SVENSK BOTANISK TIDSKRIFT

UTGIFVEN AF

SVENSKA BOTANISKA FÖRENINGEN

Redaktör: Dr. O. Rosenberg

BAND I.

1907

CENTRALTRYCKERIET, STOCKHOLM, 1908.
RÄTTELSER.

Pag. 105, fig. 1 står \(\frac{1}{9} \), läs \(\frac{1}{4} \).

» » » 2 » \(\frac{1}{4} \), » \(\frac{9}{1} \).

» 109, rad 9 uppiifrån står 6, läs 102.

» 112, » 5 » partier, läs gonidier.

» 114, » 16—17 underifrån står Sådana åro, läs En sådan år.

» 157, » 9 uppiifrån står framtränga, läs framträda.

» 161, » 15 underifrån står 32, läs 148.

» 336, » 3 uppiifrån står Hypogymina, läs Hypogymnia.
INNEHÅLLSFÖRTECKNING.

(Inhaltsverzeichnis.)

A = Afhandling (Abhandlung), — F = Föredrag (Vortrag), — R = Referat.

ANDERSSON, G., Om förekomsten af Beta maritima på Sveriges västkust. — Med 1 karta. — (Über das Vorkommen von Beta maritima an der Westküste Schwedens. — Mit 1 Karte.) A................................. 342

ARNELL, H. W., Om lefvermossvegetationen i Sarekområdet i Lule Lappmark. — Über die Lebermoos-Vegetation des Sarek-Gebiets in Lule Lappmark. F.. 123

——. Meddelande om nya mossor i Sverige. — (Neue Moose in Schweden.) F .. 420

ATTERBERG, A., Främlingar på Kalmar hamn. — Adventiv-Pflanzen beim Hafen von Kalmar. A ... 352

BERGGRÉN, J., Typha angustifolia L. × latifolia L. A 291

BIRGER, S., Tvenne sällsynta skandinaviska Gentiana-hybrider. — Zwei seltene skandinavische Gentiana-Bastarde. A .. 126

——. Über endozooische Samenverbreitung durch Vögel. A 1

BLOMQVIST, S. G.:ON. Ungdomsstadier hos Herberis vulgaris. — Jugendstadien von Berberis vulgaris.) F .. 289

COLLINDE, E., Erythraea vulgaris (Rafn, Willd. Änno funnen i Medelpad. — (Erythraea vulgaris wiedergefunden in Medelpad.) A 352

Dahlstedt, H., Hieracier från Torne Lappmark och närgränsande områden. — (Hieracien aus Torne Lappmark und angrenzenden Gebieten.) A .. 299

DUSEN, P., En resa i Patagonien. — (Eine Reise in Patagonien. F........ 289

Fries, Th. C. E., Om laffloran i trakten af Torneträsk. — (Über die Flechten-Flora der Gegend von Tornejaure. Lappland.) F 290

Fries, R., Om Malvacésläktet Wissadula. — (Über die Malvacé-Gattung Wissadula.) F .. 421

HANNING, E., Ueber pilzfreeses Lolium temulentum. R von T. VESTERGREN 131

HEMMENDORFF, E., Fazenda Santa Albertina. Bilder från en brasiliansk kaffeplantage. — Med 7 textfigurer och 1 plansch. — (Fazenda Santa Albertina. Schilderungen aus einer brasilianischen Kaffee-Pflanzung. — Mit 7 Fig. und 1 Tafel.) A................................. 249

Johansson, K. Till Gotska Sandöns floristik. — Zur Floristik der Insel Gotska Sandön.

Juel, O., Om fröämnets och fröets utveckling hos *Saxifraga granulata.* (Über die Entwicklung der Samenanlage von *Saxifraga granulata.*)

Juel, O., Öfversikt af våra värdväxlande rostsvampar. — (Ubersicht unserer wirtswechselnden Rostpilze.)

Lagerberg, T. Uber die Blüte von *Viola mirabilis.* — Mit 11 Textfiguren.

