.

Pseudobranchiae well developed. Ventral fins without a scaly flap at their base. Ventral rays, I, 5.
THE FRESH-WATER FISHES OF CHINA

Lateolabrax japonicus (Cuvier and Valenciennes)

Locality of Material:—Ningpo; Shanghai; Chinwangtao (fide Gee).
Specimens examined from Fukien and from near Canton.

Description:—Depth in length to base of caudal, 3.7; head, 3; eye in head, 4.6 (specimen of 161 mm. standard length). Dorsal rays, XI or XII—II or II, 12 to 14; anal, III, 8 or 9; scales, 100 to 115.

Genus Siniperca Gill

More or less short-bodied and compressed Chinese fresh-water perches, usually spotted and blotched with black on body and fins. Known as Mandarin fish. Abundant in China, with several differentiable forms, one extending northeastward into the basin of the Amur River.

A single dorsal fin, its rays, XI to XIII, 10 to 15; anal, III, 7 to 10. Ventral placed beneath or a little behind the pectoral; pectoral and caudal rounded. Scales small, cycloid (70 to 180, rarely under 100); the opercle scaled, and the lateral line complete. Small teeth present on jaws, vomer, and palatines, none on the tongue. Usually there are also somewhat larger, more or less canine teeth in the jaws. Mouth large, lower jaw projecting. Maxillary not hidden under the preorbital, with a supplementary bone. Preorbital serrate, operculum ending in a spine.

Key to Chinese Siniperca

1. Depth (in standard length), 4.5 or more (at about 150 mm.); gill rakers rudimentary; dorsal rays, XIII, 10 or 11; scales, about 130 roulei

 Depth, 3.5 or less (at lengths up to 190 mm.); gill rakers, 4 to 6; dorsal rays, XI to XIII, 10 to 15; scales, 100 to 180. Without pale, wavy, lengthwise streaks .. see 2

 Depth, 2.9 to 3.4 (at 100 to 175 mm.); gill rakers, usually 7; dorsal rays, XIII, 12 (rarely 11); scales, 80 to 119. Color dusky, with darker blotches, and pale, wavy, lengthwise streaks ... undulata

 Depth, 2.6 to 3 (at 50 to 125 mm.); gill rakers, about 7; dorsal spines, XIII (rarely XII); scales, 70 to 85 ... see 3

2. Dorsal, XIII, 10 to 13; scales, 100 to 150; eye smaller (5 or 6 in head) and back not elevated; depth, 2.8 to 3.5 (at 50 to 150 mm.); more finely mottled, spots forming rings on sides ... scherzeri

 Dorsal, XII, 12 or 13; scales, 120 to 140; otherwise much like the preceding Dorsal, XII (rarely XI or XIII), 13 to 15; scales, 145 to 180; eye larger, 4 to 5.5 in head (at 80 to 190 mm.); back more or less elevated; depth, 2.7 at 80 mm. to 3.3 at 194 mm.; spots on sides rarely forming rings chuatsi
3. Dorsal soft rays, 10 (rarely 11). Middle anal spine elongate and lapping well past the 3d when depressed .. obscura
Dorsal soft rays, about 14 ... yunkiansensis

Subgenus Acroperca Myers

Acroperca Myers, 1933, *Hong Kong Nat.*, IV, p. 76. Type: *Siniperca roulei* Wu.

Siniperca roulei Wu

Locality of Material:—Specimens examined from Chungan Hsien, Kienyang, and Yenping, Fukien.

![Am.Mus.9674.](image)

Fig. 132. Siniperca roulei Wu. *Type of Siniperca elongata* Nichols.

Description:—Depth in length to base of caudal, 4.5 to 4.8; head, 2.9; eye in head, 4.6 to 5.5 (specimens 147 to 156 mm. standard length). Dorsal rays, XIII, 10 or 11; anal, III, 7; scales, about 120 or 130.

Subgenus *Siniperca* Gill

Siniperca scherzeri Steindachner

Key to Chinese Siniperca scherzeri

Nape not elevated; lower jaw strongly projecting .. scherzeri
Nape not elevated; jaws subequal, or lower slightly projecting chu
Nape appreciably elevated; lower jaw moderately or little projecting kwangsiensis
Siniperca scherzeri scherzeri Steindachner

Figure 133

Locality of Material:—Specimens examined from Tungting Lake, Hunan; Hokou, Kiangsi (inseparable but not typical); Chungan Hsien, Kienyang, and Yenping, Fukien; up to 220 mm. standard length.

Description:—Depth in length to base of caudal, 3.4 to 3.5; head, 2.6; eye in head, 6 to 6.2 (specimens of 134 to 145 mm. standard length). Dorsal rays, XIII, 10 to 13; anal, III, 9; scales, 100 to 150.

Siniperca scherzeri chui Fang and Chong

Siniperca chui Fang and Chong, 1932, Sinensia, II, p. 174, Fig. 10. Chungking, Szechwan.

Description:—Depth in length to base of caudal, 3.4 to 3.8; head, 2.4 to 2.7; eye in head, 5.1 to 5.4 (specimens 76 to 147 mm. standard length). Dorsal rays, XIII, 13; anal, III, 8 to 10; scales, 113 to 122.

Siniperca scherzeri kwangsiensis Fang and Chong

Siniperca kwangsiensis Fang and Chong, 1932, Sinensia, II, p. 177, Fig. 11. Southwestern border of Kwangsi.

Description:—Depth in length to base of caudal, 3.5 to 3.9; head, 2.4 to 2.9; eye in head, 4.8 to 5 (specimens 110 to 169 mm. standard length). Dorsal rays, XIII, 12 to 13; anal, III, 9 or 10; scales, 101 to 109.

Siniperca chuantsi (Basilewski)

Locality of Material:—Specimens examined from Ningkwo, Anhwei; Hokou, Kiangsi; up to 190 mm. standard length.
Description:—Depth in length to base of caudal, 3.2 to 3.6; head, 2.6 to 2.9; eye in head, 4.7 to 6.1 (specimens 66 to 190 mm. standard length). Dorsal rays, XII, 12 or 13; anal, III, 8 or 9; scales, 120 to 140.

Siniperca chuatsi (Basilewski)

Fig. 134

Siniperca chuatsi multilepis Fang and Chong, 1932, Sinensia, II, p. 160, Fig. 5. Nanking.

Siniperca chuatsi bergi Fang and Chong, 1932, ibid., p. 163, Fig. 6. Shao-shing, Chekiang.

? Siniperca knerii, Fang and Chong, 1932, ibid., Fig. 7. Chungking, Szechwan. Looks like chuatsi, fin count of chuatsi.

Locality of Material:—Specimens examined from Tungting Lake, Hunan; Ningkwo, Anhwei; Kienning and near Yenping, Fukien; near Canton; up to 194 mm. standard length.

Description:—Depth in length to base of caudal, 2.7 (at 80 mm.) to 3.3 (at 194 mm.); head, 2.3 to 2.6; eye in head, 4 to 5.5 (at 80 to 190 mm.). Dorsal rays, XII (rarely XI or XIII), 13 to 15; anal, III, 9 or 10; scales, 145 to 180.

Remarks:—Called "kuei-yü" at Tungting Lake, where it reaches a length of some 500 mm., is prized for its fine, boneless flesh, and is caught by the Chinese in various ways. It is caught by the lake fishermen and is sold (large and small) in great numbers and at a high price in all the markets. This fish will live in a very little water for weeks, even if the water is not changed (C. H. Pope, field notes).

Small Siniperca, at standard lengths less than 50 or 55 mm., tend to have the lower jaw very prognathous, anterior profile of head and back slanting, and the specific characters more or less obscured. Thus a specimen of S. scherzeri of 47 mm. from Hokou has depth, 2.8, back elevated, eye, 4 in head, but is obviously this species, fitting in a series of same of 50, 64, 69, 111 mm. and larger, and with
dorsal, XIII, 12. Another small specimen of 54 mm. with the general locality Fukien is puzzling (depth, 3.4, back only slightly elevated, eye, 4, dorsal, XII, 14). Fin count seems almost the only character to place it with *S. chuatsi*, but from comparison with a fish of that species of 56 mm. from Ningkwo (depth, 2.8, back elevated) it seems probable that it is such. On the other hand, *S. obscura* down to 49 mm. are very like those of larger size.

Siniperca undulata Fang and Chong

Siniperca undulata Fang and Chong, 1934, *Sinensia*, II, p. 188, Fig. 14. Tushan-hsien, Kweichow.

Description:—Depth in length to base of caudal, 2.9 to 3.4; head, 2.5 to 2.6; eye in head, 4 to 4.9 (specimens 102 to 173 mm. standard length). Dorsal rays, XIII, 12 (rarely 11); anal, III, 9 (rarely 8 or 10); scales, 80 to 119.

Siniperca obscura Nichols

Figure 135

Description:—Depth in length to base of caudal, 2.6 to 2.9; head, 2.8 to 2.9; eye in head, 3.8 to 5 (specimens 49 to 81 mm. standard length). Dorsal rays, XIII (rarely XII), 10; anal, III, 8 (rarely 7); scales, 73 to 85.

Fig. 135. *Siniperca obscura* Nichols. Type. 81 mm. standard length.

Remarks:—A good series of this form is to hand from the type locality, and single (55 and 50 mm.) specimens from Yungtai Hsien and Yenping, Fukien, seem to be referable to it, though with somewhat higher scale count (90 or 100).
SYSTEMATIC ACCOUNT

Siniperca yunkiansensis (Lin)

Description:—Depth in length to base of caudal, 3; head, 2.7; eye in head, 5.7 (specimen 124 mm. standard length). Dorsal rays, XIII, 14; anal, III, 11; scales, 70 to 78. Color in formalin dark, uniform.

Genus Coreoperca Herzenstein

Small, compressed, rather short-bodied, fresh-water, perch-like fishes. One species from North Korea and one from Hainan.

Scales rather small (50 to 80), cycloid, concentrically striated; lateral line complete, its tubes straight, occupying the greater length of the scale. Mouth large, protracile; maxillary exposed, with a supplemental bone; villiform teeth in jaws and on vomer and palatines; no canines and no teeth on the tongue. Head partly scaleless. Preopercle serrated, with a few antrorse spines on the lower border; opercle with 2 spines. Gill membranes separate; 7 branchiostegals; pseudobranchiae present. Dorsal fins confluent, XIV or XV, 11 to 17, the spinous portion much longer than the soft; anal short, III, 7 to 12; caudal rounded. Pectoral symmetrical; ventral with a strong spine and 5 branched rays, the last of which is connected with the belly by a membrane.

Key to Chinese Coreoperca

Dorsal with about 12 soft rays; anal, about 7; scales, about 50 herzi
Dorsal with 14 to 17 soft rays; anal, 11 to 12; scales, 70 to 80 whiteheadi

Coreoperca herzi Herzenstein

Locality of Material:—North China (Reeves, 1927, p. 9); Fang and Chong (1932, p. 144) do not credit this Chinese reference.

Description:—Depth in length to base of caudal, 3.2; head, 2.7 or 2.8; eye in head, 4.2 or 4.3 (specimens up to 85 mm. long). Dorsal rays, XIV, 12; anal, III, 7; scales, 50.

Coreoperca whiteheadi Boulenger

Figure 136 and Plate X, figure 1

Siniperca whiteheadi, Fang and Chong, 1932, Sinensia, II, p. 144. Coreoperca is certainly close to Siniperca and perhaps rightly synonymized with it.
THE FRESH-WATER FISHES OF CHINA

Locality of Material:—Tien-mu-san, Chekiang (Chu, 1932.2, p. 194, Fig. 35). Specimens examined from Hainan.

Fig. 136. Coreoperca whiteheadi Boulenger. 97 mm. without caudal.

Description:—Depth in length to base of caudal, 2.6; head, 2.3; eye in head, 4 (specimen of 68 mm. standard length). Dorsal rays, XIV or XV, 14 to 17; anal, III, 11 or 12; scales, 70 to 80.

Remarks:—It seems rather doubtful how closely related this species is to the preceding; both are close to Siniperca.

Family TETRAODONTIDAE

SWELL-FISHES

One of the plectognath series of families of sluggish, small-mouthed, marine fishes. This series is perhaps the most specialized phylum of the percoid stem.

There are many species of swell-fishes in most warm and warm temperate seas, and a few are found exclusively in fresh water.

Genus Tetraodon Linnaeus

Fishes of sluggish habits inhabiting warm seas, little compressed, the snout blunt; noted for the ability to inflate with water or air and thus assume a subspherical form. A few species in tropical or subtropical fresh waters.

Skin scaleless, usually more or less prickly. Mouth small, terminal, the jaws forming a sort of beak, which in each jaw is divided by a median suture. Spinous dorsal and ventral fins lacking; soft dorsal and anal similar, opposite, short and rounded; caudal rounded. Nostril on each side with a bifid tentacle without distinct opening.
SYSTEMATIC ACCOUNT

Tetraodon ocellatus Linnaeus

Locality of Material:—Pei Ho; Tientsin (*fide* Gee).

Specimens examined from Anhwei; Fukien; near Canton.

Description:—Depth in length to base of caudal, 4; head, 3; eye in head, 4.7 (specimen of 102 mm. standard length). Dorsal rays, about 14; anal, about 12; back to some extent, and particularly breast and belly, with small spines, sunk in the skin so that the accompanying small papillae alone are obvious.

Family COTTIDAE

SCULPINS

A large and varied family of northern, marine, bottom fishes, characteristically with large, spiny heads. One of the few fresh-water genera is generally distributed and circumpolar.

Genus Cottus Linnaeus

Small sculpins living at the bottom of shallow, northern, fresh waters. Very variable, and many species or races have been described, but they are not markedly different one from the other.

A small, simple spine at the angle of the preopercle, and a few spines only elsewhere on the head. Isthmus wide, the gill membranes not forming a fold across it. Skin smooth or with feeble prickles. Dorsal fins contiguous, the first of a few slender spines. Ventrals with 4 soft rays and a concealed spine. Teeth on jaws, vomer, and sometimes palatines.

Head large, broad, and more or less depressed. Mouth large, the upper jaw protractile. A bony stay across the cheek. Caudal rounded.

Cottus poecilopus Heckel

Locality of Material:—North China (*fide* Gee, as *C. gobio*). China would be south of the general range of this fish, but it presumably occurs there as a straggler.

Description:—Depth in total length (with caudal), 5.8 to 7; head, 3.8 to 4.5; eye in head, 4 to 5.8 (specimens of 71 to 118 mm. total, 59 to 100 mm. standard length). Dorsal rays, VIII to IX–17 to 19; anal, 13 to 15.
THE FRESH-WATER FISHES OF CHINA

Genus Trachidermus Heckel

Close to Cottus; head with crests (ridges); palatine teeth present.

Trachidermus fasciatus Heckel

Centridermichthys ansatus Richardson, 1845, Zool. Voyage "Sulphur," Ichthyology, p. 74, Pl. LIV, figs. 6-10.

Locality of Material:—Mouth of Yangtze; Nanking; Soochow; Fengtien, Hulutao; Shan-hai-kuan, Chihli; Pei-Hai-To; Shan-Hien, Kiangsu; Sungkiang (Chu, 1931, p. 148).

Description:—Depth in length to base of caudal, 5; head, 2.7; eye in head, 7.5 (specimen about 115 mm. long). Dorsal rays, VIII–19; anal, 17.

Family GOBIIDAE

GOBIES

Among the most abundant small, marine, bottom fishes of warm seas, entering brackish and fresh waters rather freely, with a number of fresh-water species and relatively few exclusively fresh-water genera.

The Eleotrinae (with ventral fins separate) and Gobiinae (with ventral fins united) are frequently given full family rank.

Subfamily ELEOTRINAE

Genus Eleotris Gronow

Rather small, carnivorous, bottom fishes, with dorsal fins separate, the first of a few weak flexible spines, caudal more or less rounded, ventrals close together, not united; body covered with small or smallish scales; preopercle with a concealed spine; isthmus wide, gill openings extending no farther forward than posterior angle of preopercle. Cosmopolitan, many marine species in warm shore waters, some entering fresh water freely and others confined to fresh water.

Teeth weak, none on the vomer. Orbital rim adnate. Ventral rays, I, 5; soft dorsal and anal similar. Mouth moderate or large.

Key to Chinese Fresh-Water Eleotris

1. More slender (depth, 5 or more in standard length); lower jaw well projecting; scales, about 38 to 48 see 2
SYSTEMATIC ACCOUNT

<table>
<thead>
<tr>
<th>Deeper, the back usually elevated</th>
<th>see 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>2. First dorsal with VIII rays; scales, about 38; 2 large black spots on the peduncle</td>
<td>davidi</td>
</tr>
<tr>
<td>First dorsal with VI rays; scales, 45 to 48</td>
<td>see 3</td>
</tr>
<tr>
<td>3. Head smaller, about (\frac{3}{4}) the length; scales, about 48</td>
<td>oxycephala</td>
</tr>
<tr>
<td>Head larger, about (\frac{3}{4}) the length; scales, about 45 or 46</td>
<td>balia</td>
</tr>
<tr>
<td>4. Scales, 60 to 78. Color dusky</td>
<td>fusca</td>
</tr>
<tr>
<td>Scales, 40 to 50; interorbital scaled; eye small. Mottled, spotted, and blotched</td>
<td>Philypnus potamophilus</td>
</tr>
<tr>
<td>Scales, 33; interorbital narrow and scaleless; eye in head, 5. Broad, indistinct cross bands</td>
<td>xanthi</td>
</tr>
</tbody>
</table>

Eleotris davidi Sauvage and Dabry de Thiersant

Description:—Depth in length, 6.5; head long; eye in head, 5. Dorsal rays, VIII–I, 9; anal, 8; scales, 38.

Eleotris balia Jordan and Seale

Eleotris balia Jordan and Seale, 1906, Proc. U. S. Nat. Mus., XXIX, p. 526, Fig. 6. China, probably Hong Kong.

Locality of Material:—Specimens examined from Fukien; Naam Kong, Kwangtung.

Description:—Depth in length to base of caudal, 5 to 5.5; head, 3 to 3.1; eye in head, 5.1 to 6 (specimens of 82 and 102 mm. standard length). Dorsal rays, VI–9 to 10; anal, 9 to 10; scales, about 45 or 46.

Eleotris oxycephala Temminck and Schlegel

Eleotris oxycephala Temminck and Schlegel, 1845, in Siebold, Fauna Japonica, Pisces, p. 149, Pl. lxxvii, figs. 4, 5. Japan.

Locality of Material:—Hainan (Oshima, 1926, p. 21).

Description:—Depth in length, 6; head, 4; eye in head, 5.5. Dorsal rays, VI–9; anal, 9; scales, 48.

A specimen so identified, examined from near Canton, has standard length, 63 mm.; head, 3.6; scales, 48 or more.

Eleotris xanthi Günther

Description:—Depth in length to base of caudal, 4; head, 3.5; eye in head, 5 (specimen about 65 mm. long). Dorsal rays, VI–I, 9; anal, 8; scales, 33.
THE FRESH-WATER FISHES OF CHINA

Eleotris fusca (Bloch and Schneider)

Poecilia fusca Bloch and Schneider, 1801, Syst. Ichthyologiae, p. 453.

Locality of Material:—Coasts and rivers from Africa to Malay (authors).

Description:—Depth in length, 4 to 4.7; head, 3 to 3.3; eye in head, 4.5 (young) to 7. Dorsal rays, VI–I, 8; anal, I, 8; scales, 60 to 78.

Genus Philypnus Cuvier and Valenciennes

Rather small, carnivorous, bottom fishes with smallish ctenoid scales; dorsal fins separate, the first of a few weak flexible spines, caudal rounded or acuminate. Ventral fins close together, separate; preopercle spineless; gill openings wide, to under hind margin at least, and usually front part of eye. A few species here and there in tropical rivers around the world.

Teeth weak, present on vomer. Orbital rim adnate. Ventral rays, I, 5; soft dorsal and anal similar. Mouth moderate or large, the lower jaw projecting.

Key to Chinese Fresh-Water Philypnus

Depth, about 4.8; head, 3.8; eye in head, 4.6; width of head almost twice in its length (at 102 mm. standard length) .. chalmersi

Depth, about 4; head, 2.7; eye in head, 6.8 (at 115 mm. standard length). Width of head about 2/3 its length (at 65 to 135 mm.) .. potamophilus

Philypnus chalmersi Nichols and Pope

Figure 137 and Plate X, figure 4

Philypnus chalmersi Nichols and Pope, 1927, Bull. Amer. Mus. Nat. Hist., LIV, p. 390, Fig. 50. Hainan.

Description:—Depth in length to base of caudal, 4.8; head, 3.8; eye in head, 4.6 (specimen of 102 mm. standard length). Dorsal rays, VIII–13; anal, 10; scales, 42.

Fig. 137. Philypnus chalmersi Nichols and Pope. Type. 102 mm. without caudal.
Remarks:—Related to *Philypnus potamophilus* but quite a different fish. *P. potamophilus* is presumably distinct from *Eleotris obscura* of Japan, type of *Odontobutis* Bleeker. The three have similar pores on the head and would presumably all belong in *Odontobutis* if that genus were recognized.

Odontobutis wui Chen (Chen, J. T. F., 1934, p. 36, Fig. 1) is presumably of salt- or brackish-water origin.

Philypnus potamophilus (Günther)

Figure 138 and Plate X, figure 5

Odontobutis obscura, Chu, 1932, Fishes of the West Lake, p. 54, Figs. 38, 39.

Locality of Material:—Shanghai (*fide* Gee).

Specimens examined from Tungting Lake, Hunan; Anhwei; Yungtai Hsien, Fukien.

![Fig. 138. Philypnus potamophilus (Günther). 135 mm. standard length.](image)

Description:—Depth in length to base of caudal, 4; head, 2.7; eye in head, 6.8 (specimen of 115 mm. standard length). Dorsal rays, VI to VIII–10 or 11; anal, 9; scales, 40 to 50.

Remarks:—Called “t’u-han-pa” at Tungting Lake, where it is said to be very good eating, and is fairly common. For days one would not be seen in the many baskets of fish for sale on the streets of Yochow, and then again one large tub or basket would contain half a dozen (C. H. Pope, field notes).

Genus *Micropercops* Fowler and Bean

Small, darter-like, fresh-water gobies allied to *Philypnus*, with the ventral fins separate; nape scaled, sides of the head more or less scaleless, and no preoper-
cicular spine. Gill opening extending forward to under center of eye. First dorsal with (V) VII to IX spines; scales, 30 to 40.

Dorsal fins separate; caudal rounded. Ventral rays, I, 5. Second dorsal and anal similar, apposed, the anal somewhat the shorter. Mouth moderate, oblique, the lower jaw projecting. Teeth weak, in bands in jaws, apparently lacking on the vomer.

Key to Chinese Micropercops

1. Dorsal, VII–11; scales, 36. Regular, close-spaced, dark cross bands _cinctus_
 Dorsal, V to VII–12 or 13; scales, 30 or 31. Cross bands more or less in pairs _swinhonis_
 Dorsal, VIII or IX–11 or 12; scales, 33 to 41. Cross marks somewhat obscure and irregular, not distinctly paired .. see 2

2. Scales, 33 to 37 ...
 Scales, about 41 ...

Micropercops cinctus (Dabry de Thiersant)

Philipus cinctus Dabry de Thiersant, 1872, Pisciculture et Pêche en Chine, p. 179, Pl. xxxvii, fig. 3. Mountains of Kiangsi.

Description:—Depth in length to base of caudal, 5.3; head, less than 4; eye large, about 4 in head. Dorsal rays, VII–11; anal, 9; scales, 36.

Micropercops swinhonis (Günther)

Figure 139

Locality of Material:—Specimens examined from Anhwei; one (so identified) from Tsinan, Shantung; up to 50 mm. standard length.

Description:—Depth in length to base of caudal, 3.5; head, 3.1; eye in head,
3.3 (specimen of 26 mm. standard length). Dorsal rays, V to VII–12 or 13; anal, 9; scales, about 30.

Micropercops dabryi Fowler and Bean

Micropercops dabryi Fowler and Bean, 1920, Proc. U. S. Nat. Mus., LVIII, p. 319, Fig. 2. Soochow.

Micropercops dabryi dabryi Fowler and Bean

Micropercops dabryi Fowler and Bean, 1920, Proc. U. S. Nat. Mus., LVIII, p. 319, Fig. 2. Soochow.

Description:—Depth in length, 4.4; head, 3.1; eye in head, 3.7 or 3.8. Dorsal rays, IX–12; anal, 8; scales, 41.

Micropercops dabryi borealis Nichols

Figure 140

Micropercops dabryi borealis Nichols, 1930, Amer. Mus. Novitates, No. 402, p. 3, Fig. 2. Tsinan, Shantung.

Description:—Depth in length to base of caudal, 3.6 to 4.4; head, 3.3 to 3.6; eye in head, 3.7 to 4.6 (specimens 32 to 48 mm. standard length). Dorsal rays, VIII or IX–11 or 12; anal, 9 or 10; scales, 33 to 37.

![Figure 140](image)

Remarks:—Whereas *Micropercops* is described as having the sides of the head without scales, specimens of the present form examined have the opercle distinctly scaled and traces of scales visible on the preopercle, a character readily appreciable in those of 40 mm. or more standard length, and which was very likely overlooked in the single small specimen of *dabryi* examined by Fowler and Bean. It seems, furthermore, that the relationship between *borealis* and *Eleotris swinhonis* Günther, with more fully scaled head, is so close that what might be considered an aberrant specimen in our series of the former from Tsinan is probably better referred to the latter. It is quite likely that the two are only racially distinct, but we may with equal right assume that *swinhonis* occurs occasionally in the range of *borealis*. As for retention of *Micropercops* for these dwarf forms, it is convenient to do so even if the head scalation character does not hold.
THE FRESH-WATER FISHES OF CHINA

Subfamily GOBIINAE
Genus Gobius Linnaeus

Small, bottom fishes with an anterior dorsal fin of VI to VIII flexible spines, a second dorsal of upwards of 9 soft rays, removed from it and similar to the anal, the ventral fins united. Among the most abundant shore fishes in the warm seas of the world and represented by a great many marine species. Various of the marine species enter estuaries, some more and some less; and several of the subgenera have fresh- or brackish-water species.

Body entirely covered with more or less ctenoid scales. Teeth conical. Caudal rounded or acuminate. Interorbital narrow, the cheeks gibbous.

Several upper rays of pectoral not exerted as hair-like threads. Anterior nostrils not extended into barbel-like tubes. No bony crest on the neck. Preopercle without a spine.

In the subgenus Glossogobius the mouth is large, lower jaw projecting, front of tongue with teeth. In the subgenus Rhinogobius the mouth is smaller, jaws about equal, or lower included; dorsal and anal with only about 9 soft rays, and scales comparatively large, 30 or 35.

Key to Chinese Fresh-Water Gobius

1. Dorsal with 9 to 11 soft rays .. see 2
dorsal with 16 soft rays; scales, about 50 ... clarki
2. Scales, 25 to 35 ... see 5
scales, 38 to 42; lower jaw included; a large basal black spot on posterior part of first dorsal .. myxodermus
scales, about 44; mouth terminal; 2 longitudinal bands on body, most distinct behind .. bivittatus
scales, 50 to 55 .. see 8
3. Lower jaw with 2 canine teeth. Scales, 27 to 30 caninus
lower jaw without distinct canines ... see 4
4. Lower jaw decidedly projecting .. see 5
jaws subequal .. see 5
5. Dark longitudinal stripes, and about 4 dark blotches on the sides, a dark stripe from the eye downward and forward to the mouth .. giuris
brownish, without bold markings .. brunneus
6. Lower jaw distinctly included; scales, about 32 giurinus
lower jaw very slightly included; head and back somewhat elevated, depth 4.3 to 5; scales, 30 to 32 ... hadropterus
jaws variously subequal, head and back not elevated, depth, 5 to 5.7; caudal usually with 5 to 8 sharp dark cross bars ... leavelli
lower jaw slightly projecting; scales more or less lacking before the dorsal, 30 to 35 .. see 7
7. Scales, 30 to 32; color dusky or mottled, tending toward a narrow streak posteriorly in the middle of side .. davidi
Scales, 34 or 35; color spotted, and a row of irregular lateral blotches cheni
Scales, about 30; roundish dark blotches on the side, 3 dark bands across rounded caudal .. aevivaregia
Jaws equal or the lower slightly projecting; scales, about 28, head scaleless before the dorsal; broad black cross bands posteriorly cliffordpopei
8. Lower jaw included .. grammeponus
Lower jaw very slightly projecting ... hainanensis

Subgenus Glossogobius Gill

Gobius giuris Hamilton-Buchanan

Figure 141

Locality of Material:—West Africa to east Asia, entering fresh waters (authors); Pei Ho; Tientsin (fide Gee). Yangtze at Hankow (Kreyenberg and Pappenheim, 1909, p. 23).

Specimens examined from Fukien and near Canton.

Description:—Depth in length to base of caudal, 6; head, 3.2; eye in head, 5 (specimen of 113 mm. standard length). Dorsal rays, VI–9 or 10; anal, 9 or 10; scales, 30 to 35.

Gobius brunneus Temminck and Schlegel

Gobius brunneus Temminck and Schlegel, 1845, in Siebold, Fauna Japonica, Pisces, p. 142, Pl. LXXIV, fig. 2. Japan.

Locality of Material:—Hainan (Oshima, 1926, p. 21).

Description:—Depth in total length (with caudal), about 6; head, 4 plus; eye in head, 6.7. Dorsal rays, VI–10; anal, 8; scales, about 32.
Gobius caninus Cuvier and Valenciennes

Locality of Material:—Amoy (Günther, 1861, Cat. Fishes Brit. Mus., III, p. 38).

Description:—Depth in length, 5.5 to 6; head, 4.5 to 4.8; eye in head, about 4. Dorsal rays, VI–9 or 10; anal, 9 or 10; scales, 27 to 30.

Gobius grammepomus Bleeker

Locality of Material:—Hainan (Oshima, 1926, p. 21).

Description:—Depth in length, 5.5 to 7.5; head, 4 to 4.7; eye in head, 4 to 5. Dorsal rays, VI–10 or 11; anal, 10 or 11; scales, 50 to 55.

Subgenus Rhinogobius Gill

This makes a convenient group for various small related gobies entering or living in fresh waters of the Orient. As Herre (1933.2, p. 265) has pointed out, it is based on a species with aberrant ventrals and should perhaps be confined to it and others of like nature.

Gobius cheni Nichols

Description:—Depth in length to base of caudal, 6.8 to 7.5; head, 3.4 to 3.6; eye in head, 4.4 to 4.6 (specimens 47 to 55 mm. standard length). Dorsal rays, VI–9 or 10; anal, 8; scales, 34 or 35.

Gobius davidi Sauvage and Dabry de Thiersant

Locality of Material:—Specimens examined from Chungan Hsien, Fukien.

Description:—Depth in length to base of caudal, 5 to 7; head, 3.2 to 3.5; eye in head, 4.2 to 5.5 (specimens 36 to 54 mm. standard length). Dorsal rays, VI–9 or 10; anal, 8 or 9; scales, 30 to 32.

Gobius aestivaregia (Mori)

Description:—Depth in length to base of caudal, 4.8; head, 3.3 or 3.4; eye in
head, 3.7 (specimen 33 mm. total length). Dorsal rays, VI–9; anal, 9; scales, about 30 (from fig.). Lower jaw slightly projecting; nape without scales.

Gobius cliffordpopei Nichols

Figure 142 and Plate IX, figure 4

Description:—Depth in length to base of caudal, 4.7; head, 3.4; eye in head, 5 (specimen of 34 mm. standard length). Dorsal rays, VI or VII–9; anal, 8; scales, 28.

![Gobius cliffordpopei](image)

Remarks:—This little fish, called “lou-tou-yü” at Tungting Lake, was found only in the baskets of small fish for sale on the streets of Yochow. Here it was not uncommon and could often be picked out in numbers. It was not to be found in the shrimp catchers’ boats (C. H. Pope, field notes).

Gobius hadropterus (Jordan and Snyder)

Aboma tsinanensis Fowler, 1930, Peking Nat. Hist. Bull., V (2), p. 30, Fig. 2. Da Ming Hu, Tsinan.

Locality of Material:—Specimens examined from Shantung; Anhwei; Hokou, Kiangsi; Fukien; up to 77 mm. standard length.

Description:—Depth in length to base of caudal, 4.3 to 5; head, 3 to 3.5; eye in head, 4.4 to 6 (specimens 49 to 77 mm. standard length). Dorsal rays, VI–9 or 10; anal, 8 to 10; scales, 30 to 32.

Gobius leavelli (Herre)

Figure 143

Locality of Material:—Specimens examined from Hainan.

Description:—Depth in length to base of caudal, 5 to 5.7; head, 3.2 to 4; eye in head, 3.4 to 4.8 (specimens up to 38 mm. standard length). Dorsal rays, VI–8 or 9; anal, 8; scales, about 30. Caudal broadly rounded. Usually a blackish mark at the base of the anterior dorsal rays, 6 or 8 irregular dark blotches along the side, and 5 to 8 sharp, narrow, blackish cross bars on the caudal.

Remarks:—Very similar to G. hadroptenis but more slender and with a more broadly rounded caudal.

Gobius giurinus Rutter

Locality of Material:—Kachek River, Hainan (Oshima, 1926, p. 25).

Specimen examined from Fukien.

Description:—Depth in length to base of caudal, 5; head, 3.3; eye in head, 4.5 (specimen of 75 mm. standard length). Dorsal rays, VI–10; anal, 8; scales, about 32.

Gobius myxodermus (Herre)

Description:—Depth in length, 4 to 5; head, 3.2 to 3.4; eye in head, 4.3 to 4.7 (specimens 20 to 32 mm. long). Dorsal rays, VI–9; anal, 8; scales, 38 to 42. No canines; scales in front of dorsal and above pectoral base minute; caudal broadly rounded.

PLATE X

Fig. 1. _Coreoperca whiteheadi_ Boulenger. 68 mm. standard length. Nooda, Hainan.
Fig. 2. _Ophicephalus maculatus_ (Lacépède). 110 mm. standard length. Nooda, Hainan.
Fig. 3. _Ophicephalus gachua_ Hamilton-Buchanan. 50 mm. standard length. Nooda, Hainan.
Fig. 4. _Philypnus chalmersi_ Nichols and Pope. 58 mm. standard length. Nooda, Hainan.
Fig. 5. _Philypnus potamophilus_ (Günther). 115 mm. standard length. Tungting Lake.
rounded; tips of first 3 dorsal spines more or less thread-like. In life, dorsals with yellow bands and other fins more or less spotted.

Remarks:—Ditches, ponds, and puddles at Wuchow.

"The fishes were observed basking in the sunshine along the water's edge, where they were quite conspicuous. They were always solitary and at the slightest alarm would dash away into deep water. Those caught were obtained by using a long handled dip net which was suddenly thrust down over the fish and then drawn out with a scraping motion along the bottom. In the mud thus secured one was almost certain to have one to several of these slimy little gobies" (Herre, ibid., p. 396).

Gobius hainanensis (Oshima)

Description:—Depth in length, 4.6; head, 3.9; eye in head, 4 (specimen 104 mm. long). Dorsal rays, VI–11; anal, 11; scales, 50.

Subgenus Tamanka Herre

Gobius bivittatus (Herre)

Locality of Material:—Tiny brook at Tai Ping. Probably inhabits small streams of the South China coast, flowing into the sea (Herre, 1932, p. 440).

Description:—Depth in length to base of caudal, 4.8; head, 3.4; eye in head, about 6 (specimen 29 mm. long). Dorsal rays, VI–8; anal, 8; scales, 44.

Subgenus Ctenogobius Gill

Gobius clarki (Evermann and Shaw)

Description:—Depth in length, 6.2; head, 3.6; eye in head, 5.5 (specimen 170 mm. long). Dorsal rays, VI–16; anal, 13 or 14; scales, about 50.
CHAPTER III
SUPPLEMENT
ADDITIONAL SPECIES

Genus Hilsa Regan

This genus seems to be highly anadromous, and both recognized species should be included. Fowler (1931, p. 115) gives this key for their determination:

Key to Chinese Hilsa

Caudal as long as head; opercle \(\frac{3}{2} \) to \(\frac{3}{4} \) as wide as deep; scales, 42 to 45, transversely 16 or 17 .. **recessii**

Caudal longer than head; opercle \(\frac{1}{2} \) to \(\frac{3}{4} \) as wide as deep; scales, 40, transversely 14 or 15 .. **sinensis**

Hilsa sinensis (Linnaeus)

Description:—Depth in length to base of caudal, 2.6 to 3.3; head, 3.5 to 4; eye in head, 4.3 to 7.5. Dorsal rays, 17 to 19; anal, 18 to 21; scales, 39 to 41.

Genus *Silurus* Linnaeus

Like *Parasilurus*, but with 4 instead of 2 mandibular barbels.

Silurus wynaadensis Day

Description:—Depth in length to base of caudal, 6; head, 4.7; eye in head, 8 (specimen 90 mm. standard length). Dorsal rays, 5; anal, 58 to 62. Lower jaw slightly included.

Genus *Pseudobagrus* Bleeker

266
Pseudobagrus wui Miao

Description:—Depth in length to base of caudal, 5.2 to 5.3; head, 4.7 to 4.8; eye in head, 4.6 to 4.7 (specimen 133.5 mm. standard length). Dorsal rays, I, 7; anal, 25.

Remarks:—Close to *Pseudobagrus fangi* Wu. Dorsal spine equals pectoral.

Pseudobagrus changi Miao

Description:—Depth in length to base of caudal, 3.8; head, 3.5; eye in head, 8 (specimen 106 mm. standard length). Dorsal rays, I, 7; anal, 22.

Remarks:—This form seems to combine characters of *P. vachellii* and *P. fulvidraco*.

Genus Leiocassis Bleeker

Leiocassis sinyanensis Fu

Description:—Depth in length to base of caudal, ?12 (9.3 in fig.); head, 5.5; eye in head, 8 (specimen 188 mm. standard length). Dorsal rays, I, 7; anal, 19.

Dorsal spine half head or less (in fig.); caudal truncate; adipose decidedly shorter than anal; barbels short (none extending beyond head).

Genus Liobagrus Hilgendorf

Liobagrus kingi Tchang

Description:—Depth in length to base of caudal, 4.8; head, 3.5; eye in head, 13. Dorsal rays, I, 6; anal, 12.

Lower jaw slightly projecting; adipose longer than anal and low, separated by a notch from base of caudal. Color gray to yellowish on fins, marbled with black; dorsal, pectoral, and caudal more or less blackish, base and margin of dorsal, margins of pectoral and caudal yellowish.

Genus Pseudecheneis Blyth

Small, bottom catfishes of swift waters, with a broad, oval, adhesive apparatus with transverse folds on the chest. Anal fin short; anterior and posterior nostrils close together with a barbel between them; gill membranes broadly attached to isthmus, gill opening small; eye very small, superior; mouth small, inferior, the barbels small; body more or less flattened below with large pectorals and ventrals in a horizontal plane; adipose fin moderate; caudal forked or lunate.

Pseudecheneis sulcatus (McClelland)

Description:—Depth in length to base of caudal, 7.2; head, 5.5; eye in head (from fig.), about 12. Dorsal rays, I, 5; anal, 10.

Genus Barbus Cuvier

Barbus (*Lissochilichthys*) *wenchowensis* (K. F. Wang)

Description:—Depth in length to base of caudal, 4; head, 3.3; eye in head, 5.5; snout, 2 (specimen 155 mm. standard length). Dorsal rays, II, 8; anal, 7; scales, 38.

Last simple dorsal ray much ossified (not shown in fig.); maxillary barbel a little longer than eye. Head long and pointed; snout projecting; skin at tip of snout and lower jaw swollen and retracted; 6 narrow, dark cross bands and a very obscure lateral band.

Genus Hemiculterella Warpachowski

Hemiculterella *wui* (K. F. Wang)

Description:—Depth in length to base of caudal, 6; head, 4.5; eye in head, 3.3 (specimen 123 mm. standard length). Dorsal rays, 9; anal, 15; scales, 48. Abdomen rounded before ventrals and keeled behind them.

Hemiculterella angustus (Kimura)

Description:—Depth in length to base of caudal, 4.2 to 5; head, 4; eye in head, 3.8 to 4; snout, 3.8 to 4 (specimens 59 to 63 mm. standard length). Dorsal rays, 9; anal, 20; scales, 42 or 43.
SUPPLEMENT

Genus *Hemiculter* Bleeker

Hemiculter jabouillei Chevey

Description:—Depth in length to base of caudal, 5.6 to 5.7; head, a little less than 4; eye in head, about 4.2 (from fig.; specimens up to 200 mm. long). Dorsal rays, II, 7; anal, 16; scales, 44.

Keel whole length of abdomen, projecting lower jaw, and rather evenly decurved lateral line of figure are perhaps in error. Supposed to be related to "*Hemiculter akoensis* of Oshima from Szechuan."

Genus *Acheilognathus* Bleeker

Acheilognathus chi Miao

Description:—Barbel more than half length of eye. Dorsal without spines. Depth in length to base of caudal, 2.5; head, 4.4; eye in head, 3 (specimen 52 mm. standard length). Dorsal rays, 11; anal, 14; scales, 35.

Two indistinct spots near shoulder; dorsal and anal with pale cross shade and dark border.

Acheilognathus lanchiensis (Herre and Lin)

Acanthorhodeus lanchiensis Herre and Lin, 1936, Bull. Chekiang Fish. Exp. Sta., II (7), p. 17, Fig. 5. Lanchie, upper Tsien Tang River.

Description:—Depth in length to base of caudal, 2.9 to 3; head, 3 to 4.2; eye in head, 3; barbel in eye (from fig.), 1.5 (specimens 46 to 51 mm. long). Dorsal rays, II, 9; anal, II, 8 or 9; scales, 34 to 36. The spines are figured as weak.

Genus *Abbottina* Jordan and Fowler

Abbottina tafangensis (K. F. Wang)

Description:—Depth in length to base of caudal, 4.6; head, 4.7; eye in head, 3.6; interorbital, 3 (specimen 78 mm. standard length). Dorsal rays, 9; anal, 7; scales, 33.

Dorsal high and convex; barbels mostly hidden; dorsal and caudal without bars.
Genus **Oreonectes** Günther

Oreonectes sayu Herre and Lin

Description:—Depth in length to base of caudal, 5.3; head, 4.1; eye in head, 6, in interorbital, 2.6 or 2.7. Snout to dorsal origin, 59.5 per cent of standard length, dorsal origin midway between caudal base and hind margin of preopercle. Dorsal rays, 8; anal, 7. A blackish stripe across caudal base.

Genus **Barbatula** Linck

Barbatula kungessana (Kessler)

Description:—Depth in length to base of caudal, 7.9 to 8.5; head, 4.8 to 5; eye in head, 7 to 8.85 (specimens 89 to 120 mm. standard length). Dorsal rays, 9 or 10; anal, 7 or 8; no evident scales.

Caudal truncate or slightly emarginate. Ventral origin about under that of dorsal. Finely marbled above, with vague dark saddle marks on the back, whitish below, lateral line pale.

Barbatula pappenheimi (Fang)

Description:—Depth in length to base of caudal, 6.7 to 7.2; head, 4.3 to 4.8; eye in head, 6.2 to 6.3. Dorsal rays, 10 to 12; anal, 7 to 8; body without scales.

Caudal forked for a little more than ½ of its length; ventral origin about under that of dorsal. Pale with dark blotches along back and narrow cross marks on caudal.

Genus **Homaloptera** Van Hasselt

Subgenus **Paraproctomyzon** Pellegrin and Fang

Probably to be regarded as a subgenus (with 14 ventral rays) of *Homaloptera* rather than of *Hemimyzon* as here understood.
Supplement

Homaloptera multifasciata (Pellegrin and Fang)

Paraprotomyzon multifasciatus Pellegrin and Fang, 1935, Sinensia, VI, p. 103, Fig. 2. Kwai-chow, eastern Szechwan.

Description:—Depth in length to base of caudal, 5.3 to 5.7; head, 4.3 to 5; eye in head, 6 to 7 (specimens 58 to 61 mm. standard length). Dorsal rays, 9; anal, 7; pectoral, i, 19; ventral, i, 14; scales, 69 to 74 (pores).

Caudal subtruncate. About 12 to 17 obliquely vertical dark bands on side.

Genus Ophicephalus Bloch

Ophicephalus argus kimurai (Shih)

Description:—Depth in length to base of caudal, 6.2 to 7; head, 3.9 to 3.2; eye in head, 6.8 to 7.8; interorbital, 5.2 to 5.5 (specimens 185 to 250 mm. standard length). Dorsal rays, 50; anal, 33; scales, 61 to 64.