Lind, J., Liste över Svarpe indsamledes under Svenska Botaniska För- eningens Excursjon till Billingen 1907. — (Verzeichnis der während der Vereins-Excursion nach Billingen 1907 eingessammelten Pilze.)

Lindberg, H., Finlands *Hippuris*-former. R. af T. Vестергрен

Lindman, C. A. M., Naturhistoriska Riksmuseets LINNÉ-herbarium.

Lind, J., Några bildningsafvikelser i blomman hos *Pyrola uniflora* L. — (Einige Bildungsabweichungen in der Blüte von *Pyrola uniflora* L.)

Lindman, C. A. M., Naturhistoriska Riksmuseets LINNÉ-herbarium.

Lindberg, H., Finlands *Hippuris*-former. R. af T. Vестергрен

Malme, G. O. A.X, Afvikande tal- och ställningsförhållanden i blomman hos *Pyrola uniflora* L. — (Einige Bildungsabweichungen in der Blüte von *Pyrola uniflora* L.)

Rosenberg, O., Om artbildningen hos *Taraxacum* och *Rosa.* — (Uber die Artenbildung in *Taraxacum* und *Rosa.*

Rosenberg, O., Om artbildningen hos *Taraxacum* och *Rosa.* — (Uber die Artenbildung in *Taraxacum* und *Rosa.*

Rosenberg, O., Om artbildningen hos *Taraxacum* och *Rosa.* — (Uber die Artenbildung in *Taraxacum* und *Rosa.*

Rosenberg, O., Om artbildningen hos *Taraxacum* och *Rosa.* — (Uber die Artenbildung in *Taraxacum* und *Rosa.*

Rosenberg, O., Om artbildningen hos *Taraxacum* och *Rosa.* — (Uber die Artenbildung in *Taraxacum* und *Rosa.*

Rosenberg, O., Om artbildningen hos *Taraxacum* och *Rosa.* — (Uber die Artenbildung in *Taraxacum* und *Rosa.*

Rosenberg, O., Om artbildningen hos *Taraxacum* och *Rosa.* — (Uber die Artenbildung in *Taraxacum* und *Rosa.*

Rosenberg, O., Om artbildningen hos *Taraxacum* och *Rosa.* — (Uber die Artenbildung in *Taraxacum* und *Rosa.*

Rosenberg, O., Om artbildningen hos *Taraxacum* och *Rosa.* — (Uber die Artenbildung in *Taraxacum* und *Rosa.*

Rosenberg, O., Om artbildningen hos *Taraxacum* och *Rosa.* — (Uber die Artenbildung in *Taraxacum* und *Rosa.*

Rosenberg, O., Om artbildningen hos *Taraxacum* och *Rosa.* — (Uber die Artenbildung in *Taraxacum* und *Rosa.*

Rosenberg, O., Om artbildningen hos *Taraxacum* och *Rosa.* — (Uber die Artenbildung in *Taraxacum* und *Rosa.*

Rosenberg, O., Om artbildningen hos *Taraxacum* och *Rosa.* — (Uber die Artenbildung in *Taraxacum* und *Rosa.*

Rosenberg, O., Om artbildningen hos *Taraxacum* och *Rosa.* — (Uber die Artenbildung in *Taraxacum* und *Rosa.*

Rosenberg, O., Om artbildningen hos *Taraxacum* och *Rosa.* — (Uber die Artenbildung in *Taraxacum* und *Rosa.*

Rosenberg, O., Om artbildningen hos *Taraxacum* och *Rosa.* — (Uber die Artenbildung in *Taraxacum* und *Rosa.*

Rosenberg, O., Om artbildningen hos *Taraxacum* och *Rosa.* — (Uber die Artenbildung in *Taraxacum* und *Rosa.*

Rosenberg, O., Om artbildningen hos *Taraxacum* och *Rosa.* — (Uber die Artenbildung in *Taraxacum* und *Rosa.*

Rosenberg, O., Om artbildningen hos *Taraxacum* och *Rosa.* — (Uber die Artenbildung in *Taraxacum* und *Rosa.*

Rosenberg, O., Om artbildningen hos *Taraxacum* och *Rosa.* — (Uber die Artenbildung in *Taraxacum* und *Rosa.*