“Colour white, some scales above lateral line with gray centers, bone sutures on head part dark black, paired fins white, non-paired fins grayish tipped.”

Genus Siniperca Gill

Siniperca kichuani Shih

Description:—Depth in length to base of caudal, 4 to 4.4; head, 2.7; eye in head, 5.5 to 6 (specimens 146 to 225 mm. standard length). Dorsal rays, XIII, 12 to 13; anal, III, 9; scales, 122 to 130; gill rakers, 5.

The figure shows dark blotches on the lower sides separated by narrow, pale reticulations; dorsals and caudal spotted.

Genus Gobius Linnaeus

Subgenus Rhinogobius Gill

Gobius whitleyi (Herre)

Ctenogobius whitleyi Herre, 1936, Hong Kong Nat., VII, p. 184. Hong Kong; from a brook at Sha Ting.

Description:—Depth in length, 6.1 to 6.75; head, about 3; eye in head, 4.1 to 4.4 (specimens 18 to 29 mm. long). Dorsal rays, VI–9; anal, 8; scales, 28 or 29; 10 smaller predorsal; absent on head, pectoral base, and preventral region. Caudal rounded.
Color pale, traces of cross bars and of dark blotches on the side; 2 diagonal reddish brown lines running downward and backward on lower half of preopercle; dorsals and anal dark, the latter with white marginal band, other fins more or less longitudinally marked with reddish brown.

Gobius duospilus (Herre)

Description: — Depth in length, 5; head, 3.7; eye in head, 3 (specimens 30 and 35 mm. long). Dorsal rays, VI–8; anal, 8; scales, 29 to 31.

Head, pectoral base, and prevental region scaleless. Five broad black cross bands, blending with 6 irregular spots along the side. Dorsals and caudal with transverse rows of black dots, 2 black spots on pectoral base.

Subgenus Tamanka Herre

Gobius sinensis (Herre)

Description: — Depth in length, 4.5; head, 3.5; eye in head, 3.5 (specimen 28 mm. long). Dorsal rays, VI–8; anal, 8; scales, 30.

Mouth inferior; head broad and depressed, the interorbital broader than in *G. hadropterus* or *G. giurinus*, flat, 3.2 in head.

Subgenus Acanthogobius Gill

Gobius ommaturus Richardson

Description: — Depth in length, 6.1; head, 3.4; eye in head, 5; snout, 3; interorbital, 10 (specimen 88 mm. long). Dorsal rays, VII to IX–19 or 20; anal, 16; scales, 73.

Two spots with black center and whitish border at base of caudal.

SYNONYMS, CHANGES, AND COMMENT

Names used in the first part of this volume are marked with an asterisk (*) when here placed in synonymy or deleted.
SUPPLEMENT

Salangichthys hyalocranius (Abbott)

Subgenus Reganisalanx Fang

Reganisalanx Fang, 1934, Sinensia, V, p. 500. Type: Reganisalanx normani Fang = Salanx cuvieri, Regan, 1908 (not of Cuvier and Valenciennes).

*Salanx, p. 25 herein.

Salanx normani (Fang)

Subgenus Salanx Cuvier

Salanx Cuvier, 1817, Règne Animal, II, p. 185. Type: Salanx cuvieri Cuvier and Valenciennes.

Salanx cuvieri Cuvier and Valenciennes

Description:—Depth in length to base of caudal, 10.4 to 10.5; head, 3.7 (specimen of about 115 mm. standard length). Dorsal rays, 12; anal, 28.

Remarks:—Salanx cuvieri is related to S. acuticeps, and may be differentiated from it as follows:

Origin of ventral nearer anal than base of pectoral; snout subequal to postorbital . . . cuvieri
Origin of ventral nearer anal than base of pectoral; snout shorter than postorbital . . . acuticeps

Anguilla mauritiana Bennett

Pseudobagrus nitidus Sauvage and Dabry de Thiersant

? Pseudobagrus fui Miao, 1934, ibid., p. 217, Fig. 45. Chinkiang.

Hemibagrus guttatus (Lacépède)

Aoria guttatus, Herre and Lin, 1936, Bull. Chekiang Fish. Exp. Sta., II (7), p. 23, Fig. 7. Tsien Tang River system.

Remarks:—The adults are usually spotted.
THE FRESH-WATER FISHES OF CHINA

Barbus nigrodorsalis (Oshima)

Barbus (Lissochilichthys) kreyenbergii (Regan)

Gymnostomus kreyenbergii Regan, 1908, Ann. Mag. Nat. Hist., (8) I, p. 109, Fig. a, Pl. iv, fig. 1. Nankancho near Tinghsiang. (Adult plain colored.)

Zacco platypus (Temminck and Schlegel)

Tanichthys albonubes Lin

Remarks:—This is an excellent aquarium fish on account of its small size (the full grown female measuring about 30 mm., male about 25 mm.), bright colors (there is a band of silver and blue along the side, a black spot at base of the caudal fin, and the dorsal fin and a patch from near the anal to the tip of the caudal are red), hardiness, and ability to thrive on almost any kind of food. It has been found to spawn in the aquarium with water temperature of 74° F., the eggs seemingly deposited one at a time, and spawning season in nature presumably lasting from spring to fall. The eggs are non-adhesive, sink, and hatch in about 2 days. The yolk sac is absorbed and the fry becomes active about 3½ days after hatching (Chen, 1936, pp. 431-437).

Varicorhinus robustus Nichols

Hemiculter dispar dispar Peters

Rhodeus sinensis Günther

Rhodeus notatus Nichols

Leucogobio polytaenia tienmusanensis Chu

Gobio nummifer Boulenger

Leptobotia fasciata (Dabry de Thiersant)

Nemacheilus cheni Herre and Lin, 1936, Bull. Chekiang Fish. Exp. Sta., II (7), p. 20, Fig. 6. Tien Hsi River system. Described without head spine or scales.

Misgurnus mizolepis mizolepis Günther

Subgenus _Paramisgurnus_ Sauvage

Peduncular keels connecting dorsal and anal with caudal.

Misgurnus dabryanus (Sauvage)

Description:—Depth in length to base of caudal, 6.1 or 6.5; head, 5.8 or 6.5; eye in head, 4.8 (specimen 73 mm. standard length). Dorsal rays, 8 or 9; anal, 6 or 7; scales comparatively large. The "type" of _Paramisgurnus_ examined and figured by Fang suggests _Misgurnus mizolepis mizolepis_ Günther, with a more anterior dorsal origin, equidistant from head and base of caudal.

Subgenus _Mesomisgurnus_ Fang

Mesomisgurnus Fang, 1935, Sinensia, VI, p. 129. Type: _Nemachilus bipartitus_ Sauvage and Dabry de Thiersant.

Differs from the subgenus _Misgurnus_ in lacking distinct peduncular keels.

Misgurnus (Mesomisgurnus) bipartitus (Sauvage and Dabry de Thiersant)

Description:—Depth in length to base of caudal, 10.9 to 12; head, 5.7 to 6.2; caudal peduncle a little longer than or subequal to head, its depth in length, 2.75; eye in head, about 5.2 (specimens 61 to 71 mm. long). Dorsal rays, 10; anal, 8; scales very minute.

A narrow lengthwise blackish band dividing body into an upper brownish and lower whitish half.
Misgurnus (Mesomisgurnus) lividus (Sauvage and Dabry de Thiersant)

Mesomisgurnus lividus, Fang, 1935, Sinensia, VI, p. 139, Figs. 9-10.

Description:—Depth in length to base of caudal, 9 to 8.1; head, 6 to 5.8; peduncle, 6.7 to 5.8; eye in head, 5.7 (specimens 54 and 75 mm. standard length). Dorsal rays, 9; anal, 7; scales minute.

Lefua costata (Kessler)

Crossostoma stigmata Nichols

Description:—A specimen 58 mm. standard length from the Min River has irregular, more or less alternating dark blotches above and below the lateral line, occupying as much space as the paler ground color; the front of the dorsal with 2 dark cross marks; and tips of the caudal dark, in addition to 2 pairs of marginal marks, the proximal of which are connected by shading across this fin.

Aplocheilus curvinotus Nichols and Pope

Macropodus viridiauratus Lacépède

Subgenus Coreosiniperca Fang and Chong

Coreosiniperca Fang and Chong, 1932, Sinensia, II, pp. 137, 149. Type: *Siniperca roulei* Wu.

Acroperca Myers, 1933, Hong Kong Nat., IV, p. 76. Type: *Siniperca roulei* Wu. Nichols, p. 247 herein.

Siniperca scherzeri chui Fang and Chong

ABBOTT, James Francis

ANDERSON, John
1878 Anatomical and zoological researches: comprising an account of the zoological results of the two expeditions to western Yunnan in 1868 and 1875. London, I, Pisces, pp. 861-869; II, pl. lxxxix.

ATODA, Kenji

BASILEWSKI, Stephano

BERG, L. S.
1907.2 Description of a new cyprinoid fish, Paraleucogobio notacanthus, from N. China. Ibid., (7) XIX, pp. 163-164.
1932.2 Note on the genera Metzia and Rasborinus. Ibid., 1932 (3), p. 156.

Bleekeer, P.
Bleeker, P., continued

1870.4 Description et figure d’une espèce inédite de Hemibaurus de Chine. *Ibid.*, (2) IV, pp. 257-258.

1873.2 Description de trois espèces inédites du genre Acanthorhodeus Blkr. *Ibid.*, IV, pp. 70-76.

Boulenger, George Albert

Cantor, Theodore

Chaudhuri, Banawari Lal

CHEN, CHIEN SHAN, AND LIN, SHU-YEN

CHEN, JOHNSON T. F.
1934 Note sur les gobioides de la collection du musée métropolitain de Nankin. Ibid., (2) VI, pp. 36-39, 1 fig.

CHEN, T. P.
1936 The red-tail fish, Tanichthys albonubes Lin. Ibid., XV, pp. 431-437, 4 figs.

CHEVEY, P.

CHU, YUANTING T.
1930.2 Contributions to the ichthyology of China, pt. 2. Ibid., XIII, pp. 330-335, 4 figs.
1931.1 Contributions to the ichthyology of China, pt. 3. Ibid., XIV, pp. 84-89, 4 figs.
1931.2 Contributions to the ichthyology of China, pt. 4. Ibid., XIV, pp. 187-194, 4 figs.
1931.3 Contributions to the ichthyology of China, pt. 5. Ibid., XV, pp. 32-40, 4 figs.
1931.4 Contributions to the ichthyology of China, pt. 6. Ibid., XV, pp. 148-156, 4 figs.
1931.5 Contributions to the ichthyology of China, pt. 7. Ibid., XV, pp. 241-247, 4 figs.
1932.2 Contributions to the ichthyology of China, pt. 9. Ibid., XVI, pp. 190-197, 4 figs.
1932.3 Fishes of the West Lake. The West Lake Museum, Hangchow, pp. i-vi, 1-58, 39 figs.

COURTOIS, F.

CUVIER, GEORGES, AND VALENCIENNES, ACHILLE

DAUBRY DE THIERSANT, PIERRE
Day, Francis

Duméril, Auguste

Dybowski, Benedikt Ivan
1872 Zur Kenntniss der Fischfauna des Amurgebietes. Ibid., XXII, pp. 209–222.

Evermann, Barton Warren, and Shaw, Tsen-Hwang

Fang, Ping Wen
1930.1 New homalopterin loaches from Kwangsi, China. Sinensia, Nanking, I, pp. 25–42, 1 fig., 2 pls.
1930.3 New species of Gobiobotria from the upper Yangtze river. Sinensia, Nanking, I, pp. 57–63, 2 figs.
1931.1 Notes on new species of homalopterin loaches referring to Sinohomaloptera from Szechuan, China. Ibid., I, pp. 137–145, 5 figs.
1931.2 New and rare species of homalopterin fishes of China. Ibid., II, pp. 41–64, 11 figs.
1933.1 Notes on a new cyprinoid genus, Pseudogyrinocheilus and P. procheilus (Sauvage and Dabry) from western China. Sinensia, Nanking, III, pp. 255–264, 8 figs., 1 tab.
1933.2 Notes on Gobiobotria tungi, sp. nov. Ibid., III, pp. 265–268, 1 fig.
1933.3 Notes on some Chinese homalopterid loaches. Ibid., IV, pp. 39–50, 2 figs.
1934.1 Study on the fishes referring to Salangidae of China. Ibid., IV, pp. 231–268, 10 figs.
1934.2 Notes on Myxocyprinus asiaticus (Bleeker) in Chinese fresh-waters. Ibid., IV, pp. 329–337, 5 figs.
1934.3 Supplementary notes on the fishes referring to Salangidae of China. Ibid., V, pp. 505–511.
1935.1 Study on the crossostomoid fishes of China. Ibid., VI, pp. 44–97, 17 figs.
1935.2 On Mesomisgurnus, gen. nov. and Paramisgurnus Sauvage, with descriptions of three rarely known species and synopsis of Chinese cobitoid genera. Ibid., VI, pp. 128–146, 12 figs.
1935.3 On some Nemacheilus fishes of northwestern China and adjacent territory in the Berlin zoological museum’s collections, with descriptions of two new species. Ibid., VI, pp. 749–767, 11 figs.

Fang, Ping Wen, and Chong, Lin Tchang
BIBLIOGRAPHY

FANG, PING WEN, AND WANG, KING F.

FOWLER, HENRY W.
1910 Description of four new cyprinoids (Rhodeinae). Ibid., LXII, pp. 476-486.
1923 Description of a new cyprinid fish from China. Ibid., no. 83, pp. 1-2.
1932 A synopsis of the fishes of China. Part III. The eels. Ibid., III, pp. 46-63, 7 figs.

FOWLER, HENRY W., AND BEAN, BARTON A.

FU, TUNG-SHENG

FU, TUNG-SHENG, AND TCHANG, TCHUNG-LIN

GARMAN, SAMUEL

GILL, THEODORE

GINSBURG, ISAAC

GLADKOV, N. A.
Gray, John Edward

Günther, Albert
1874 Third notice of a collection of fishes made by Mr. Swinhoe in China. Ibid., (4) XIII, pp. 154–159.
1892 List of the species of reptiles and fishes collected by Mr. A. E. Pratt on the upper Yang-tze-kiang and in the province Sze-chuen, with description of new species. In Pratt, A. E., To the snows of Tibet through China. London, appendix II, pp. 238–250, 4 pls.

Guichenot, Alphonse

Handyside, P. D.

Heckel, Johann Jakob

Heincke, F.
1892 Variabilität und Bastardbildung bei Cyprinoiden. In Festschrift zum 70. Geburtstage Rudolph Leuckarts, pp. 64–73, figs., pls.

Herre, Albert W.
1932 Fishes from Kwangtung province and Hainan island, China. Lingnan Sci. Jour., Canton, XI, pp. 423–443, 1 fig.
BIBLIOGRAPHY

Herre, Albert W., continued
1935.1 Notes on fishes in the zoological museum of Stanford university. VI.—New and rare Hong Kong fishes obtained in 1934. Hong Kong Nat., VI, pp. 285–293, 1 fig.
1936.2 Two new gobies from Hong Kong. Hong Kong Nat., VII, pp. 184–185.

Herre, Albert W., and Lin, Shu-Yen

Herre, Albert W., and Myers, George S.

Herzenstein, Salomon Markovich

Ho, Hsi J.

Hoffmann, William E.

Hora, Sunder Lal
THE FRESH-WATER FISHES OF CHINA

JAKOVLEFF, B. P.

JORDAN, DAVID STARR

JORDAN, DAVID STARR, AND EVERMANN, BARTON WARREN
1917 The genera of fishes, [part I]. Stanford University, California, pp. 1-161.

JORDAN, DAVID STARR, AND SEALE, ALVIN

JORDAN, DAVID STARR, AND SNYDER, JOHN OTTERBEIN

JORDAN, DAVID STARR, AND STARKS, EDWIN CHAPIN

KABOLI, JANOS

KESSLER, KARL THEODOROVICH

KIMURA, SHIGERU
1934 Description of the fishes collected from the Yangtze-kiang, China, by the late Dr. K. Kishinouye and his party in 1927-1929. Jour. Shanghai Sci. Inst., sec. 3, I, pp. 11-247, 6 pls., 1 map.

KNER, RUDOLF
KNER, RUDOLF, continued

KOH, T. P.

KOLLER, OTTO

KREYENBERG, M.

KREYENBERG, M., AND PAPPENHEIM, P.

LIN, M. C., AND WU, Y. C.

LIN, SHU-YEN
1931 Carps and carplike fishes of Kwantung and adjacent islands. [In Chinese.] Canton, pp. 1-167, figs.
1932.2 New cyprinid fishes from White Cloud mountain, Canton. Ibid., XI, pp. 379-383.
1932.3 On new fishes from Kweichow province, China. Ibid., XI, pp. 515-519.
1933 Contribution to a study of Cyprinidae of Kwantung and adjacent provinces. Ibid., XII, pp. 75-91, 1 pl., 4 figs.; pp. 197-215, 1 fig.; pp. 337-348; pp. 489-505, 1 pl., 4 figs.
1934.1 Contribution to a study of Cyprinidae of Kwangtung and adjacent provinces. Ibid., XIII, pp. 5-13; pp. 231-238, 2 figs.; pp. 437-455, 2 figs.; pp. 615-632.
1934.2 Three new fresh-water fishes of Kwangtung province. Ibid., XIII, pp. 225-230, 8 figs.
1934.3 A study of Foochow fishes. Ibid., XIII, pp. 671-691, 3 figs.
1935.1 Life-history of waan ue, Ctenopharyngodon idellus (Cuv. and Val.). Ibid., XIV, pp. 129-135, 1 fig.; pp. 271-274, 2 pls.
1935.2 Contribution to a study of Cyprinidae of Kwantung and adjacent provinces. Ibid., XIV, pp. 249-260; pp. 403-414, 1 fig.; pp. 651-663.
THE FRESH-WATER FISHES OF CHINA

LIN, SHU-YEN, continued

LOHBERGER, KARL

MARTENS, EDUARD VON

MCCLELLAND, JOHN

MIAO, C. P.

MÖLLENDORFF, O. F. VON

MORI, TAMEZO
1936 Studies on the geographical distribution of freshwater fishes in eastern Asia. Pp. [i–vi], 1–88, [1, 2], 6 maps.

MYERS, GEORGE S.
1933 A new genus of Chinese fresh-water serranid fishes. Hong Kong Nat., IV, p. 76.
1934 Corrections of the type localities of Meteia mesembrina, a Formosan cyprinid, and of Othonocheirodus eigenmanni, a Peruvian characin. Copeia, 1934 (1), p. 43.

NICHOLS, JOHN TREADWELL
Nichols, John Treadwell, continued

1925.1 A new homalopteran loach from Fukien. Amer. Mus. Novitates, no. 167, pp. 1-2, fig.
1925.3 The two Chinese loaches of the genus Cobitis. Ibid., no. 170, pp. 1-4, fig.
1925.4 Nemacheilus and related loaches in China. Ibid., no. 171, pp. 1-7.
1925.5 Chinese fresh-water fishes. Natural History, New York, XXV (4), pp. 346-352, 8 figs.
1925.7 Some Chinese fresh-water fishes. I. Loaches of the genus Botia in the Yangtze basin. II. A new minnow-like carp from Szechwan. III. The Chinese sucker, Myxocyprinus. Ibid., no. 177, pp. 1-9, 3 figs.
1925.9 Some Chinese fresh-water fishes. VII. New carps of the genera Varicorhinus and Xenocypris. VIII. Carps referred to the genus Pseudorasbora. IX. Three new abramidin carps. Ibid., no. 182, pp. 1-8.
1925.10 Some Chinese fresh-water fishes. X. Subgenera of bagrin catfishes. XI. Certain apparently undescribed carps from Fukien. XII. A small goby from the central Yangtze. XIII. A new minnow referred to Leucogobio. XIV. Two apparently undescribed fishes from Yunnan. Ibid., no. 185, pp. 1-7.
1925.11 Some Chinese fresh-water fishes. XV. Two apparently undescribed catfishes from Fukien. XVI. Concerning gudgeons related to Pseudogobio, and two new species of it. XVII. Two new rohdeins. Ibid., no. 214, pp. 1-7, 6 figs.
1925.12 Some Chinese fresh-water fishes. XVIII. New species in recent and earlier Fukien collections. Ibid., no. 224, pp. 1-7, 6 figs.
1929.1 A predaceous Chinese carp and its relationships. Lingnan Sci. Jour., Canton, VIII, pp. 169-172, fig. A.
1930.1 Some Chinese fresh-water fishes. XXII. Aphyocypris, describing a race from Shantung. XXIII. Gobies referable to the genus Micropercops. Ibid., no. 402, pp. 1-4, 2 figs.
1930.2 Some Chinese fresh-water fishes. XXIV. Two new mandarin fishes. XXV. New Sarcocheilichthys in northeastern Kiangsi. Ibid., no. 431, pp. 1-6.
1930.3 Some Chinese fresh-water fishes. XXVI. Two new species of Pseudogobio. XXVII. A new catfish from northeastern Kiangsi. Ibid., no. 440, pp. 1-5, 3 figs.
1931.1 Crossostoma fangi, a new loach from near Canton, China. Lingnan Sci. Jour., Canton, X, pp. 263-264, 1 fig.
1931.2 A new Barbus (Lissochilichthys) and a new loach from Kwangtung province. Ibid., X, pp. 455-459, 2 figs.
Nichols, John Treadwell, continued

1931.5 Some Chinese fresh-water fishes. XXIX. A new goby from Hokou, Kiangsi. XXX. Six type specimens figured. Ibid., no. 499, pp. 1-5, 6 figs.

Nichols, John Treadwell, and Pope, Clifford H.

Norman, J. R.

Osbeck, Peter
1765 Reise nach Ostindien und China, etc. Rostock.

Oshima, Masamitsu

Pappenheim, Paul

Pellegrin, Jacques

Pellegrin, Jacques, and Fang, Ping Wen

Peters, Wilhelm Carl Hertwig
1880.1 Ueber die von der chinesischen Regierung zu der internationalen Fischerei-Ausstellung gesandte Fischsammlung aus Ningpo. Ibid., pp. 921-927.
1880.2 Ueber eine Sammlung von Fischen, welche Dr. Gerlach in Hongkong gesandt hat. Ibid., pp. 1029-1037.

Ping, C.
BIBLIOGRAPHY

POPTA, CANNA M. L.

RAUTHER, M.

REEVES, CORA D.

REGAN, CHARLES TATE
1904.2 Descriptions of two new cyprinid fishes from Yunnan Fu. Ibid., (7) XIV, pp. 416-417.
1905.1 A synopsis of the species of the silurid genera Parexostoma, Chimarhichthys, and Exostoma. Ibid., (7) XV, pp. 182-185.
1907 Descriptions of three new fishes from Yunnan Fu, collected by Mr. J. Graham. Ibid., (7) XIX, pp. 63-64.
1908.2 Descriptions of new freshwater fishes from China and Japan. Ibid., (8) I, pp. 149-153.
1908.3 Descriptions of three new cyprinid fishes from Yunnan, collected by Mr. John Graham. Ibid., (8) II, pp. 356-357.
1911.2 The classification of the teleostean fishes of the order Ostariophysi. II. Siluroidea. Ibid., (8) VIII, pp. 553-577, 3 figs.
1913 A synopsis of the silurid fishes of the genus Liocassis, with description of new species. Ibid., (8) XI, pp. 547-554.
1923 Notes on the silurid fishes of the genera Glyptosternum and Exostoma. Ibid., (9) XI, pp. 608-610.

RENDHAL, HIALMAR
THE FRESH-WATER FISHES OF CHINA

RENDAHLL, HIALMAR, continued
1925, 1926
En ny id (Leuciscus [Idus] waleckii sinensis n. sp.) från Kina. Fauna och Flora, Uppsala, pp. 193-197, 1 fig.
1927
1928
1932
Die Fischfauna der chinesischen Provinz Szetschwan. Ibid., XXIV A (10), pp. 1-134, 6 figs.
1933, 1934
1933, 1934

RICHARDSON, JOHN
1844, 1845
1845
Rapport sur l'ichthyologie de la Chine. L'Institut, XIII, p. 337.
1846
1847
1848

ROGERS, R. H. S.
1935

ROZOV, V. E.
1934

RUTTER, CLOUDSLEY M.
1897

SAUVAGE, HENRI EMILE
1874
1878
1880
Sur une espèce nouvelle de Channa. Ibid., (7) IV, p. 58.
1881

SAUVAGE, HENRI EMILE, AND DABRY DE THIERSANT, PIERRE
1874
Seale, Alvin

Seitz, Adarbert

Senna, Angelo

Shaw, Tsen-Hwang
1930.1 Notes on some fishes from Ka-shing and Shing-Tsong, Chekiang province. Ibid., I, pp. 109–121, 10 figs.
1930.2 Fishes of Soochow. Ibid., I, pp. 165–205, 34 figs.
1932 On the occurrence of the nine-spined stickleback in the waters of Hopei province. Ibid., III, pp. 339–343, 1 fig.
1933 On the occurrence of Leiocassis ussuriensis Dybowski in the waters of Peiping and vicinity. China Jour., XVIII, pp. 354–356, 1 fig.
1934.1 Notes on a sturgeon, Huso dauricus (Georgi), from Chefoo. Ibid., XX, p. 108.
1934.2 Notes on a hunchbacked bitterling. Ibid., XXI, pp. 33–35, 2 figs.

Shaw, Tsen-Hwang, and Tchang, Tchung-Lin

Shih, H. J.

Shih, H. J., and Tchang, Tchung-Lin

Sowerby, Arthur de Carle

Steindachner, Franz
THE FRESH-WATER FISHES OF CHINA

Steindachner, Franz, continued
1866.2 Ichthyologische Mitteilungen VIII. Ibid., XVI, pp. 475–484.
1866.3 Ueber ein neues Cyprinoiden-Geschlecht von Hongkong. Ibid., XVI, pp. 782–784.
1866.4 Zur Fischfauna Kaschmirs und der benachbarten Landerstriche. Ibid., XVI, pp. 784–796, pls.
1883 Ichthyologische Beiträge, XIII. Ibid., LXXXVIII (1), pp. 1065–1114, 8 pls.

Tchang, Tchung-Lin
1930.5 Notes de cyprinidés du bassin du Yangtze. Sinensia, Nanking, I, pp. 87–93, 3 figs.
1932.1 A new loach from Chekiang. Ibid., III, pp. 83–84, 1 fig.
1932.3 Notes on three new Chinese fishes. Ibid., III, pp. 121–124, 4 figs.
1932.4 A new fish from Kaifeng. Ibid., III, pp. 211–216, 1 fig.
1935.1 A new genus of loach from Yunnan. Ibid., (zool.) VI, pp. 17–19, 2 figs.
1935.2 Two new species of Barbus from Yunnan. Ibid., (zool.) VI, pp. 60–64, 2 figs.
Tchang, Tchung-Lin, continued
1935.3 A new catfish from Yunnan. Ibid., (zool.) VI, pp. 95-97, 1 fig.
1935.4 Two new catfishes from South China. Ibid., (zool.), VI, pp. 174-177, 2 figs.
1936 Study on some Chinese catfishes. Ibid., (zool.) VII, pp. 33-56, 5 figs.

Tchang, Tchung-Lin, and Pao, Kuei-Tsun

Tchang, Tchung-Lin, and Shaw, Tsen-Hwang

Tchang, Tchung-Lin, and Shih, Chin-Ya

Tchang, Tchung-Lin, and Shih, Huai-Jen

Temminck, Coenraad Jacob, and Schlegel, Hermann

Van Dam, Anna J.

Vladykov, V. D.

Wakiya, Y.

Wang, Feng-Chen

Wang, King Fu

Warpachowski, Nikolai Arkadewich
The Fresh-Water Fishes of China

Weber, Max, and Beaufort, L. F. de

Wu, Hsien-Wen
1930.3 On some fishes collected from the upper Yangtze valley. Sinensia, Nanking, I, pp. 65-85, 8 figs.
1931.2 Liste des poissons d'eau douce du Tchékiang (Chine). Description de deux espèces nouvelles de la famille des cyprinidés. Ibid., (2) III, pp. 433-439.

Wu, Hsien-Wen, and Wang, King-Fu
1933 Preliminary note on the lips of Parabramis terminalis (Richardson). Ibid., (zool. ser.) VIII, pp. 387-391, 2 figs.
INDEX

Abbottina, 170, 269
baegma, 170
rivularis, 170
sinensis, 170, 180
tafangensis, 260
abbreviata, Gobiobotia, 195, 196
Homimyzon, 223
Homaloptera, 223
abbreviatus, Clarias, 57, 58
Aboma tsinanensis, 263
Abramidinae, 10
Abramis pekinensis, 150, 151
terminalis, 147, 150
Abramocephalus microkpis, 129
abramoides, Culter, 145
Acanthobrama, 124, 125
dumerili, 125
marmid, 124
simoni, 125
acanthogenys, Opsariichthys, 95
Zacco, 94, 95
Acanthobogia, 163
guetheri, 163, 164
longirostris, 163
Acanthobogius, 272
ommaturus, 272
Acanthobius, 190
dalyzon, 190
lachnostoma, 190
Acanthorhodeus, 156, 158
osmussi, 160
atranalis, 158, 160
dicaeus, 158
elongatus, 156, 158, 160
gracilis, 158
grahami, 160
guichenoti, 155, 158, 159, Pl. VI
kypselonotus, 158, 160
jeohicus, 158
lanchiensis, 260
longispinnis, 159
macropoter, 158
ngwuyangi, 160
omeiensis, 158, 159
taeniangularis, 158, 160
tokunagai, 160
tonkinensis, 154, 158, 159, Fig. 76
wangi, 160
Achehra hakonensis, 11
Acheilognathus, 155, 156, 260
barbatulus, 156, 157
barbatus, 156, 157, Fig. 75
chi, 260
gracilis, 155, 156, Fig. 74
kimantegus, 156, 157
imberbis, 155
lanchiensis, 260
luchowensis, 155, 156
melanogaster, 155
mesembrinum, 130
shibatae, 157
Achilognathus barbatulus, 157
kimantegus, 157
imberbis, 154
rhombus, 159
Acipenser, 15, 16
dabryanus, 15, 16, Fig. 1
dauricus, 16
huso, 16
sinensis, 15, 16
sturia, 15
Acipenseridae, 15
Acroperca, 247, 276
Acrossochilus kreyenbergii, 274
wenchowensis, 268
Acrossochilus fasciatus, 76
formosanus, 11
rubandi, 76
styani, 80
aculeata, Rhynehobdella, 30
aculeatum, Ophidium, 30
aculeatus, Gasterosteus, 12
Mastacembelus, 30
acuticauda, Hemimyzon, 222
Homaloptera, 220, 222
Sinohomaloptera, 222
acuticeps, Salanz, 25, 26, 273
acutipinnis, Barilius, 95
Opsariichthys, 97
Zacco, 274
INDEX

adiposalis, Leiocassis, 12
aenea, Xenocypris, 122
aestivaregia, Gobius, 261, 262
Rhinogobius, 262
aethiops, Leuciscus, 89
Myloleuciscus, 89
Mylopharyngodon, 89
affinis, Chandichthys, 148, 149
Pseudobagrus, 37
Rhinogobitis, 262
aethiops, Leuciscus, 89
Myloleuciscus, 89
Mylopharyngodon, 89
agili, Aphyocypris, 127, 128, Fig. 57
Carassius, 128
akoensis, Hemiculter, 12, 269
alba, Flucta, 27
Muraena, 27
albomarginatus, Leiocassis, 43, 47
albonubes, Tanichthys, 98, 99, 274
Albula, 25
albospina, Barilius, 142
Ischikawia, 141, 142, Fig. 68
alburnus, Culter, 146, 147
allos, Rasbora, 99, 100
almorhae, Botia, 200
Alosa, 126
kalagurta, 18
palasah, 18
reevesii, 18
aliteces, Nemachilus, 217
Altigena, 114
altispina, Pseudorasbora, 100, 101, Fig. 36
altivelis, Plecoglossus, 20
amos, Cyprinus, 151
Ambassidae, 244
Ambassids, 244
Ambassis, 244
Ambassids, 244
commersoni, 244
gymnocephalus, 244
ambassis, Centropomus, 244
Amblyceps, 52
marginatus, 52
Ameirus, 11
amemiyae, Aoria, 50
Amiurus guttatus, 273
Amphalabris, mirus, 106
amurenisis, Gobiosoma, 187
Anabantidae, 243
Anabariilius, 140, 141
Anabas, 243
oligolepis, 243
scandens, 243
testudimacceus, 243
analis, Leiocassis, 43, 48, Fig. 11
Anchovies, 19
andersonii, Barilius, 140, 142
Ischikawia, 141, 142
Paraprotosalanx, 23
andersonii, Exostoma, 56, 57
anderssoni, Protosalanx, 23
Pseudobagrus, 181, 184, 185
Solangichthys, 22, 23
andrews, Hemiculter, 140, 142, Fig. 68
Lefua, 213, 276, Fig. 113
Anguilla, 30, 31
bengalensis, 32
elphinstonei, 273
japonica, 32
macroptera, 31
mariliana, 31, 32, 273
remifera, 31
sinensis, 31, 32, Fig. 4
vulgaris, 30
anguilla, Muraena, 30
anguillaris, Zoochilus, 30
anguilllicauda, Lioobagrus, 51, Fig. 12
anguilllicaudatus, Cobitis, 205
anguillicaudatus, Misgurnus, 204, 205
Anguilidae, 30
angusticeps, Parasalanx, 27
Salanx, 24, 27
angustus, Hemiculterella, 268
Pseudolaubuca, 268
garntita, Parasalanx, 26
Salanx, 25, 26
anomala, Herklotesella, 35
anomalus, Parasilurus, 33, 35
ansatus, Centridermichthys, 254
Anthias testudinaceus, 243
aoki, Culter, 145
Erythrocultor, 144, 145
Aoria, 36
amemiyae, 50
argentivittata, 36, 37
cavasius, 11, 36
cornula, 11, 36
guttatus, 273
henryi, 36, 37
macroptera, 50
pulcher, 37
seenghala, 36, 37
sinensis, 36
virgatus, 41
Aphyocypris, 126, 127, 129
agilis, 127, 128, Fig. 57
chinensis, 103, 127
kikuchii, 127, 129
normalis, 126, 127
shantung, 127, 128, Fig. 56
Aplocheilus, 234
celebensis, 276
cubbinotus, 234, 276, Fig. 126
latipes, 234
INDEX

Aplocheilus—continued
 melastigmus, 234
 rubropunctatus, 234
 apogon, Barbus, 11
 Apteriga immaculata, 28
 nigromaculata, 28
 saccogularis, 28
 arcus, Yaoshanicus, 126, 127
 areanae, Cobitis, 197, 199
 Misgurnus, 199
 argentatus, Gnathopogon, 168–170
 Gobio, 169
 argentea, Salamx, 23
 Xenocypris, 120, 121
 argenteus, Parapelecus, 138, 139
 argentiflora, Toxabranius, 138
 argentivittata, Aoria, 36, 37
 argentivittatus, Macrones, 37
 argus, Ophicephalus, 237, 238
 Aristichthys, 107
 simoni, 130
 Arius, 9, 33
 armatus, Cyclocheilichthys, 78
 Leiocassis, 44
 Macrognathus, 20
 Mastacembelus, 20
 asiatica, Channa, 240, Fig. 130
 asiaticus, Carpiodes, 58, 59
 Gymnotus, 240
 Myxocyprinus, 58, 59, 61, Figs. 15, 16
 asmussi, Acanthorhodeus, 160
 asotus, Parasilarus, 33–35
 Silurus, 33, 34
 asperus, Eretisthes, 55
 Pimelodus, 55
 Zacco, 94, Fig. 31
 Aspidobagrus gulio, 11
 asplatus, Ophicephalus, 237, 239
 Ophicephalus, 239
 Aspliulcus merzbacheri, 11
 Aspius, 87
 fasciatus, 94
 spilurus, 87, 94
 aspius, Cyprinus, 87
 ater, Clarias, 57
 atranalis, Acanthorhodeus, 158, 160
 arenius, Rhodius, 12
 Atriminea, 93
 chenchwei, 93
 aspinitis, Myloleuciscus, 89
 atramaculatus, Gnathopogon, 168, 170, Fig. 84
 attus, Silurus, 13
 Wallago, 13
 aurantiacus, Bagrus, 38
 auratus, Carassius, 62, 64, Fig. 19
 Cyprinus, 64

Bagrus aurantiacus, 38
 bouderius, 11
 lamarii, 36
 nemurus, 49
 ussuriensis, 46, 49
 vachelli, 39
 bali, Eleotris, 255
 bambusa, Elopichthys, 87, Figs. 29, 30
 Leuciscus, 87
 baramense, Osteochilus, 67
 Barbatula, 3, 213–215, 270
 berezouskii, 215, 218
 bipartita, 213
 bleekerii, 214, 215
 cuneiceps, 214, 218
 dabryi, 214, 215
 fasciolata, 215, 219, 220, Fig. 118
 fouleri, 214, 216, Fig. 114
 grahami, 214, 216
 hind, 215, 219
 humilis, 215, 219
 incerta, 215, 219, Fig. 117
 kungessana, 270
 livida, 214, 215, 276
 oxygnatha, 215, 218
 pappenheimi, 270
 posteroventralis, 214, 216, Fig. 115, Pl. VII
 potanini, 215, 218
 robusta, 215, 217
 sellafer, 214, 217, Fig. 116, Pl. VII
 stoliczkaei, 215, 217, Pl. IX
 toni, 214, 216
 variegata, 214, 215
 yarkandensis, 217
 barbatula, Cobitis, 213, 215
 barbatulus, Acheilognathus, 156, 157
 Achilognathus, 157
 barbus, Acheilognathus, 156, 157, Fig. 75
 Gymnostomus, 116
 Varicorhinus, 114, 116
 Barbodes, 71
 paradoxus, 76
 Barbodon, 188, 189, 192
 lacustris, 192
 barbodon, Barbus, 69, 75, 77, Fig. 27
 Barbus, 7, 65, 67–69, 75, 78, 80, 268
 apogon, 11
 barbodon, 69, 75, 77, Fig. 27
 brevifilis, 38, 68, 70
 caldwelli, 68, 72, Fig. 21
 chola, 11
 coggiini, 68, 71
 deauratus, 68, 71
 denticulatus, 73, Fig. 23
 fasciolatus, 74
 gerlachi, 38, 110
INDEX

Barbus—continued

grahami, 68, 70
gregorii, 69, 71
hainani, 74
hemispinus, 69, 75, 77, Fig. 26
huqunini, 11
kreyenbergii, 274
lepturus, 274
lisochiloides, 69, 75, 76, 274
longirostrum, 71
mandarinus, 68, 72
margarinus, 69, 71
matsudai, 69, 75, 76
melanopterus, 11
mosai, 11
nigrodorsolis, 68, 73, 274, Fig. 22, Pl. IV
normani, 68, 70
paradoxus, 75
parallens, 69, 76, Fig. 25
pingi, 68, 69, 74
poehi, 70
quisquefasciatus, 76
regani, 68, 69
rendahlia, 68, 77
roulei, 116, 274
sarana, 74
schlegeli, 163
semibarbus, 163
semifasciolatus, 69, 74, Fig. 24, Pl. V
simus, 69, 71
sinensis, 68, 73, 74
smyeri, 69, 75
stigma, 71
tszechwanensis, 69, 71
tor, 11
wenchwensis, 268
yunnanensis, 68, 70
zonatus, 68, 70
barbus, Cyprinus, 67, 69
Gobio, 161
Hemibarbus, 12, 163
baremense, Glyptosternon, 54
barila, Cyprinus, 92
Barilius, 7, 92, 93
acuirpinnis, 95
albunrops, 142
andersoni, 149, 142
chenchiwei, 93
grahami, 142
hainanensis, 136, Fig. 63
interrupta, 92
macroops, 93
polylepis, 142
roulei, 93
batrachus, Clarias, 57
Bdellorhynchus maculatus, 30

Beaufortia leveretti, 230
pingi, 231
szechwanensis, 231
zebroidus, 231
bedfordi, Parasilurus, 33, 35
Silurus, 35
belangeri, Rohite, 12
belinka, Systomus, 71
bengalensis, Anquilla, 32
berdmorei, Exostoma, 55
berezowskii, Barbatula, 215, 218
Nemachilus, 218
bergi, Siniperca, 249
beso, Varicorhinus, 113, 115
bicolor, Pseudogobius, 180, 182, Fig. 91
bidens, Opsariichthys, 96, 97
bimaculatus, Ompok, 12
Silurus, 13
bipartiita, Barbatula, 213
bipartitus, Mesomisgurnus, 275
Misgurnus, 275
Nemachilus, 275
bivittata, Tamanka, 265
bivittatus, Gobius, 260, 265
biwae, Gnathopogon, 12
blanchardi, Rasbora, 97
bleekeri, Barbatula, 214, 215
Hemiculter, 134
Huco, 22
Nemachilus, 215
Paracheilognathus, 154, 155
borealis, Micropercops, 258, 259, Fig. 140
borneensis, Gastromyzon, 230
Bostrychus maculatus, 238
Botia, 194, 200
almorhae, 200
citrauratea, 200, 201
compressicauda, 200, 201, Fig. 104
elongata, 203
fangi, 201, 202
multifasciata, 203
pratti, 201
purpurea, 200, 202
rubrilabris, 201, 202, 275, Fig. 105
superellaris, 201, 202
tientlainensis, 201, 202
variegata, 202, 203
bouderius, Bagrus, 11
Pimelodus, 11
boulengeri, Gobiobotia, 194, 195
Brachydanio, 93
interrupta, 92
brachygnathus, Claria, 19
Brachymystax, 21
lenok, 21
brachynotopteris, Osteochilus, 67
brachyrostralis, Salamx, 24, 26
brachysoma, Eleotris, 255
branula, Leuciscus, 150
Megalobravia, 148, 150
Parabramis, 151
brandlii, Leuciscus, 86
brashnokowi, Leioctaxis, 12
brevis, Osteochilus, 114
Varicorkinus, 114
brunneus, Gobius, 260, 261
calcarifer, Holocentrus, 245
Lates, 245
caldwelli, Barbus, 68, 72, Fig. 21
Homaloctaxis, 220, 221, Fig. 110
Vannamvia, 222
calarius, Pelteobagrus, 40
Silurus, 40
caninus, Gobius, 260, 262
canio, Ompok, 12
Silurus, 13
cantonensis, Carassesoides, 65
Carassius, 64
Carpio, 65
Parasalanx, 26
Capoeta elongata, 168
Fundulus, 11
rhombus, 154
Carpinius agilis, 128
Carassius, 63-65
auratus, 62, 64, Fig. 19
cantonensis, 64
carassius, 62, 64
gibeloideis, 64
wu, 64
carassius, Carassius, 62, 64
Cyprinus, 63, 64
Carassesoides, 65
cantonensis, 65
rhombus, 65
Carpio cantonensis, 65
carpio, Cyprinus, 13, 61-63, Fig. 18
Carpiniodes asiaticus, 58, 59
chinensis, 60
Carps, 61
Catfishes, 33
Catostomidae, 58
Catostomus catostomus, 7
catostomus, Catostomus, 7

cavasius, Aoria, 11, 36
Pimelodus, 12
celbrensis, Aplocheilus, 276
Centridermichthys ansatus, 254
Centropomus ambassis, 244
cephalotaenia, Leuciscus, 99
Rasbora, 99
Cephalus mantschuricus, 129
cetoipis, Coreius, 176
Labeo, 175, 176
Chaca hamiltoni, 11
Chaeotodon chinensis, 241
chalneri, Philypnus, 256, Fig. 137, Pl. X
changi, Pseudobagrus, 267
Channa, 240
asiatica, 240, Fig. 130
fasciata, 240
formosa, 11
kimurai, 271
ocellata, 240
orientalis, 240
sinensis, 240
Canodichthys, 143
affinis, 148, 149
kurematsui, 149
macrotis, 148, 149
stentii, 151
wu, 140
chaoi, Pseudobagrus, 180, 183
chebianensis, Opsiarchthys, 96, 97
cheonensis, Homaloctaxis, 221
Chela, 140
nicholsi, 140
chenckhwei, Atrilinea, 93
Barilius, 93
chngili, Zacco, 94
cheni, Gobius, 261, 262
Nemacheilus, 275
Paraleucogobio, 163
chen-yü, 236
chi, Acheilognatus, 259
chieni, Siniperca, 248
chi-ha-yii, 163
chih-ma-tiao, 92
Chilogobio, 188, 189
soldatovi, 189
Chimarrhichthys davidii, 56
chinensis, Albula, 25
Aphyocypris, 123, 127
Carpio, 60
Chaetodon, 241
Cirrhina, 66
Cirrhinus, 66
Eperlanus, 273
Hilsa, 266
Hypselobagrus, 50
INDEX