Rosenberg, O., Om artbildningen hos *Taraxacum* och *Rosa.* — (Uber die Artenbildung in *Taraxacum* und *Rosa.*

Rosenberg, O., Om artbildningen hos *Taraxacum* och *Rosa.* — (Uber die Artenbildung in *Taraxacum* und *Rosa.*

Rosenberg, O., Om artbildningen hos *Taraxacum* och *Rosa.* — (Uber die Artenbildung in *Taraxacum* und *Rosa.*

Rosenberg, O., Om artbildningen hos *Taraxacum* och *Rosa.* — (Uber die Artenbildung in *Taraxacum* und *Rosa.*

Rosenberg, O., Om artbildningen hos *Taraxacum* och *Rosa.* — (Uber die Artenbildung in *Taraxacum* und *Rosa.*

Rosenberg, O., Om artbildningen hos *Taraxacum* och *Rosa.* — (Uber die Artenbildung in *Taraxacum* und *Rosa.*

Rosenberg, O., Om artbildningen hos *Taraxacum* och *Rosa.* — (Uber die Artenbildung in *Taraxacum* und *Rosa.*

Rosenberg, O., Om artbildningen hos *Taraxacum* och *Rosa.* — (Uber die Artenbildung in *Taraxacum* und *Rosa.*

Rosenberg, O., Om artbildningen hos *Taraxacum* och *Rosa.* — (Uber die Artenbildung in *Taraxacum* und *Rosa.*

Rosenberg, O., Om artbildningen hos *Taraxacum* och *Rosa.* — (Uber die Artenbild...

Simmons, H.. Om en resa till Grönland och arktiska Amerika. — (Über eine Reise nach Grönland und arktischem Amerika. F) 289

—, Om Cepidium antarcticum J. G. Ag. F 124

—, Om inre assimilationsvåfnad hos phaeophyceer. — (Über inneres Assimilations-Gewebe bei Phaeophyceen. F) 290

—, Om *Macrocystis* systematiska ställning. — (Über die systematische Stellung von *Macrocystis.*) F 124

—, Om växtheten å några tångbåddar i Nyländska skärgården i Finland. — Med 3 textfig. — (Über die Vegetation einiger Tangen- wälle in den Nyländischen Scheeren in Finland. — Mit 3 Fig. im Texte.) A 389

Sonden, M.. Anteckningar om floran inom Tornejavreområdet. — (Aufzeichnungen über die Flora des Tornejavre-Gebietes im schwedischen Lappland.) A 215

Sylvén, N.. Eigenartige rein florale Sprosse bei zwei schwedischen *Artemisia*-Arten. — Mit 3 Textfiguren. A 51

—, Nya svenska fyndorter för *Gentiana uliginosa* Willd. — (Neue schwedische Fundorte für *Gentiana uliginosa* Willd.) A 126

—, Om endemicismen och de nyare artbildningsteorierna. — Über den Endemismus und die neueren Artenbildungsteorien.) A 321

—, Über einen Fall von Symbiose zwischen Zoochlorellen und einer marinen Hydroide. — Mit 6 Textfiguren. (Svensk sammanfattning 46.) A 32

Botaniska sektionen af Naturvetenskapliga studentsällskapet i Uppsala 123, 289, 420

Botaniska Sällskapet i Stockholm 122, 289, 419

Linnejubileet 127

Nyutkommen litteratur med anledning af Linnejubileet 296

Personalnotiser 295, 436

Profföreläsningar 130

Svenska Botaniska Föreningen 120, 286, 411

Svenska Botaniska Föreningens sommarexkursion 1907 412

Till redaktionen inlämnad litteratur 298, 436

Vetenskapsakademien 125, 421
VÄXTFÖRTECKNING.

I denna förteckning upptagas endast de växter, som blifvit i något afscende utförligare omnämnda. Växter, upptagna i rena uppräkningar, återfinnas i regel icke här. Jämför sidd. 14, 212, 222, 243, 367!

För vetenskapen nya former åro tryckta med fetstil.