chinensis—continued
Leucosoma, 25
Macrones, 50, 51
Macropodus, 241, 242
Myxocyprinus, 50, 60
Pseudobagrus, 39
Salamx, 24, 25
ch'ing-yü, 90
chinssuensis, Pseudogobio, 180, 182, 183, Fig. 92
chi-yü, 65
chola, Barbus, 11
Cyprinus, 12
chorensis, Phoxinus, 86
chuaniclus, Moroco, 12
chuantsi, Perca, 248
Siniperca, 246, 248, 249
chuansi, Perca, 246, 247, 249
Siniperca, 246, 249, 250, Fig. 134
chui, Siniperca, 247, 248, 276
cinctus, Micropercops, 258
Philipnus, 258
cinerea, Fluta, 27, 28, Pl. II
cinereus, Monopterus, 28
Parasilurus, 33, 34
Silurus, 34
Cirrhina, 107
chinensis, 66
Cirrhus, 66, 109
chinensis, 66
melanostigma, 108
cirrhosus, Cyprinus, 66
citrauralea, Botia, 200, 201
Clarias, 57
abbreviatus, 57, 58
ater, 57
batrachus, 57
fuscus, 57, Fig. 14, Pl. III
hexacistinus, 58
magur, 57
orontis, 57
pulicaris, 57
clarki, Ctenogobius, 265
Gobius, 260, 265
clifordpoei, Gobius, 261, 263, Fig. 142, Pl. IX
clivatus, Listochilus, 76
Clupea cyprinoides, 17, 18
reevesi, 18
sinensis, 266
Clupeidae, 18
clupeoides, Hemiculter, 134, 135, Fig. 61, Pl. IV
Cobitisctys dichaehrous, 11
polynema, 11
Cobitidae, 193
Cobitis, 196, 197, 190
anguillulavata, 205
arvae, 197, 199
barbatula, 213, 215
decemcirrhosus, 205
dolichorchynchus, 107, Fig. 101, Pl. VIII
fasciatus, 210, 211
fossiliis, 204
macrostigma, 107, 198, Fig. 103
melanoleucia, 197, 198, Fig. 102
mohoiy, 208
poecilepleura, 11, 197
sinensis, 197, 198, Fig. 103, Pl. IX
stoliczkaei, 217
tenia, 196, 197, 199
toni, 216
zantki, 203
zantki, 203
cochinchinensis, Parasilurus, 33, 35, Fig. 5
Silurus, 35
coggini, Barbus, 68, 71
Coilia, 19, 26
brachygnathus, 19
ectenes, 12, 19
grayii, 12
hamiltoni, 19
mystus, 12, 19
narus, 19
playfairii, 19
rendahl, 12, 19
collari, Labeo, 108, 109
commersoni, Ambassis, 244
compressicauda, Botia, 200, 201, Fig. 104
compressus, Xenocypris, 121, 124, Fig. 54
conirostre, Glyptosternon, 53
Glyptosternum, 53
coriostrom, Glyptosternum, 53
coregonoides, Saimo, 21
coreianus, Gnathopogon, 170
Coreius, 171, 175, 176
cetopus, 176
longibarbus, 177
rathbuni, 177
septentrionalis, 176, Fig. 89
styanii, 176, 177
zenii, 176
Coreoperca, 251
fortis, 250
herzii, 251
whiteheadi, 251, Fig. 136, Pl. X
yunkiansensi, 251
Coreosiniperca, 276
Coripareius septentrionalis, 176
coriparoides, Gobio, 172, 174, Fig. 87
cornula, Aoria, 11, 36
Pimelodus, 12
costaia, Diplophysa, 213
Lejua, 213, 276, Fig. 113, Pl. VIII
costatus, Leuciscus, 86
INDEX

cotio, Cyprinus, 12
Rohitee, 12
Cottidae, 253
Cottus, 253
gobio, 253
poecilopus, 253
pollux, 12
Cranoglanis, 37
multituberculatus, 38
sinensis, 37, 38
crassilabris, Diptychus, 84
Leiocassis, 42, 44
Liocassis, 44
crassirostris, Leiocassis, 44
Crossocheilus, 79
monticola, 79, 80
styani, 79, 80
Crossochilus fasciatus, 75, 76
monticola, 80
styani, 80
crossochilus, Misgurnus, 205, 209
Crossostoma, 224-226
davidii, 225-227, Fig. 120
fangi, 226, 228, Fig. 123
fasicauda, 225-227, Fig. 121
foochwensis, 226
lacustris, 12
stigmato, 226, 227, 276, Fig. 122
tinkhami, 226, 227
Ctenogobius, 265
clarki, 265
duospilus, 272
fasciatus, 265
hadropterus, 263
leavelli, 263
lini, 263
myxodermus, 264
whitleyi, 271
Ctenopharyngodon, 90, 107
idella, 90
idellus, 13
latiseps, 90
Culter, 146, 147
abramoides, 145
alburnus, 146, 147
aokii, 145
breviceps, 146, 147
dabryi, 144
erythropterus, 143, 144
kypselonotus, 145
ilishaformis, 144
kathinensis, 146, 147
leuciscus, 133, 134
mongolicus, 144
oxycephaloides, 145
oxyccephalus, 145
recurviceps, 147
rutillus, 144
tiensinensis, 146, 147
Culticula, 125, 126
emmelas, 125
tchangi, 125, 126
cuneicephalus, Barbatula, 214, 218
curriculus, Leuciscus, 90, 91
Squaliobarbus, 91
curvifrons, Schizothorax, 82
curvinatus, Aplodinotus, 234, 276, Fig. 126
cuiyier, Salamn, 23-26, 273
Cyclocheilichthys, 78
armatus, 78
iridescens, 78, Fig. 28
sinensis, 78, 79
cylindricus, Rhinogobio, 178
Cyprinidae, 10, 61
Cyprininae, 10
Cyprinodontidae, 233
cyprinoides, Clupea, 17, 18
Megalops, 18
Cyprinus, 61, 62, 65
amarus, 151
aspius, 87
auratus, 64
barbus, 67, 69
barila, 92
carassius, 63, 64
carpio, 13, 61-63, Fig. 18
chola, 12
cirrhosus, 66
cotio, 12
dangula, 80
flavipinnis, 61
fossicola, 61, 62
gibelio, 64
gobio, 171
haematopterus, 61
hybiscoides, 61
labeo, 162
lamta, 110, 111
leuciscus, 84
micristius, 61, 63
niloticus, 107
pellegrini, 61, 63
phoxinus, 86
puntio, 74
putitora, 73
rabaudi, 61, 63
ropas, 87
rasbora, 99
lor, 12
yunnanensis, 63
czerskii, Sarcocheilichthys, 190
INDEX

dabryanus, Acipenser, 15, 16, Fig. 1
 Misgurnus, 275
Paramisgurnus, 209, 210, 275
dabryi, Barbatula, 214, 215
Culter, 144
Erythroculter, 143, 144, Pl. IV
Hypophthalmichthys, 129
Micropercops, 257-259
Orias, 215
Saurogobio, 186, 187
dahuricus, Nasus, 89
dangila, Cyprinus, 80
daniconius, Rasbora, 12
Danio, 80
kakhienensis, 81
Danioides kakhienensis, 81
dauricus, Acipenser, 16
Huso, 15-17
davidi, Chimarrhichthys, 56
Crasostoma, 225-227, Fig. 120
Eleotris, 255
Exostoma, 56
Gobius, 261, 262
Paratylognathus, 204
Tyllognathus, 109
Xenocypris, 121, 122
dearatus, Barbus, 68, 71
decemcristatus, Cobitis, 205
 Misgurnus, 275
decorus, Labeo, 38, 108
denticulatus, Barbus, 73, Fig. 23
Spiniabarichthys, 73
depressirostris, Pseudorasbora, 100, 101, Fig. 37
dereimsi, Rhinogobio, 178, 179
Dermocassis, 42, 46, 48
dialysoma, Acanthopsis, 190
dicetus, Acanthorhodeus, 158
dichacrous, Cobitis, 11
 Misgurnus, 12, 204
Diodon ocellatus, 253
Diplophya, 214
costata, 213
kungessana, 12, 270
diplostomus, Labeo, 118
 Varicorhinus, 118
Diptychus, 84
crassilabris, 84
dybowski, 84
maculatus, 84
pachycheilus, 84
discognathoides, Varicorhinus, 114, 115, Fig. 47
Discognathus imberbis, 113
pingi, 112
prochilus, 110
yunnanensis, 111
Discogobio, 113
tetraorbatus, 113
dispar, Hemiculter, 38, 134, 136, 274, Fig. 63
disparis, Homaloptera, 220, 223
 Parhomaloptera, 222, 223
dissimilis, Hemiculus, 161, 162
Distoechodon, 120, 124
tumirostris, 124
dixoni, Nemachilus, 213
dobula, Gymnocypris, 12
dolichonema, Schizothorax, 12
dolichorhynchus, Cobitis, 197, Fig. 101, Pl. VIII
dormitor, Gobiomorus, 256
dorsalis, Saurogobio, 187
drakei, Pseudogobio, 186
Saurogobio, 173, 186
dumerili, Acanthobrama, 125
 Leiocassis, 42, 43
Pseudobrama, 125
Rhinoagrus, 43
Saurogobio, 186, 187
duoaspilus, Ctenogobius, 272
Gobius, 272
dybowski, Diptychus, 84
ectenes, Coilia, 12, 19
Eels, Spiny, 29
Symbranch, 27
True, 30
eigenmanni, Hemiculterella, 132
 Parapelecus, 132
Eleotrinae, 254
Eleotris, 254
baila, 255
brachysoma, 255
davidi, 255
fuscus, 255, 256
obscura, 257
oxycephala, 255
potamophila, 257
swinhonis, 258, 259
xanthi, 259
elongata, Botia, 203
Capoela, 168
Leptobotia, 203
Simiperca, 247, Fig. 132
elongatus, Acanthorhodeus, 156, 158, 160
 Hemibagrus, 50
Macrones, 50
 Misgurnus, 205, 208
Nemacheilus, 270
Ochetobius, 92
Opsarius, 91, 92
Elopichthys, 87
bambusa, 87, Figs. 29, 30
Elopidae, 17
elphinstonei, Anguilla, 273
INDEX

emarginatus, Leiocassis, 43, 46
Lioassis, 46
eemelas, Culticula, 125
Engraulidae, 19
engravilis, Hemiculterella, 132, 133, Fig. 60
ensara, Fusania, 128
Epalczorkynchnus, 117
mutabilis, 117
Eperlanus chinensis, 273
Epiniphelus susuki, 245
Erethistes, 55
asperus, 55
pusillus, 56
eriksson, Misgurnus, 205, 206
Erythroculler, 143, 147
akitsi, 144, 145
dabryi, 143, 144, Pl. IV
erythropterus, 144, 147
mongolicus, 144
oxycephaloide, 144, 145
oxycephalus, 143, 145
pseudoberivicauda, 143, 146, Fig. 70
wangi, 143, 145
erythropterus, Culler, 143, 144
Erythroculler, 144, 147
esocinus, Gobio, 180
Pseudogobio, 184
Euchilloganis, 56
kishinouyei, 56
myzostoma, 56
eugoides, Pseudobagrus, 39
eugon, Pseudobagrus, 39, 40
exiguus, Pseudogobio, 181, 184
Saurogobio, 184
Esoglossops gregi, 192
Esotoma, 55
andersonii, 56, 57
berdmorei, 55
davidii, 56
kishinouyei, 56
labiostum, 12
myzostoma, 56
fangi, Botia, 201, 202
Crossostoma, 226, 228, Fig. 123
Parahodeus, 274
Pseudobagrus, 39, 40, 267
Pseudogastromyzon, 228
Xenocypris, 121, 122
fani, Xenocypris, 121
fasciata, Channa, 240
Homaloipera, 220, 223, 229
Leptobotia, 203, 275
fasciatus, Acrossochilus, 76
Aspius, 94

Cobitis, 210, 211
Crossochilus, 75, 76
Ctenogobius, 265
Nemacheilus, 211
Parabotia, 203
Pseudogastromyzon, 229
Pilorhynchnus, 229
Trachidermus, 254
fasciauda, Crossostoma, 225–227, Fig. 121
Forsomasia, 227
fasciatula, Barbatula, 215, 219, 220, Fig. 118
Homaloipera, 219
Parabotia, 203
fasciatulus, Barbus, 74
flamentosus, Megalops, 17
filler, Pseudogobio, 180, 185
fimbriata, Homaloipera, 223, 224
Lepturichthys, 223, 224
fascianus, Gobius, 272
fascipinnis, Cyprinus, 61
Flata, 27
alba, 27
cineres, 27, 28, Pl. II
sanzimugnathka, 27, Fig. 2
huviatilis, Lampeira, 12
jokienisi, Glyptosternon, 53, 54
jontouensis, Onychostoma, 119
joochowensis, Crossostoma, 226
fornosana, Channa, 11
Homaloipera, 228
Forsomasia, 225
fasciauda, 227
stigmata, 227
forsomanus, Acrossochilus, 11
fortis, Coreoperca, 250
jonnica, Cyprinus, 61, 62
fossilis, Cobitis, 204
jouleri, Barbatula, 214, 216, Fig. 114
Pseudorasbora, 101–103, Fig. 40
jui, Pseudobagrus, 273
fukien, Misgurnus, 204, 205, 207, Fig. 108
jukienisi, Myxocyprinus, 59, 60, Fig. 17
Parapleucus, 139, Fig. 65
Pseudogobio, 180, 181, Fig. 90
Rasborinus, 130, 131, Fig. 58
Sarcocheilichthys, 180, 192, Fig. 90
jukushimai, Rhinogobius, 263
julividraco, Pimeolodus, 40
Pseudobagrus, 36, 39, 40, 267, Pl. III
fundulus, Cepoeta, 11
Fusania ensara, 128
fusca, Eleotris, 255, 256
Poecilia, 256
fuscus, Clarias, 57, Fig. 14, Pl. III
Macroperonotus, 57
Mylopharyngodon, 89
INDEX

Fuslis, 187
vivus, 187, 188

gachel, *Ophicephalus*, 237, 239, Figs. 128, 129, Pl. X
Ophicephalus, 239
Galaxi, 3
Garra, 106, 110-112
imberba, 111-113
imberbis, 111-113, Fig. 46
lamia, 112
orientalis, 111, Fig. 44
pingi, 111, 112
rhynchota, 111, 112, Fig. 45
schismatorkyncha, 112, Fig. 45
yunnanensis, 111
Gasterosteidae, 236
Gasterosteus aculeatus, 12
occidentalis, 236
pungitius, 236
sinensis, 236
Gastromyzon, 228, 230, 232
borneensis, 230
kweichowensis, 230, 231
levereti, 230, Fig. 125
pingi, 230, 231
szechuanensis, 230, 231
zebroidus, 230, 231
geli, Exoglossops, 102
Georgickthys scaphignathus, 100
gerlachi, Barbus, 38, 119
Onychostoma, 119
gibelio, *Cyprinus*, 64
gibelooides, Carassius, 64
giurinus, Gobius, 260, 264, 273
giuris, Gobius, 260, 261, Fig. 141
gladus, Polyodon, 17
Psephurus, 17
glanis, Silurus, 266
Glaridoglanis, 57
Glossogobius, 260, 261
Glyptosternon, 52, 53, 55
baremense, 54
coriostre, 53
fokiensis, 53, 54
hainanensis, 53, 54, Fig. 13
pallozonum, 53, 54
reticulatus, 52
sinense, 53
sulcatus, 267, 268
yunnanensis, 53, 55
Glyptosternum coriostre, 53
coriostreum, 53
pallozonum, 54
sinense, 53
Glyptosternum yunnanensis, 55
Gnathopogon, 168
argentatus, 168-170
atromaculatus, 168, 170, Fig. 84
biwae, 12
coreianus, 170
gacilis, 12
ijimoe, 12
intermedius, 168, 169, Fig. 82
punctatus, 168-170, Fig. 83
sinensis, 168, 170
similis, 168, 171, Fig. 85
tsuchigae, 12
wolterstorffi, 168, 169, 171
Gobies, 254
Gobiidae, 254
Gobiinae, 254, 260
Gobio, 104, 168, 171, 172, 178
argentatus, 169
barbus, 161
coriparoidea, 172, 174, Fig. 87
esocinus, 180
gobio, 12, 173
heterodon, 187
hsii, 169
imberbis, 189
lingyuanensis, 173
longipinnis, 172, 174, 175, Fig. 88
minulus, 172, 173
nigripinnis, 190
niten, 172
nummilifer, 172, 275
rivularis, 170
rivuloidea, 172, 173, Fig. 86
roulei, 172, 175
sinensis, 168, 170
soldatovi, 172, 173
taenius, 275
tenmacorpus, 172, 174
vaillanti, 172, 173
wolterstorffi, 171
gobio, Cottus, 253
Cyprinus, 171
Gobiosoma, 110
Gobioidei, 254
Gobiidae, 254
Gobiinae, 254, 260
Gobio, 104, 168, 171, 172, 178
argentatus, 169
barbus, 161
coriparoidea, 172, 174, Fig. 87
esocinus, 180
gobio, 12, 173
heterodon, 187
hsii, 169
imberbis, 189
longipinnis, 172, 174, 175, Fig. 88
minulus, 172, 173
nigripinnis, 190
niten, 172
nummilifer, 172, 275
rivularis, 170
rivuloidea, 172, 173, Fig. 86
roulei, 172, 175
sinensis, 168, 170
soldatovi, 172, 173
.taenius, 275
tenmacorpus, 172, 174
vaillanti, 172, 173
wolterstorffi, 171
gobio, Cottus, 253
Cyprinus, 171
Gobiosoma, 110
Gobioidae, 254
Gobiidae, 254
Gobiinae, 254, 260
Gobio, 104, 168, 171, 172, 178
argentatus, 169
barbus, 161
coriparoidea, 172, 174, Fig. 87
esocinus, 180
gobio, 12, 173
heterodon, 187
hsii, 169
imberbis, 189
longipinnis, 172, 174, 175, Fig. 88
minulus, 172, 173
nigripinnis, 190
niten, 172
nummilifer, 172, 275
rivularis, 170
rivuloidea, 172, 173, Fig. 86
roulei, 172, 175
sinensis, 168, 170
soldatovi, 172, 173
.taenius, 275
tenmacorpus, 172, 174
vaillanti, 172, 173
wolterstorffi, 171

INDEX

Gobius—continued
bivittatus, 260, 265
brunneus, 260, 261
caninus, 260, 262
deni, 261, 262
clarkei, 260, 265
cliffordpopei, 261, 263, Fig. 142, Pl. IX
david, 261, 262
duaspilus, 272
flavimanus, 272
grangeri, 260, 264, 272
grarius, 260, 261, Fig. 141
grammeponus, 261, 262
hadropterus, 260, 263, 264, 272
hainanensis, 261, 265
leavelli, 260, 263, Fig. 143
myxodermus, 260, 264
niger, 260
ommaturus, 272
pisonis, 254
platycephalus, 261
sichilis, 272
whiteleyi, 271
goldsboroughi, Kendallia, 135
goramy, Osphronemus, 242, 243
Gouramis, 241
gracilis, Acanthorhodeus, 156
Acheilognathus, 155, 156, Fig. 74
Gnathopogon, 12
gracilimus, Parasalanx, 26, 273
Salanz, 24, 26
grakami, Acanthorhodeus, 160
Barbatula, 214, 216
Barbus, 68, 70
Barilius, 142
Ischikauia, 141, 142
Nemachilus, 216
oreinus, 83
Parasilurus, 33, 34
Schizothorax, 81, 83
Silurus, 34
grammeponus, Gobius, 261, 262
grammicos, Synbranchus, 28
grandinosus, Ophicephalus, 240
grandiosus, Ophicephalus, 240
grangeri, Misgurnus, 205, 207, Fig. 107
grayi, Coilia, 12
gregorii, Barbus, 69, 71
griseus, Schizothorax, 81, 82
guentheri, Acanthogobio, 163, 164
Ophicephalus, 238
güntheri, Lepturichthys, 224
Puntius, 74
Xenocypris, 121
gulchenati, Acanthorhodeus, 155, 158, 159, Pl. VI
Paracanthobrama, 161
Saurogobio, 186, 187
gulo, Aspidobagrus, 11
Pimelodus, 12
guttatus, Ameiurus, 11
Amiurus, 273
Aoria, 273
Hemibagrus, 273
Pimelodus, 11, 273
Gymnocephalus, Ambassis, 244
Lutjanus, 244
Gymnocypris dobula, 12
Gymnodipteryx, 84
Gymnostomus barbatus, 116
kreyenbergi, 115, 274
labiatus, 75
lepturus, 119
macrolepis, 116
moliterella, 12
monicola, 80
styani, 80
Gymnotus asiaticus, 240
Gyrincheilus, 106
Pellegrini, 110
roulei, 110
hadropterus, Clenogobio, 263
Gobius, 260, 263, 264, 272
haematopterus, Cyprinus, 61
hainan, Misgurnus, 205, 208, Fig. 109, Pl. I
hainanensis, Barilius, 136, Fig. 63
Glyptosternon, 53, 54, Fig. 13
Gobius, 261, 265
Hemiculter, 134, 136, Fig. 62
Ichikauia, 141, Fig. 67, Pl. V
Leiocassis, 42, 44
Opsariichthys, 96, 97, Figs. 30, 33
Pseudoperilampus, 153, Fig. 73, Pl. V
Rasborinus, 130, 131, Fig. 59
Rhinochobius, 265
Sarcocheilichthys, 189, 190, Fig. 96, Pl. I
hainani, Barbus, 74
Hainania, 137
serrata, 137
hakonensis, Acehara, 11
haleppensis, Rhynchobdella, 29
Halfbeaks, 235
halsoueti, Agenigobio, 177, 178
hamiltoni, Chaca, 11
Coilia, 19
Hampala macrolepidotata, 70
Haplochilus javanicus, 234
latipes, 234
hei-yü, 238
helvolus, Monopterus, 27
Hemibagrus, 49, 50
elongans, 50
INDEX

Hemibagrus—continued
guttatus, 273
limbatus, 12
macropterus, 50, 273, Pl. III
taphrophilus, 49
Hemibarboidea tientaiensis, 275
Hemibarbus, 161, 164
barbus, 12, 163
dissimilis, 161, 162
joiteni, 163
laboe, 162, Fig. 77
longianalis, 162
longirostris, 163
maculatus, 162, 163, Pl. VI
shingtsonensis, 162, 163
soochowensis, 162
Hemiculter, 133, 134, 136, 137, 269
aifeofnizi, 12, 269
andrewsi, 140, 142, Fig. 68
bleekeri, 134
clupeoides, 134, 135, Fig. 61, Pl. IV
dispar, 38, 134, 136, 274, Fig. 63
hainanensis, 134, 136, Fig. 62
hunanensis, 134, 137
jabouillei, 269
kinghwaensis, 274
leuciscus, 134, 138
machaerioides, 135
schrencki, 135
Hemiculterella, 132, 140, 268
angustus, 268
eigenmanni, 132
engraulis, 132, 133, Fig. 60
katjenensis, 132
saugus, 132
sethuanensis, 132, 133
tsinanensis, 132
wui, 268
Hemimyzon, 228, 229, 270
abbreviata, 223
acuticauda, 220, 222
myersi, 229, 230
sinensis, 223
yaotanensis, 222
zebroidus, 229, Fig. 124
Hemiramphidae, 235
Hemiramphus sinensis, 235
Hemitaleax, 24, 25
prognathus, 24, 25
hemispinus, Barbus, 60, 75, 77, Fig. 26
henryi, Aoria, 36, 37
Herklotsella, 35
anomala, 35
Herrings, 18
herzensteini, Leucogobio, 164, 165, 167
herzensteini, Leucogobio, 166
kerzi, Coreoperca, 251
heterodon, Gobio, 187
Saurogobio, 186, 187
heungchow, Misgurnus, 208
hexacichnus, Clarias, 38
hexanema, Silurodon, 36
Hilsa, 18, 266
chinensis, 266
reeveri, 18, 266
sinensis, 266
himantegus, Acheilognathus, 156, 157
Acheilognathus, 157
kingi, Barbatula, 215, 219
Homaloptera, 219
hirsutus, Leiocassis, 43, 47
Liocassis, 47
hozemanni, Homaloptera, 220, 221
Lefua, 221
Megalobrama, 148, 149
Toxabramis, 138
hollandi, Spinibarbus, 72, 73
Holocentrus calcarifer, 245
Homaloptera, 214, 220, 223, 224, 270
abbreviata, 223
acuticauda, 220, 222
caldwelli, 220, 221, Fig. 119
chechakensis, 221
disparis, 220, 223
fasciata, 220, 223, 229
fasciolata, 229
fimbriata, 223, 224
formosana, 228
kingi, 219
hozemanni, 220, 221
kwangsiensis, 220–222
multifasciata, 271
rotundicauda, 220
sinensis, 220, 223
stenosoma, 220, 221, 225
yaotanensis, 220, 222
homalopteroidea, Gobiobotia, 195, 196
Homalosoma, 221
stenosoma, 221
Homatula, 221, 223, 220
homospilolus, 13
myersi, 229, 230
sinensis, 223
yaotanensis, 222
zebroidus, 229, Fig. 124
Hemerichthys, 235
Hemiramphus sinensis, 235
Hemitaleax, 24, 25
prognathus, 24, 25
hemispinus, Barbus, 60, 75, 77, Fig. 26
Hemimyzon—continued
guttatus, 273
limbatus, 12
macropterus, 50, 273, Pl. III
taphrophilus, 49
Hemibarboidea tientaiensis, 275
Hemibarbus, 161, 164
barbus, 12, 163
dissimilis, 161, 162
joiteni, 163
laboe, 162, Fig. 77
longianalis, 162
longirostris, 163
maculatus, 162, 163, Pl. VI
shingtsonensis, 162, 163
soochowensis, 162
Hemiculter, 133, 134, 136, 137, 269
akoensis, 12, 269
andrewsi, 140, 142, Fig. 68
bleekeri, 134
clypeoides, 134, 135, Fig. 61, Pl. IV
dispar, 38, 134, 136, 274, Fig. 63
hainanensis, 134, 136, Fig. 62
hunanensis, 134, 137
jabouillei, 269
kinghwaensis, 274
kneri, 134, 135
leuciscus, 134, 138
machaerioides, 135
schrencki, 134
erscanthus, 137, Fig. 64
serrata, 134, 137, Fig. 64
shiobota, 134, 135
varpachowskii, 134
warpachowski, 134
Hemicullerella, 132, 140, 268
angustus, 268
eigenmanni, 132
engraulis, 132, 133, Fig. 60
katjenensis, 132
saugus, 132
sethuanensis, 132, 133
tsinanensis, 132
wui, 268
Hemimyzon, 228, 229, 270
abbreviata, 223
acuticauda, 220, 222
myersi, 229, 230
sinensis, 223
yaotanensis, 222
zebroidus, 229, Fig. 124
Hemiramphidae, 235
Hemiramphus sinensis, 235
Hemitaleax, 24, 25
prognathus, 24, 25
hemispinus, Barbus, 60, 75, 77, Fig. 26
INDEX

hsüi, Gobio, 169
hua-chin-ch’iu, 204
huang-ku-yü, 40
huang-p’I-thao-tzu, 177
huang-shan, 28
huang-yii, 89, 90
hua-t’sai-yii, 240
Hucho, 22
bleeki, 22
hucho, Salmo, 22
huguenini, Barbus, 11
hui-t’ou, 44
hui-yii, 5°
humilis, Barbalula, 215, 219
Nemachilus, 219
huo-shao, 192
huo-sbao-pien, 60
Huso, 16
dauricus, 15-17
hso, Acipenser, 16
huanghovensis, Leiocassis, 40
Rhodens, 152
hyalocranius, Prolosalanx, 23
Salangichthys, 22, 23, 273
Salanx, 23
hybiscoideis, Cyprinus, 61
Hypophthalmichthys, 13, 107, 129
dabryi, 120
mandschuric, 130
microlepis, 129
mollirix, 13, 129
nobilis, 13, 129, 130
hypoophthalmus, Leuciscus, 129
Hyphorhamphus, 235
sinensis, 235
tricuspidatus, 235
Hypsobelagrus chinensis, 50
hypselonotus, Acanthorhodeus, 158, 160
Culter, 145

ichangensis, Gobiobotaia, 105
idella, Clenopharyngodon, 90
Leuciscus, 90
idelus, Clenopharyngodon, 13
Idut, 85
sinensis, 85
walecki, 85
iiijia, Gnathopogon, 12
iiibankformis, Culter, 144
imberba, Garra, 111-113
imberbis, Acheilognathus, 155
Achilognathus, 154
Discogaphus, 113
Garra, 111-113, Fig. 46
Gobio, 189

Leucogobio, 165, 167, Fig. 81
Paracheilognathus, 154
Sarcocheilichthys, 159
immaculata, Atherina, 28
immaculatus, Saurogobio, 186
incera, Barbatula, 215, 219, Fig. 117
insularis, Xenocypris, 121, 122, Fig. 52
intermedius, Leptobotia, 203
Praeformosania, 225
intermedius, Gnathopogon, 168, 169, Fig. 82
Pseudobagrus, 39, 41, Fig. 6
Sinogastromyzon, 232, 233
interrupta, Barillus, 92
Brachydani, 92
iridescens, Cyclocheilichthys, 78, Fig. 28
iris, Ophicephalus, 12
Ischikawa, 140, 141
alburnops, 141, 142, Fig. 68
andersoni, 141, 142
grahami, 141, 142
haianensis, 141, Fig. 67, Pl. V
polyplepis, 141, 142
transmontana, 141, 142, Fig. 69

jabouilleti, Hemiculter, 260
japonica, Anguilla, 32
japonicus, Labrax, 245, 246
Lateolabrax, 246
Silurus, 33
javanensis, Monopterus, 27
javanicus, Haplochilus, 234
jeholicus, Acanthorhodeus, 155
Paracheilognathus, 154, 155
joiteni, Hemibarbus, 163
jordani, Labeo, 13, 108, 100
Ptychido, 106, 107
Squaliobarbus, 91
jouyi, Parapelecus, 133
jovis, Ophicephalus, 12

kaa, Varicogobio, 107
kakekenssi, Pseudogobio, 180, 181
kaifenensis, Hemiculterella, 132
Leiocassis, 43, 46
kakthiensisi, Danio, 81
Danioide, 81
kanagurta, Alasa, 18
kan-yi, 89
kashinensis, Culter, 146, 147
katienensis, Xenocypris, 121
Kendalia goldsboroughi, 135
kessleri, Schizothorax, 12
kiangsiensis, Sarcocheilichthys, 180, 191, Fig. 98
kiatingensis, Gobiobotaia, 195, 106
Pseudogobio, 181
kichuani, Shiiperca, 271
INDEX

Lamperti, Xenocypris, 120, 121, 126
Lampetera fluviatilis, 12
planeri, 12
lamia, Cyprinus, 110, 111
Garra, 112
lanchiensis, Acanthorhodeus, 269
Acheilognathus, 269
Lateolabrax, 245
japonicus, 246
lateristrata, Rasbora, 100
Lates, 245
calcarifer, 245
laticeps, Ctenopharyngodon, 90
Onychostoma, 118, 119
latipes, Aplocheilus, 234
Haplochilus, 234
Orzias, 234
Poecilia, 234
leavelli, Ctenogobius, 263
Gobius, 260, 263, Fig. 143
leeri, Trichogaster, 13
Lefua, 212, 213
andrewsi, 213, 276, Fig. 113
costata, 213, 276, Fig. 113, Pl. VIII
hofmanni, 221
Leiocassis, 40, 42, 49, 267
adiposalis, 12
albomarginatus, 43, 47
analis, 43, 48, Fig. 11
armatus, 44
brashmokovi, 12
brevianalis, 12
brevislabris, 42, 43
crassirostris, 42, 44
dumerili, 42, 43
emarginatus, 43, 46
hainanensis, 42, 44
hirsutus, 43, 47
kwanghoensis, 49
kaifenesis, 43, 46
longirostris, 43
lui, 43, 48
macrops, 42, 44, 45, Fig. 8
medianalis, 43, 46
micropogon, 42
microps, 42, 45
pratti, 43, 46
similis, 43, 47, Fig. 10
sinyanensis, 267
toenatus, 43, 47
taphrophilus, 43, 49
tenuifurcatus, 42, 43, 45, Fig. 9
tenuis, 43, 46, 48
transcatus, 43, 48
ussuriensis, 43, 49

Labee, 106–109
ceteratis, 175, 176
collaris, 108, 109
decorus, 38, 108
diplostomus, 118
jordani, 13, 108, 109
melanostigma, 108, Fig. 43
molitorella, 108
pangusia, 109
pingi, 108
rendahl, 118
varicorhinus, 113, 115
yunnanensis, 108
labeo, Cyprinus, 162
Hemibarbus, 162, Fig. 77
labeeides, Pseudogeobi, 181, 184, Fig. 94
labiatum, Exostoma, 12
labiatus, Gymnogobius, 75
Labrax japonicus, 245, 246
Labrus opercularis, 242, 276
lachnostoma, Acanthorhodeus, 199
lacustre, Crossocheilus, 12
lacustris, Barbodon, 192
Sarcocheilichthys, 192
laois, Mopopterus, 27
Unibranchiapertura, 28
lagowskii, Phoxinus, 86
lamarii, Bagrus, 36

kikuchii, Aphyocypris, 127, 129
Phoxicus, 129
kimurai, Channa, 271
Ophicephalus, 271
kinghuaensis, Hemiculter, 274
king, Liobagrus, 267
kishinouyei, Euchiloglanis, 56
Exostoma, 56
kneri, Hemiculter, 134, 135
kneri, Siniperca, 249
koslowi, Schizopygopsis, 84
kreyenbergii, Acrossocheilus, 274
Barbus, 274
Gymnostomus, 11
Jfenen, Hemiculter, 134, 135
kuei-yii, 249
levegulaea, Barbatula, 270
 Diplophysa, 12, 270
kungessanus, Nemacheilus, 270
kurutneus, Rhodeus, 12
kwangsiensis, Homaloptera, 220–222
Siniperca, 247, 248
kwewishwensi, Gastromyzon, 230, 231

Labeo, 106–109

ceteratis, 175, 176
collaris, 108, 109
decorus, 38, 108
diplostomus, 118
jordani, 13, 108, 109
melanostigma, 108, Fig. 43
molitorella, 108
pangusia, 109
pingi, 108
rendahl, 118
varicorhinus, 113, 115
yunnanensis, 108
labeo, Cyprinus, 162
Hemibarbus, 162, Fig. 77
labeeides, Pseudogeobi, 181, 184, Fig. 94
labiatum, Exostoma, 12
labiatus, Gymnogobius, 75
Labrax japonicus, 245, 246
Labrus opercularis, 242, 276
lachnostoma, Acanthorhodeus, 199
lacustre, Crossocheilus, 12
lacustris, Barbodon, 192
Sarcocheilichthys, 192
laois, Mopopterus, 27
Unibranchiapertura, 28
lagowskii, Phoxinus, 86
lamarii, Bagrus, 36

kikuchii, Aphyocypris, 127, 129
Phoxicus, 129
kimurai, Channa, 271
Ophicephalus, 271
kinghuaensis, Hemiculter, 274
king, Liobagrus, 267
kishinouyei, Euchiloglanis, 56
Exostoma, 56
kneri, Hemiculter, 134, 135
kneri, Siniperca, 249
koslowi, Schizopygopsis, 84
kreyenbergii, Acrossocheilus, 274
Barbus, 274
Gymnostomus, 115, 274
Lissocilichthys, 274
Varicorhinus, 114, 115, 274
kuc-yii, 249
kungessana, Barbata, 270
Diplophysa, 12, 270
kungessanus, Nemacheilus, 270
kurematsui, Chanodichthys, 149
Megabrama, 148, 149
kurumemi, Rhodeus, 12
kwangsiensis, Homaloptera, 220–222
Siniperca, 247, 248
kwewishwensi, Gastromyzon, 230, 231

Labee, 106–109
ceteratis, 175, 176
collaris, 108, 109
decorus, 38, 108
diplostomus, 118
jordani, 13, 108, 109
melanostigma, 108, Fig. 43
molitorella, 108
pangusia, 109
pingi, 108
rendahl, 118
varicorhinus, 113, 115
yunnanensis, 108
labeo, Cyprinus, 162
Hemibarbus, 162, Fig. 77
labeeides, Pseudogeobi, 181, 184, Fig. 94
labiatum, Exostoma, 12
labiatus, Gymnogobius, 75
Labrax japonicus, 245, 246
Labrus opercularis, 242, 276
lachnostoma, Acanthorhodeus, 199
lacustre, Crossocheilus, 12
lacustris, Barbodon, 192
Sarcocheilichthys, 192
laois, Mopopterus, 27
Unibranchiapertura, 28
lagowskii, Phoxinus, 86
lamarii, Bagrus, 36
lenok, Brachymystax, 21
Salmo, 21
leopardus, Misgurnus, 204, 205, 209, Fig. 111
Leptostecus sinensis, 12
Leptoborbus pingi, 69, 74
Leptobota, 203
clongata, 203
fasciata, 203, 275
kopeiensis, 203
intermedia, 203
Leptoccephalus mongolicus, 143
leptosomus, Oncorhynchus, 12
leptura, Onychostoma, 119, Fig. 51
Lepturichthys, 223
fimbriata, 223, 224
güntheri, 224
nicholi, 224, Pl. VIII
lepturus, Barbus, 274
Gymnotomus, 119
Leuciscinae, 10
leucisculus, Culler, 133, 134
Hemiculter, 134, 135
Leuciscus, 84, 86
aethiops, 89
bambusa, 87
branula, 150
brandti, 86
cephalotaenia, 99
costatus, 86
curriculus, 90, 91
hypophthalmus, 120
idella, 90
molitorella, 108
molitrix, 129
nobilis, 130
porurus, 100, 101
pictus, 89
platypsyus, 93, 95
recurviceps, 144
scletus, 101
sinensis, 85
stigma, 12
teretisculus, 91
ischiliensis, 90
uncirrostris, 96
variegatus, 188, 191
walecki, 85
leuciscus, Cyprinus, 84
Leucogobio, 164, 165, 168
herzensteini, 164, 165, 167
herzensteinii, 166
imberbis, 165, 167, Fig. 81
microbarbus, 166, Fig. 80
notocanthus, 164, 165
polytaenia, 164, 166, 275, Fig. 70
taenius, 164, 165
taeniellus, 164, 165, Fig. 78
tienius, 164, 166, 275
tsinanensis, 165, 166, Fig. 80
Leucosoma, 24, 25
chinesis, 25
reevesi, 25
leveretti, Beaufortia, 230
Gastromyzon, 230, Fig. 125
lighti, Pseudoperilampus, 153
limbus, Hemibarbus, 12
lineata, Praeformosania, 225
lineatus, Tetradon, 252
lingyuanensis, Gobio, 173
lini, Ctenogobius, 263
Liniparholalloptera, 222
Liobagrus, 51, 167
anguillicauda, 51, Fig. 12
kingi, 267
marginalis, 51, 52
nigraicauda, 51, 52
reini, 51
styani, 51, 52
Liocassis crassilabris, 44
crasirostris, 44
emarginatus, 46
hirutus, 47
longirostris, 43
naso, 43
torosilabris, 44
torquatus, 48
Lissochilichthys, 68, 70, 75
kreyenbergii, 274
matsudai, 75, 76
wenchowensis, 268
lissorchiloides, Barbus, 69, 75, 76, 274
Lissochilus divosius, 76
litzkoi, Barbatula, 214, 215, 276
litzkus, Mesomisgurnus, 276
Misgurnus, 276
Nemachilus, 215, 276
li-yü, 62
Loaches, 193
longianalis, Hemibarbus, 162
Parasalanx, 26
Salanz, 24, 26
longibarba, Gobiobotia, 195, 196
longibarbus, Coreius, 177
longipinnis, Gobio, 172, 174, 175, Fig. 88
longirostris, Acanthogobio, 163
Hemibarbus, 163
Leiocassis, 43
Liocassis, 43
Pseudogobio, 181, 185
Saurogobio, 187
longirostrum, Barbus, 71
longispinnis, Acanthorhodeus, 159
INDEX

Pseudogobio, 190
Rhodeus, 151, 152
Sarcocheilichthys, 189, 190
magur, Clarias, 57
malacanthus, Schizothorax, 12
ma-lang-yu, 91
mandarinus, Barbus, 68, 72
Mystacoleucus, 72
munschiricus, Hypophthalmichthys, 130
mulliensis, Rbta, 12
mantisshiricus, Cephalus, 129
mao-hua-yu, 20
margarianus, Barbus, 69, 71
marginatoides, Amblycetops, 52
marginals, Amblycetops, 52
Liobagrus, 51, 52
marmid, Acanthobrama, 124
marmoratus, Monopterus, 28
marulius, Ophicephalus, 237, 240
Ophicephalus, 240
Mastacembelidae, 29
Mastacembelus, 29
aculeatus, 30
armatus, 29
macrops, 29
sinensis, 30, 31
pl. II
undulatus, 29, 30, pl. II
matsuda, Barbus, 69, 75, 76
Lissocicthys, 75, 76
mauritiana, Anguilla, 31, 32, 273
medianalis, Leiocassis, 43, 46
Macrones, 46
Megagobio, 175
musatius, 175
roulei, 175
Megalobrama, 147, 148
bramula, 148, 150
hoffmanni, 148, 149
kurematsui, 148, 149
macrops, 148
melrosei, 148, 149, fig. 71
pellegrini, 148, 150
skolkovii, 147
terminalis, 148, 150
wui, 148, 149
Megalops, 17
cyprinoides, 18
filamentosus, 17
melanogaster, Acheilognathus, 155
melanoleuca, Cobitis, 197, 198, fig. 103
melanopleura, Rohita, 66
melanopterus, Barbus, 11
melanostigma, Cirrhinus, 108
Labeo, 108, fig. 43
melastigmus, Aplocheilus, 234
melrosei, Megalobrama, 148, 149, fig. 71

longus, Parasilurus, 33, 35
lou-er-yu, 106
lou-tou-yu, 263
luchowsis, Acheilognathus, 155, 156
Luciobrama, 105
typus, 105, fig. 42
lucius, Ophicephalus, 12
Ophicephalus, 238
lui, Leiocassis, 43, 48
Lutjanus gynnocephalus, 244
machaerioides, Hemiculter, 135
mackei, Paracheilinus, 130
macrocephalus, Synodus, 25
macrorh, Rohita, 12
Macrognathus armatus, 29
undulatus, 29
macrolepidota, Hamala, 79
macrolepis, Gymnostomus, 116
Varicorhinus, 114, 116
Xenocypris, 120, 122
Macrones argentivittatus, 37
chinensis, 50, 51
elongatus, 50
medianalis, 46
pratti, 46
pulcher, 37
seenhala, 37
sinensis, 36
taeniatus, 47
tenius, 48
macroptalmus, Zacco, 94, 95
Macropodus, 241
chinensis, 241, 242
eccellatus, 242
opercularis, 241, 276
venustus, 242
viridiosaurus, 241, 242, 276, fig. 131
macrops, Barilus, 93
Chondichthys, 148, 149
Leiocassis, 42, 44, 45, fig. 8
Megalobrama, 148
macroptera, Anguilla, 31
Aoria, 50
Macroperobagrus, 49, 50
Macroperonotus fuscus, 57
macropterus, Acanthorhodes, 158
Hemibagrus, 50, 273, pl. III
macrostigma, Cobitis, 197, 198, fig. 103
maculatus, Bdelorhynchus, 30
Bostrychus, 238
Diptychus, 84
Hemibarbus, 162, 163, pl. VI
Mastacembelus, 30
Mugilurus, 12, 204, 276
Ophicephalus, 237, 238, fig. 127, pl. X
INDEX

mento, Parasillurus, 33, 34
Silurus, 34
merus, Procypris, 65, 66
merzbacheri, Aspiolucius, 11
mesembrinum, Acheilognathus, 130
Mesomisgurnus, 275
bipartitus, 275
lividus, 276
Metia, 130
micritius, Cyprinus, 61, 63
microbarbus, Leuco gobio, 166, Fig. 80
microcephalus, Schizopygopsis, 12
microdon, Salangichtky, 23
microlepis, Abramocephalus, 120
Hypophthalmichthys, 129
Roktee, 12
Systomus, 13
 Xenocypris, 121, 123
Micropercops, 257-259
dabryi, 257-259, Fig. 140
cinctus, 258
swinhonh, 258, 259, Fig. 139
Microphysogobio hsinglungshanensis, 183
micropogon, Leiocassis, 42
microps, Leiocassis, 42, 45
miliaris, Ophicepsalus, 12
minulus, Gobio, 172, 173
minulus, Opsariichthys, 96, 98, Fig. 34
mirus, Amphilabrus, 106
Misgurnus, 204, 209, 275
anguillacaudatus, 204, 205
arenae, 190
bipartitus, 275
crossochilus, 205, 209
dabryanus, 275
decemcirrosus, 275
dichacrous, 12, 204
elongatus, 205, 208
eriksoni, 205, 206
fukien, 204, 205, 207, Fig. 108
grangeri, 205, 207, Fig. 107
kainan, 205, 208, Fig. 109, Pl. I
kungchow, 208
leopardus, 204, 205, 209, Fig. 111
lividus, 276
maculatus, 12, 204, 276
mizolepis, 204-206, 275, Pl. IX
mokoity, Cobitis, 208
Misgurnus, 204, 208
mulesworthi, Oreinus, 83
Schizothorax, 81, 83
moliterella, Gymnostomus, 12
molitorea, Labeo, 108
Leuciscus, 108
molitrix, Hypophthalmichthys, 13, 129
Leuciscus, 129
moltrechi, Pararobphora, 126
mongolicus, Culter, 144
Erythroculter, 144
Leptocephalus, 143
Nemachilus, 12
Monopteridae, 27
Monopicticus cinereus, 28
helvolus, 27
javannensis, 27
laevis, 27
marmoratus, 28
xanthognathus, 27
monstrosa, Pseudorobphora, 101, 103, 104, Fig. 41
monticola, Crossochilus, 79, 80
Crossochilus, 80
Gymnostomus, 80
Moroco chuaniceus, 12
morrisoni, Opsariichthys, 97
mosal, Barbus, 11
Mrigala sinensis, 66
multijasciata, Botia, 203
Homaloptera, 271
multijasciatus, Paraprutosmyzon, 270, 271
mulilepis, Siniperca, 249
multipunctatus, Schizothorax, 81, 82
multiradiatus, Cranoglanis, 38
Pseudeutropichthys, 38
Muraena alba, 27
anguilla, 30
mutabilis, Epalzeorhynchus, 117
Varicorhinus, 114, 117
myersi, Hemimyzon, 220, 230
Pseudogastromyzon, 230
Myloleuciscus aethiops, 89
atripinus, 89
Mylopharyngodon, 89, 107
Mylopharyngodon, 89, 107
Mylopharyngodon, 89, 107
aethiops, 89
myersi, Hemimyzon, 220, 230
Pseudogastromyzon, 230
Myxocyprinus asiaticus, 58
Myxocyprinus, 7, 58
asiaticus, 58, 59, 61, Figs. 15, 16
chinensis, 59, 60
fukiensis, 59, 60, Fig. 17
<table>
<thead>
<tr>
<th>Index</th>
<th>Page Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Myxocyprinus—continued</td>
<td>30</td>
</tr>
<tr>
<td>nankinensis, 59</td>
<td>312</td>
</tr>
<tr>
<td>myzostoma, Euchiloglanis, 56</td>
<td>312</td>
</tr>
<tr>
<td>Exostoma, 56</td>
<td>312</td>
</tr>
<tr>
<td>nankinensis, Myxocyprinus, 59</td>
<td>312</td>
</tr>
<tr>
<td>Xenocypris, 121</td>
<td>312</td>
</tr>
<tr>
<td>nus, Tylognathus, 100</td>
<td>312</td>
</tr>
<tr>
<td>nas, Liocassis, 43</td>
<td>312</td>
</tr>
<tr>
<td>Naso, 43</td>
<td>312</td>
</tr>
<tr>
<td>nasus, Coilia, 19</td>
<td>312</td>
</tr>
<tr>
<td>nasus, Nasus daburicus, 89</td>
<td>312</td>
</tr>
<tr>
<td>nasutus, Megagobio, 175</td>
<td>312</td>
</tr>
<tr>
<td>Nemacheilus, 210, 211</td>
<td>312</td>
</tr>
<tr>
<td>Nemachilus alticeps, 217</td>
<td>312</td>
</tr>
<tr>
<td>Nemachilus, 212</td>
<td>312</td>
</tr>
<tr>
<td>Nemurus, Bagrus, 49</td>
<td>312</td>
</tr>
<tr>
<td>Ngowyangi, Acanthorhodeus, 160</td>
<td>312</td>
</tr>
<tr>
<td>nicholsi, Chela, 140</td>
<td>312</td>
</tr>
<tr>
<td>Lepturichthys, 224, Pl. VIII</td>
<td>312</td>
</tr>
<tr>
<td>Parapelecus, 140, 140, Fig. 66</td>
<td>312</td>
</tr>
<tr>
<td>Nicholisciliceter, 140</td>
<td>312</td>
</tr>
<tr>
<td>rendali, 132</td>
<td>312</td>
</tr>
<tr>
<td>wui, 268</td>
<td>312</td>
</tr>
<tr>
<td>Nicholsicypris, 126</td>
<td>312</td>
</tr>
<tr>
<td>nien-yü, 34</td>
<td>312</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Index</th>
<th>Page Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>niger, Gobius, 260</td>
<td>313</td>
</tr>
<tr>
<td>Procypris, 66</td>
<td>313</td>
</tr>
<tr>
<td>nigricans, Ophicephalus, 238</td>
<td>313</td>
</tr>
<tr>
<td>nigricauda, Liobagrus, 51, 52</td>
<td>313</td>
</tr>
<tr>
<td>nigripinnis, Gobio, 190</td>
<td>313</td>
</tr>
<tr>
<td>Sarcocheilichthys, 189, 190</td>
<td>313</td>
</tr>
<tr>
<td>Spinibarbus, 274</td>
<td>313</td>
</tr>
<tr>
<td>nigrodorsalis, Barbus, 68, 73, 274, Fig. 22, Pl. IV</td>
<td>313</td>
</tr>
<tr>
<td>Spinibarbus, 73</td>
<td>313</td>
</tr>
<tr>
<td>nigromaculata, Apterigia, 28</td>
<td>313</td>
</tr>
<tr>
<td>nigromaculatus, Nemacheilus, 211, 212</td>
<td>313</td>
</tr>
<tr>
<td>Nemachilus, 212</td>
<td>313</td>
</tr>
<tr>
<td>nilotica, Perca, 245</td>
<td>313</td>
</tr>
<tr>
<td>niloticus, Cyprinus, 107</td>
<td>313</td>
</tr>
<tr>
<td>nitens, Gobio, 172</td>
<td>313</td>
</tr>
<tr>
<td>nitidus, Pseudobagrus, 39, 41, 273</td>
<td>313</td>
</tr>
<tr>
<td>Xenocypris, 121</td>
<td>313</td>
</tr>
<tr>
<td>nobilis, Hypophthalmichthys, 13, 130</td>
<td>313</td>
</tr>
<tr>
<td>Leuciscus, 130</td>
<td>313</td>
</tr>
<tr>
<td>normalis, Aphyocypris, 126, 127</td>
<td>313</td>
</tr>
<tr>
<td>Yaoshanicus, 126, Fig. 55, Pl. I</td>
<td>313</td>
</tr>
<tr>
<td>normani, Barbus, 68, 70</td>
<td>313</td>
</tr>
<tr>
<td>Reganitalax, 273</td>
<td>313</td>
</tr>
<tr>
<td>Salanx, 273</td>
<td>313</td>
</tr>
<tr>
<td>notabilis, Semilabeo, 38, 106</td>
<td>313</td>
</tr>
<tr>
<td>notacanthus, Pseudogobio, 180, 183</td>
<td>313</td>
</tr>
<tr>
<td>Paraleucogobio, 185</td>
<td>313</td>
</tr>
<tr>
<td>notatus, Rhodeus, 51, 52, 274, Fig. 72</td>
<td>313</td>
</tr>
<tr>
<td>nummifer, Gobio, 172, 275</td>
<td>313</td>
</tr>
<tr>
<td>obscura, Eleotris, 257</td>
<td>313</td>
</tr>
<tr>
<td>Odontobutis, 257</td>
<td>313</td>
</tr>
<tr>
<td>Siniperca, 247, 250, Fig. 135</td>
<td>313</td>
</tr>
<tr>
<td>obtusirostris, Pseudogobio, 180, 183</td>
<td>313</td>
</tr>
<tr>
<td>occidentalis, Gasterosteus, 236</td>
<td>313</td>
</tr>
<tr>
<td>ocellata, Channa, 240</td>
<td>313</td>
</tr>
<tr>
<td>ocellatus, Diodon, 253</td>
<td>313</td>
</tr>
<tr>
<td>Macropodus, 242</td>
<td>313</td>
</tr>
<tr>
<td>Ophicephalus, 12</td>
<td>313</td>
</tr>
<tr>
<td>Pseudoperiampus, 153</td>
<td>313</td>
</tr>
<tr>
<td>Tetradon, 253</td>
<td>313</td>
</tr>
<tr>
<td>Ochetobius, 91</td>
<td>313</td>
</tr>
<tr>
<td>elongatus, 92</td>
<td>313</td>
</tr>
<tr>
<td>Octonema, 220</td>
<td>313</td>
</tr>
<tr>
<td>Pleskei, 212</td>
<td>313</td>
</tr>
<tr>
<td>Odonlobutis, 257</td>
<td>313</td>
</tr>
<tr>
<td>Obscura, 257</td>
<td>313</td>
</tr>
<tr>
<td>wui, 257</td>
<td>313</td>
</tr>
<tr>
<td>Odontolabrax typus, 12</td>
<td>313</td>
</tr>
<tr>
<td>olfax, Osphromenus, 243</td>
<td>313</td>
</tr>
<tr>
<td>oligolepis, Anabas, 243</td>
<td>313</td>
</tr>
<tr>
<td>Paraleucogobio, 153</td>
<td>313</td>
</tr>
<tr>
<td>onomatis, Acanthorhodeus, 158, 159</td>
<td>313</td>
</tr>
<tr>
<td>onomatus, Acanthogobio, 272</td>
<td>313</td>
</tr>
<tr>
<td>Gobius, 272</td>
<td>313</td>
</tr>
</tbody>
</table>
INDEX

Ompok bimaculatus, 12

Oncorhynchus lepto somus, 12

Ondon, Pseudobagrus, 39, 40

Onychostoma, 118, 119

Ophicephalus, 237, 240, 271

Ophidium aculeatum, 30

Opsariichthys, 6, 7, 96

Pachycheilus, 95

acanthogenys, 95

acutipinnis, 97

bidens, 96, 97

checkianensis, 96, 97

haimanensis, 6, 97, Figs. 30, 33

minutus, 96, 98, Fig. 34

morisoni, 97

steenackeri, 140

uncirostris, 96, 97

Opsarius elongatus, 91, 92

Oreias dabryi, 215

Oreinus grahami, 83

molesworthi, 83

prenanti, 83

progastus, 82

richardsonii, 12

Oreoneotes, 210, 270

platycephalus, 210

sayui, 270

yenlingi, 210

orientalis, Channa, 240

Garra, 111, Fig. 44

orontis, Clarias, 57

Oryzias, 234

latipes, 234

Ophicephalus aspilotus, 239

gachua, 239

guentheri, 238

Lucius, 238

marinii, 240

striatus, 237, 238

tadianus, 12

Ophidium aculeatum, 30

simack, 90

Ophiocephalus aspilotus, 239

gachua, 239

guentheri, 238

Lucius, 238

marinii, 240

striatus, 237, 238

tadianus, 12

Ophidium aculeatum, 30

simack, 90

Paddle fishes, 17

pai-shan, 32

palaesh, Alosa, 18

paludina, Rasbora, 99

pallozonum, Glyptosternon, 53, 54

Glyptosternon, 54

paludosus, Polyacanthus, 242

Panchax, 234

p’ang-ch’ih-p’i, 159

p’ang-t’ou-yu, 129

pangusia, Labeo, 109

panwingi, Squallio Barbula, 91

papillabrus, Pseudogobio, 181, 185, Fig. 95

pappenheimi, Barbatula, 270

Gobiobota, 104, 105, Pl. VIII

Nemachilus, 270

Parabotia fasciatus, 203

fasciolata, 203

rubrilabris, 202

taeniops, 201

Parabramis, 150

bramula, 151

pekienensis, 151, Pl. IV
Paracanthobrama, 161
 guichenoti, 161
 pinigi, 161
Paracheilognathus, 154
 bleekeri, 154, 155
 imberbis, 154
 jeholicus, 154, 155
 peihonensis, 154, 155
Paradise fishes, 241
Paralepis, Barbodes, 76
Paralepidocephalus, 200
 yui, 200
Paraleucogobio, 164, 165
 cheni, 163
 notacanthus, 165
 umbrifer, 163
Parallels, Barbos, 69, 76, Fig. 25
Paramisgurnus, 209, 275
 dabryanus, 209, 210, 275
Parapercis, 138-140
 argenteus, 138, 139
 eigenmanni, 139
 fukiensis, 139, 140, Fig. 66
 oligolepis, 133
 tungchowensis, 140
Paraprotomyzon, 270
 multifasciatus, 270, 271
Paraprotosalanx, 23
 andersoni, 23
Pararasbora moltrechti, 126
Pararhodeus fangji, 274
Parasalanx
 angusticeps, 27
 annita, 26
 cheni, 26
 gracillumis, 26, 273
 longianalis, 26
Parasilurus, 33
 anomalus, 33, 35
 asotus, 33-35
 bedfordi, 33, 35
 cinereus, 33, 34
 cochinchinensis, 33, 35, Fig. 5
 grahami, 33, 34
 longus, 33, 35
 mento, 33, 34
Paratrylognathus, 110
 davidi, 110
Parhomaleoptera dispars, 222, 223
Parosteobrama pellegrini, 150
 parva, Pseudorasbora, 101, 103
 parvula, Pseudorasbora, 101-103, Fig. 38

INDEX

parvus, Leuciscus, 100, 101
Sarcocheilichthys, 189, 193, Fig. 100
peihonensis, Paracheilognathus, 154, 155
pekinesis, Abramis, 150, 151
Ophicephalus, 238
Parabramis, 151, Pl. IV
pellegrini, Cyprinus, 61, 63
Cyprinoccius, 110
Megalobrama, 148, 150
Parosteobrama, 150
Pelteobagrus calvairius, 40
Perca chuanti, 248
 chuati, 246, 247, 249
nilotica, 245
scandens, 243
Percottus swinhonis, 258
Percocypris pingi, 69
Philpous cinctus, 258
philippina, Rasbora, 99
Philypnus, 256, 257
 chalmersi, 256, Fig. 137, Pl. X
 potamophilus, 255-257, Fig. 138, Pl. X
Phoxinus, 86
 chorensis, 86
 lagouskii, 86
 oxycephalus, 86
 variagatus, 86
phoxinus, Cyprinus, 86
Phoxiscus kikuchii, 129
picus, Leuciscus, 89
Mylopharyngodon, 89
pichilienis, Nemachilus, 216
pient-tzu-yii, 151
Pimelodus asperus, 55
 boulderis, 11
 cavasius, 12
 cornula, 12
 julvidraco, 40
 gulio, 12
 guttatus, 11, 273
pingchowensis, Praeformosania, 224, 225
pingi, Barbos, 68, 69, 74
Beaufortia, 231
Discognathus, 112
Garra, 111, 112
Gastromyzon, 230, 231
Labeo, 108
Leptobosarus, 69, 74
Percocypris, 69
Rhodeus, 274
pinigi, Paracanthobrama, 161
pisonis, Gobius, 254
Plagiognathops, 120, 123
plagiostomus, Schizothorax, 81, 82
planeri, Lampetra, 12
platycephalus, Gobius, 261
Oreonecetes, 210
platyurus, Leuciscus, 93, 95
Zacco, 94, 95, 274, Fig. 22
Platysoma seenghala, 37
playfairi, Coilia, 19
Plecoglossus, 20
altivelis, 20
plena, Xenocypris, 13
plekei, Octonema, 212
pleurotaenia, Nemacheilus, 211, 212
Nemachilus, 212
Pleotomus, 9, 33
Poecilia fusca, 256
lotipes, 234
poeciloplewa, Cobitis, u, 197
poecilopus, Cottus, 253
"Ofte", Barbus, 79
Pogonijer, Osteochilus, 115
Varicorhinus, 114, 115
pollux, Cottus, 12
Polyacanthus, 242
poludosus, 242
polylepis, Barilus, 142
Ischikauia, 141, 142
polyrema, Cobitichthys, 11
Misgurnus, 12, 204
Polyodon, 17
gladius, 17
Polyodontidae, 17
Polytaenia, Leucogobio, 164, 166, 275, Fig. 70
Potamophila, Eleotris, 257
Potamophorus, Phalynx, 255-257, Fig. 138, Pl. X
Potamnini, Barbatula, 215, 218
Nemacheilus, 218
Schizothorax, 81, 82
Praeformosania, 224, 225
intermedia, 225
lineata, 225
Pseudocheilus, 224, 225
pratii, Botia, 201
Leiocassis, 43, 46
Macrones, 46
Prenanti, Orinclus, 83
Schizothorax, 81, 83
Prochilus, Pseudogyrinocheilus, 110
Prochilus, Discognathus, 110
Pseudogyrinocheilus, 110
Procoelezam, Puntius, 65
Procopris, 65
merus, 65, 66
niger, 66
productus, Pseudogobio, 38, 186
Saurogobio, 186, 187
progastus, Oreinus, 82
Schizothorax, 81, 82
prognathus, Hemisalans, 24, 25
Salans, 24, 25
Protosalanx, 23
andersoni, 23
brevirostris, 23
hyalogranus, 23
tangkahkeeis, 23
Psephurus, 17
gladius, 17
Pseudecheneis, 267
Pseudeutropichthys, 38
Pseudobagrus, 36-39, 42, 49, 266
affinis, 37
changi, 267
chinensis, 39
eupogonides, 39
eupagon, 39, 40
fangi, 39, 40, 267
fulvidraco, 36, 39, 40, 267, Pl. III
intermedius, 39, 41, Fig. 6
niidus, 39, 47, 273
odon, 39, 40
vachelli, 39, 40, 267
virgatus, 39, 41, Fig. 7
wangi, 273
wul, 267
Pseudobrama dumerili, 125
Pseudobrevilabia, Erythronculter, 143, 146, Fig. 70
Pseudogastromyzon, 220
fangi, 228
fasciatus, 229
myersi, 230
Pseudogobio, 179, 180, 185
andersoni, 181, 184, 185
bicolor, 180, 182, Fig. 91
kai, 180, 183
chinensis, 180, 182, 183, Fig. 92
drakei, 186
esocinus, 184
exiguus, 181, 184
filfer, 180, 185
juisiensis, 180, 181, Fig. 90
kangjiangshanensis, 180, 183
kachekensis, 180, 181
kiaisingensis, 181
laboide, 181, 184, Fig. 94
longirostris, 181, 185
maculatus, 190
INDEX

Pseudogobio—continued
obtusirostris, 180, 183
papillabrus, 181, 185, Fig. 95
productus, 38, 186
shangtungensis, 180, 183
styanii, 177
suifensis, 180, 183
tafangensis, 269
tungtingensis, 180, 183, Fig. 93
Pseudogyrinocheilus, 110
prochilus, 110
prochilus, 110
Pseudolabuca, 140
anguiii, 268
shawi, 133
sinensis, 12, 140
tsinanensis, 132
Pseudoperiampus, 133
hainanensis, 133, Fig. 73, Pl. V
lightii, 133
ocellatus, 241
Pseudosphrinenus
Pseudopsephoinus oxycephalus, 86
Pseudorhabdorn, 100, 103
altipinna, 100, 101, Fig. 36
depressirostris, 100, 101, Fig. 37
fowleri, 101-103, Fig. 41
monstrosa, 101, 103, 104, Fig. 41
parva, 101, 103
parvula, 101-103, Fig. 38
tenuis, 101, 103, Fig. 39
Pseudosphrinenus opercularis, 241
Psilorhynchus fasciatus, 229
sinensis, 223
Ptychidio, 106
jordani, 106, 107
plurIer, Aoria, 37
Macrones, 37
Nemacheilus, 211, Fig. 112, Pl. I
pulicaris, Clar. lat., 57
punctatus, Gnathopogon, 168-170, Fig. 83
Misgurnus, 205, 207
Ophicephalus, 237, 239
Silurus, 54
Pungitius pungitus, 236
sinensis, 236
pungitius, Gasterosteus, 236
Pungitius, 236
Pygosteus, 236
Pungtungia rathbuni, 177
puncto, Cyprinus, 74
Pungtungia, 65
Pungtungia, 74
güntheri, 74
proctozisron, 65
sinensis, 73, 74
snyderi, 75
purpurea, Botta, 200, 202
pusillus, Eristhies, 55
putitora, Cyprinus, 73
Pygosteus, 236
pungitius, 236
sinensis, 236
pulchra, Schizopygopsis, 84
quinquefasciatus, Barbus, 76
rabaudi, Acrossochilus, 76
Cyprinus, 61, 63
rapax, Cyprinus, 87
rarus, Varicorhinus, 119
Rashora, 90
allos, 99, 100
blanchardi, 97
cephalotaenia, 99
daniconius, 12
lateristrata, 100
pallopinna, 99
philippina, 99
steineri, 99, Fig. 35, Pl. V
volesi, 99
rasbora, Cyprinus, 99
Rasborinus, 130
fukuensis, 130, 131, Fig. 58
hainanensis, 130, 131, Fig. 59
rathbuni, 130, 131
rathbuni, Coreius, 177
Pungtungia, 177
Zezera, 177
Rectoris, 117
posehensis, 117
recurviceps, Culter, 147
Leuciscus, 144
reevesi, Clupea, 18
reevesii, Alosa, 18
Hilsa, 18, 266
Leucosoma, 25
regani, Barbus, 68, 69
Reganisalanx, 273
normani, 273
reiini, Liobagrus, 51
remifera, Anguilla, 31
rendahli, Barbus, 68, 77
Collia, 12, 19
Labeo, 118
Nicholsiculter, 132
Semiculter, 132
reticulatus, Glyptosternon, 52
Rhinobagrus, 42, 43
dumerili, 43
INDEX

Rhinogobio, 171, 175, 178
cylindricus, 178
dereimsi, 178, 179
typus, 178, 179
vaillanti, 173
ventralis, 174
Rhinogobius, 260, 262, 271
aestivaregia, 262
fukushimai, 263
hainanensis, 265
similis, 262
Rhodineae, 10
Rhodeus, 151, 153–155
atremius, 12
hwanghoensis, 152
kurumcus, 12
maculatus, 151, 152
notatus, 151, 152, 274, Fig. 72
pingi, 274
sinensis, 151, 274
spinalis, 151, 152
wangkinfui, 153
rhombea, Capoeta, 154
rhombus, Achilognathus, 159
Carassoides, 65
Rhyynchobdella aculeata, 30
kaleppensis, 29
sinensis, 30
rhynchota, Garra, 111, 112, Fig. 45
Rhyynchocypris variegata, 86
richardsonii, Oreinus, 12
Schiporhynchos, 12
Rita manillensis, 12
sacerdatum, 12
riculatis, Abbottina, 179
Gobio, 179
rivuloides, Gobio, 172, 173, Fig. 86
robusta, Barbatula, 215, 217
robustus, Nemachilus, 217
Varicorhinus, 114, 116, 274, Fig. 48
Rohanus, 142
Rohita macrochir, 12
melanopleura, 66
Rohite belangeri, 12
cotio, 12
microlepis, 12
rotundicauda, Homaloptera, 220
rouleé, Barbus, 116, 274
Barilius, 93
Gobio, 172, 175
Gyrinocheilus, 110
Megagobio, 175
Siniperca, 246, 247, 276, Fig. 132
rubrilabris, Botta, 201, 202, 275, Fig. 105
Parabotia, 202
rubropunctatus, Aplocheilus, 234
rutilus, Culter, 144
saccogularis, Apterigia, 28
sacerdatum, Rita, 12
Salangichthys, 22
anderssonii, 22, 23
hyalocranius, 22, 23, 273
microdon, 23
Salangidae, 22
Salangidae, 22
Salangus, 22–26, 273
acuticeps, 25, 26, 273
angusticeps, 24, 27
annulatae, 25, 26
argentea, 23
brachyrostilalus, 24, 26
chinensis, 24, 25
cuvierii, 23–26, 273
gracilimus, 24, 26
hyalocranius, 23
longianalis, 24, 26
microdon, 22
normani, 273
prognathus, 24, 25
Salmo coregonoides, 21
hucbo, 22
lenok, 21
Salmonidae, 20
salmonides, Nemacheilus, 211, 212
Nemachilus, 212
Salmos, 20
salvibririm, Osteochilus, 67, Fig. 20
sanhoensis, Sinogastromyzon, 231–233
sarana, Barbus, 11, 74
Sarcocheilichthys, 188, 189, 191
czershé, 190
fukienis, 189, 192, Fig. 90
hainanensis, 189, 190, Fig. 96, Pl. I
imberbis, 189
kiangensis, 189, 191, Fig. 98
lacustris, 192
maculatus, 189, 190
nigripinnis, 189, 190
parus, 189, 193, Fig. 100
scaphiguathus, 189, 190
scilitius, 189, 191
sinensis, 189, 192, Pl. VI
teretiusculus, 90
tungting, 189, 191, Fig. 97
wakiyae, 192
Saurogobio, 171, 177, 185, 186
breviceuca, 173
dabryi, 186, 187
dorsalis, 187
drakei, 173, 186
dumerilli, 186, 187
INDEX

notabilis, 38, 106
septentrionalis, Coreius, 176, Fig. 89
Coriparbus, 176
serranathus, Hemiculter, 137, Fig. 64
Serranidae, 245
serrata, Hainanro, 137
Hemiculter, 134, 137, Fig. 64
schizovis, Hemiculterella, 132, 133
Pseudoloubauc, 133
Xenocypris, 123
shantungensis, Pseudogobio, 180, 183
shanziensis, Varicorhinus, 114, 117, Fig. 49
shantung, Aphycypris, 127, 128, Fig. 56
shawi, Pseudolaubus, 133
shibatae, Acheilognathus, 157
Hemiculter, 134, 135
shih-yü, 54
shingstonensis, Hemibarbus, 162, 163
shihen, Gnathopogon, 168, 170
Gobio, 168, 170
silensis, Tamanka, 265
Siluridae, 33
Silurodon, 35
hexanema, 36
Silurus, 266
asotus, 33, 34
attu, 13
bedfordi, 35
bimaculatus, 13
calvarius, 40
canio, 13
cinereus, 34
cochinchinensis, 35
glanis, 266
grahami, 34
japonicus, 33
mento, 34
punctatus, 34
sinensis, 34
wynaadensis, 266
simack, Ophidium, 29
simillis, Gnathopogon, 168, 171, Fig. 85
Leiocassius, 43, 47, Fig. 10
Rhinogobius, 262
simoni, Acanthobrama, 125
Aristichthys, 130
simus, Barbus, 69, 71
sinense, Glyptosternon, 53
Glyptosternum, 53
sinensis, Abbottina, 179, 180
Acipenser, 15, 16
Anguilla, 31, 32, Fig. 4
Aorla, 36
Barbus, 68, 73, 74
Channa, 240
Clupea, 266

Saurogobio—continued
exiguus, 184
guichenoti, 186, 187
heterodon, 186, 187
immaculatus, 186
longirostris, 187
productus, 186, 187
sauvagei, Hemiculterella, 132
sayu, Oreonectes, 270
scandens, Anabas, 243
Perya, 243
Scaphesthes tamsuziensis, 116
scaphignathus, Georgichthys, 190
Sarcocelichthys, 180, 190
scherzeri, Siniperca, 246–249, 276, Fig. 133
schizomakrynych, Garra, 112, Fig. 45
Schizopyge, 81–83
Schizopygopitii, 83
koslowi, 84
malacantkus, 12
microcephalus, 12
przewalskii, 12
pilyzowi, 84
stoliczkae, 12, 83
Schizothoracin, 110
Schizothorax, 3, 81–83, 110
curivrons, 82
dolichomema, 12
grahami, 81, 83
griseus, 81, 82
kessleri, 12
mollesworthi, 81, 82
multipunctatus, 81, 82
plagiostomus, 81, 82
potamini, 81, 82
premanti, 81, 83
progastus, 81, 82
richardsonii, 12
sinensis, 81, 83
taiianus, 81, 82
yunnanensis, 81, 82
schlegeli, Barbus, 163
schrencki, Hemiculter, 134
sciisius, Leuciscus, 191
Sarcocelichthys, 180, 191
Scombrocypris styani, 89
Sculpins, 253
Sea basses, 245
seenghala, Aorla, 36, 37
Macrones, 37
Platyctenchys, 37
sellaejer, Barbatula, 214, 217, Fig. 116, Pl. VII
semibarbus, Barbus, 163
Semiculter rendahli, 132
semiscleromma, Barbus, 69, 74, Fig. 24, Pl. V
Semilabeo, 106
INDEX

sinei—continued
Cobitis, 197, 198, Fig. 103, Pl. IX
Cranoglanis, 37, 38
Cyclocheilichthyis, 78, 79
Gasterosteus, 236
Gobius, 272
Hemimyzon, 223
Hemiramphus, 235
Hilsa, 266
Homaloptera, 220, 223
Hyporhamphus, 235
Idus, 85
Leptosteus, 12
Leuciscus, 85
Macrones, 36
Mastacembelus, 29, 30, Pl. II
Mirigala, 66
Mystacoleucus, 74
Pseudolaiibus, 12, 140
Psilorhynchus, 223
Pungitius, 236
Rhodeus, 131, 274
Rhynchobdella, 30
Sarcocheilichthyis, 180, 192, Pl. VI
Schizothorax, 81, 83
Silurus, 34
Tamanka, 272
Tylognathus, 180
Sinibarbus, 80
vittatus, 80
Sinigobio, 168
Sinilabeo, 117
Siniperca, 246, 247, 249, 251, 252, 271
bergi, 249
chieni, 248
chuanti, 246, 248, 249
chuan, 246, 249, 250, Fig. 134
chui, 247, 248, 276
elongata, 247, Fig. 137
kichi, 271
knerii, 249
kwangsiensis, 247, 248
multilepis, 249
obscura, 247, 250, Fig. 135
roulei, 246, 247, 276, Fig. 132
scherseri, 246–249, 276, Fig. 133
szechuanensis, 276
undulata, 246, 250
whiteheadi, 251
yunkiangensis, 247, 251
Sinogastromyzon, 232
kisthienensis, 232, 233
intermedius, 232, 233
sankheensis, 232–233
szechuanensis, 232, 233
wui, 232
Sinohomaloptera, 221
acuticuda, 222
yaotanensis, 222
sinyanensis, Loricassis, 207
skolkovii, Megalobrama, 147
Snake-heads, 237
snyderi, Barbus, 69, 75
Puntius, 75
soldatovi, Chilogobio, 189
Gobio, 172, 173
soochowensis, Hemibarbus, 162
spilurus, Aspius, 87, 94
Misgurnus, 12, 104
spinalis, Rhodus, 151, 152
Spinibarbitichthyis denticulatus, 73
Spinibarbus, 72
hollandi, 72, 73
nigrinennis, 274
nigrodorsalis, 73
spiniculatus, 73
spinicelatus, Spinibarbus, 73
Spinies, 20
Squaliobarbus, 90, 91
curriculus, 91
jordani, 91
panwingi, 91
steenackeri, Opsariichthys, 140
steineri, Rasbora, 90, Fig. 35, Pl. V
stenosoma, Homaloptera, 220, 221, 225
Homalosoma, 221
stensii, Chanodichthys, 151
sternurus, Nemachilus, 12
Sticklebacks, 236
stigma, Barbus, 11
Leuciscus, 12
stigmata, Crossostoma, 226, 227, 276, Fig. 122
Formosania, 227
stoliczkae, Schizopygopsis, 12, 83
stoliczkaei, Barbatula, 215, 217, Pl. IX
Cobitis, 217
striatus, Ophicephalus, 237, 238
Ophicephalus, 238
Sturgeons, 15
sturio, Acipenser, 15
styan, Acroschilus, 80
Coreius, 176, 177
Crossocichillus, 79, 80
Crossocichillus, 80
Gymnostomus, 80
Liobagrus, 51, 52
Pseudogobio, 177
Scombrocypris, 89
Suckers, 58
suifuensis, Pseudogobio, 180, 183
Xenocypris, 121, 123
sulcatus, Glyptosternon, 267, 268
Pseudocheneis, 268
sungariensis, Xenocypris, 13
sung-huang-yu, 16
superciliaris, Botia, 201, 202
susuki, Epinephelus, 245
Swell-fishes, 252
swinhonis, Eleotris, 258, 259
Micropercop, 258, 259, Fig. 139
Perccottus, 258
Toxabramis, 137, 138
Symbranch eels, 27
Symbranchus grammicus, 28
Symodus macrocephalus, 25
Systomus belinka, 71
szechuanensis, Beaufortia, 231
Gastromyzon, 230, 231
Siniperca, 276
Sinogastromyzon, 232, 233
szeckwanensis, Barbus, 69, 71
tadianus, Ophicephalus, 12
taenia, Cobitis, 196, 107, 109
taeniinalis, Acanthorhodeus, 158, 160
taeniatus, Gobio, 275
Leiocassis, 43, 47
Leucogobio, 164, 165
Macrones, 47
taenillationus, Leucogobio, 164, 165, Fig. 78
taeniops, Parabolia, 201
tafangensis, Abbattina, 269
Pseudogobio, 260
takakii, Rasborinus, 130, 131
taliensis, Schizothorax, 81, 82
Tamanka, 265, 272
bivittata, 265
siilensis, 265
sinensis, 272
tamussuinensis, Scaphephies, 116
Varicorhinus, 114, 116
tangkhakki, Proto salanz, 23
Tanichthys, 98
albosubis, 98, 99, 274
tapeinosoma, Xenocypris, 122
taphrophis, Hemibagrus, 40
Leiocassis, 43, 49
Tarpons, 17
tchangi, Cullculta, 125, 126
temmincki, Zacca, 95
temnicorpus, Gobio, 172, 174
temnijorcatus, Leiocassis, 42, 45, Fig. 9
tenuis, Leiocassis, 43, 46, 48
Macrones, 48

INDEX

Pseudorasbora, 101, 103, Fig. 39
teretiusculus, Leuciscus, 91
Sarcocheilichthys, 90
ternimaris, Abramis, 147, 150
Megalobrama, 148, 150
testudinacceus, Anabas, 243
Anthias, 243
tetrabarbatus, Discogobio, 113
Tetraodon, 252
lineatus, 252
ocellatus, 253
Tetraodontidae, 252
tienmusanensis, Leucogobio, 164, 166, 275
tienataliensis, Hemibarboides, 275
tienataliensis, Botia, 201, 202
tiensinensis, Culter, 146, 147
tinkhami, Crossostoma, 226, 227
tokunagai, Acanthorhodeus, 160
tori, Barbatula, 214, 216
Cobitis, 216
tonkinensis, Acanthorhodeus, 154, 158, 159, Fig. 76
Tooth-cars, 233
Tor sonatus, 70
ton, Barbus, 11
Cyprinus, 12
torosilabris, Liocassis, 44
Toxabramis, 137, 138
gargentifer, 138
herrmanni, 138
swinhonis, 137, 138
Trachidermus, 254
fasciatuus, 254
transmontana, Ischikauia, 141, 142, Fig. 69
Trichogaster leeri, 13
tricuspidatus, Hyphorhamphus, 235
True eels, 30
truncatus, Leiocassis, 43, 48
Liocassis, 48
tschillensies, Leuciscus, 90
tsinanensis, Aboma, 263
Hemiculterella, 132
Leucogobio, 165, 166, Fig. 80
Pseudoblabus, 132
tschichiogae, Gnathopogon, 12
u-hu-han-pa, 257
u-ma-ku-lin-tzu, 187
 tumirostris, Distoechodon, 124
Xenocypris, 121, 124
tungchowensis, Parapecius, 140
tung, Gobiobotia, 194, 196
tungting, Misgurnus, 204, 206, 208, Fig. 106
Sarcocheilichthys, 189, 191, Fig. 97
Varicorhinus, 109, 114, 117, 118, Fig. 50
tungtingensis, Pseudogobio, 180, 183, Fig. 93
Tylognathus, 100, 110
davidi, 109
INDEX

Tylognathus—continued
nannus, 109
sinensis, 180
typus, Luciobrama, 105, Fig. 42
Odontolabrax, 12
Pseudoperiambra, 153
Rhinogobio, 178, 179
t'zu-ni-ch'ü, 30

umbreifer, Paraleucogobio, 163
uncirostris, Leuciscus, 96
Opariichthys, 96, 97
undulata, Siniperca, 246, 250
undulatus, Macrornathius, 29
Mastacembelus, 29, Fig. 3, Pl. II
Unibranchiopera laevis, 28
unicolor, Misgurnus, 205, 208
ussuriensis, Bagrus, 40, 40
Leiocassis, 43, 40

vackellii, Bagrus, 39
Pseudobagrus, 30, 40, 267
vaillanti, Gobio, 172, 173
Rhinogobio, 173
Vanmanenia, 221, 224, 225
caldwelli, 221
Varicogobio kaa, 107
Varicorhinus, 113–115, 117
barbatu, 116
bass, 113, 115
brevis, 114
diplostomus, 118
discognathoides, 114, 115, Fig. 47
kreyenbergii, 114, 115, 274
macroperis, 114, 116
mutabilis, 114, 117
pogonifer, 114, 115
posehensis, 114, 117
rarus, 119
robustus, 114, 116, 274, Fig. 48
shansiensis, 114, 117, Fig. 49
tamunuiensis, 114, 116
tungting, 100, 114, 117, 118, Fig. 50
varicorhinus, Laobe, 113, 115
variegata, Barbatula, 214, 215
Botia, 202, 203
Rhyncocypris, 86
variegatus, Leuciscus, 188, 191
Nemachilus, 215
Phoxinus, 86
varpachowskii, Hemiculter, 134
tentris, Rhinogobio, 174
venustus, Macropodus, 242
virgatus, Aoria, 41
Pseudobagrus, 30, 41, Fig. 7
viridiusculus, Macropodus, 241, 242, 276, Fig. 131

vittatus, Sinibarbus, 80
vivus, Fustis, 187, 188
vivzi, Rasbora, 90
vulgaris, Anguilla, 30

wakiyae, Sarcocheilichthys, 192
wailecki, Idus, 85
Leuciscus, 85
Wallago attu, 13
wangi, Acanthorhadeus, 160
Erythrocultus, 143, 145
Pseudobagrus, 273
wangkingsui, Rhodeus, 153
warbacherskii, Hemiculter, 134
wenchowensis, Acrasoeichus, 268
Barbus, 268
Lissilichthys, 268
whiteheadi, Coreoperca, 251, Fig. 136, Pl. X
Siniperca, 251
whitleyi, Ctenogobius, 271
Gobius, 271
wolterstorffii, Gnathopogon, 168, 169, 171
Gobio, 171
wui, Carassius, 64
Chanodichthys, 149
Hemiculterella, 268
Megalobrama, 148, 149
Nicholsiculter, 268
Odontobutis, 257
Pseudobagrus, 267
Sinagastromyson, 232
wynaadensis, Silurus, 266

xanthi, Cobitis, 203
Eleotris, 255
xanthognatha, Fluta, 27, Fig. 2
xanthognathus, Monopterus, 27
Xenocyprininae, 10
Xenocypris, 120, 121
aenea, 122
argentea, 120, 121
compressus, 121, 124, Fig. 54
davidii, 121, 122
fangi, 121, 122
fani, 121
glitleri, 121
homospilus, 13
insularis, 121, 122, Fig. 52
katinensis, 121
lamperti, 121, 121, 266
macroplepis, 120, 122
microplepis, 121, 123
nankinensis, 121
nigidus, 121
plena, 13
setchuanensis, 123
<table>
<thead>
<tr>
<th>Index</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Xenocypris—continued</td>
<td></td>
</tr>
<tr>
<td>suifuensis, 121, 123</td>
<td></td>
</tr>
<tr>
<td>sungariensis, 13</td>
<td></td>
</tr>
<tr>
<td>tapeinosoma, 122</td>
<td></td>
</tr>
<tr>
<td>tumirostris, 121, 124</td>
<td></td>
</tr>
<tr>
<td>yunnanensis, 121, 123</td>
<td></td>
</tr>
<tr>
<td>Fig. 53</td>
<td></td>
</tr>
<tr>
<td>Yaoshanicus, 126</td>
<td></td>
</tr>
<tr>
<td>arcus, 126, 127</td>
<td></td>
</tr>
<tr>
<td>normalis, 126, Fig. 55, Pl. I</td>
<td></td>
</tr>
<tr>
<td>yaotonensis, Hemimyson, 222</td>
<td></td>
</tr>
<tr>
<td>Homaloptera, 220, 222</td>
<td></td>
</tr>
<tr>
<td>Sinohomaloptera, 222</td>
<td></td>
</tr>
<tr>
<td>yarkandensis, Barbatula, 217</td>
<td></td>
</tr>
<tr>
<td>Nemacheilus, 217</td>
<td></td>
</tr>
<tr>
<td>yenlingi, Oreonectes, 210</td>
<td></td>
</tr>
<tr>
<td>yin-yü, 23</td>
<td></td>
</tr>
<tr>
<td>yui, Paralepidocephalus, 200</td>
<td></td>
</tr>
<tr>
<td>yunkiansensis, Coreoperca, 251</td>
<td></td>
</tr>
<tr>
<td>Siniperca, 247, 251</td>
<td></td>
</tr>
<tr>
<td>yunnan, Misgurnus, 205, 200, Fig. 110</td>
<td></td>
</tr>
<tr>
<td>yunnanensis, Barbus, 68, 70</td>
<td></td>
</tr>
<tr>
<td>Cyprinus, 63</td>
<td></td>
</tr>
<tr>
<td>Discognathus, 111</td>
<td></td>
</tr>
<tr>
<td>Garra, 111</td>
<td></td>
</tr>
<tr>
<td>Glyptosternon, 53, 55</td>
<td></td>
</tr>
<tr>
<td>Glyptosternun, 55</td>
<td></td>
</tr>
<tr>
<td>Labeo, 108</td>
<td></td>
</tr>
<tr>
<td>Schizothorax, 81, 82</td>
<td></td>
</tr>
<tr>
<td>Xenocypris, 121, 123, Fig. 53</td>
<td></td>
</tr>
<tr>
<td>Yunnanilus, 211, 212</td>
<td></td>
</tr>
<tr>
<td>yu-pien-tzu, 151</td>
<td></td>
</tr>
<tr>
<td>Zacco, 7, 93, 94, 96</td>
<td></td>
</tr>
<tr>
<td>aconthogenys, 94, 95</td>
<td></td>
</tr>
<tr>
<td>acutipinnis, 274</td>
<td></td>
</tr>
<tr>
<td>asperus, 94, Fig. 31</td>
<td></td>
</tr>
<tr>
<td>chengtui, 94</td>
<td></td>
</tr>
<tr>
<td>macrophthalmus, 94, 95</td>
<td></td>
</tr>
<tr>
<td>platypus, 94, 95, 274, Fig. 32</td>
<td></td>
</tr>
<tr>
<td>temmincki, 95</td>
<td></td>
</tr>
<tr>
<td>zaidamensis, Nemachilus, 12</td>
<td></td>
</tr>
<tr>
<td>santhi, Cobitis, 203</td>
<td></td>
</tr>
<tr>
<td>sebroidus, Beaufortia, 231</td>
<td></td>
</tr>
<tr>
<td>Gastromyzon, 230, 231</td>
<td></td>
</tr>
<tr>
<td>Hemimyson, 220, Fig. 124</td>
<td></td>
</tr>
<tr>
<td>zeni, Coreius, 176</td>
<td></td>
</tr>
<tr>
<td>Zezera rathbuni, 177</td>
<td></td>
</tr>
<tr>
<td>Zoarchias anguillaris, 30</td>
<td></td>
</tr>
<tr>
<td>zonatus, Barbus, 68, 70</td>
<td></td>
</tr>
<tr>
<td>Tor, 70</td>
<td></td>
</tr>
</tbody>
</table>