Achillea millefolium 63.
Alchemilla 122.
Alectorioa divergens 148.
 » nigrican f. 290.
 » ochroleuca 142. 151. 179.
 » vexillifera 143, 178.
Allium schoenoprasum 79.
 » scorodoprasum 79.
ursinum 79.
Amphiloma murorum 102.
Andromeda tetragona 221.
Angelica silvestris 69.
Antennaria dioica f. monocephala 124.
Anthemis arvensis × tinctoria 124.
Anthricus silvestris 70.
Aongstroemia longipes 420.
Artemisia absinthium 52.
 » laciniata 51.
 » maritima 51.
 » maritima v. suffruticosa
 52—55.
 » vulgaris 51, 53.
Arthonia 98.
Aster triplodium 63.
Asterella Lindenbergiana 123.
Bacidia 98.
Berberis vulgaris 71, 289.
Beta maritima 342—346.
Buellia dives 168.
 » parasema v. papillata 290.
Caepidium antarcticum 124.
Calicium 98.

Calluna vulgaris 69.
Campanula persicaefolia 65.
 » rotundifolia 65.
Caucalis latifolia 352.
Cenangella radulicola 387.
Cenomyce straminea 138.
Centaurea jacea 63.
Cephalozia bicuspidata v. atra 123.
 » diversicata var. grims- lana 123.
 » striatula 123.
Cesia revoluta 123.
 » varians 123.
Cetraria cucullata 149.
 » glauca 160, 161.
 » hiascens 148, 151.
 » islandica 98, 149, 150.
 » islandica f. sorediata 290.
 » nivalis 149.
Chlorella communis 44.
 » conductrix 42.
 » infusionum 41.
 » parasitica 42.
 » protothecoides 44.
 » pyrenoidosa 44.
 » variegata 44.
 » vulgaris 33—48.
Chroococcus 101, 109.
Chrysanthemum leucanthemum 63.
Cirsium arvense 64.
 » heterophyllum 64.
 » lanceolatum 64.
 » palustre 64.
Cladonia alpestris 150.
VII

Cladonia bellidiflora 138.
> carneola 139, 178.
coccifera 138, 166.
> cornuta 140.
cristatella 138.
> deformis 138, 149.
digitata 166.
> fimbriata 140, 166.
Flörkeana 138.
peltastica 141.
> pyxidata 141.
rangiferina 149, 150.
silvatica 150.
> uncialis 150, 161.
Clinopodium vulgare 66.

Coffea arabica 250—269.
> liberica 250—269.

Coleus barbatus 329.
> elongatus 329.

Cololma ceranoides 290.

Colpomenia sinuosa 124.

Comarum palustre 73.

Crataegus monogyna 348.

Cyphelium xotarisii 169.

C3sticoccus 98.

Cytisus purpureus 348.

Dentaria bulbifera 74.

Desmarestia 200.

Dianthus deltoides 76.

Discosia artocreas 56.

Epilobium angustifolium 70, 80.
Erythraea vulgaris 352.

Euphrasia bottnica 66.
> tenuis 66.

Evernia 98.

Galium boreale 65.
> verum 65.

Gentiana Amarella lingulata x campestris suecica 126.

Gentiana baltica x uliginosa 127.
> campestris 353, 359.
> campestris a suecica 66.
> uliginosa 126.

Geranium lucidum 72.

Geranium sanguineum 70, 80, 89, 93.
> silvaticum 71, 88, 93.

Geum rivale 74.

Glaux maritima 67.

Gloecocapsa 109.

Gymnadenia conopea x albida 293.

Gyrophora anthracina f. 290.
> polyphylla 170.
> reticulata 290.

Helianthemum canum 433.

Heracleum sphondylium sibiricum 69.

Hieracium albovarium 319.
> auricula 402.
> cleistogamum 303.
> concinnum 306.
> crispi forme 303.
> decurrentidens 317.
> farreillum 317.
> fraudans 309.
> gyratifrons 307.
> halsicium 314.
> includens 300.
> kirunense 313.
> Lundbomii 301.
> malanocranum 311.
> microcomum 307.
> mniarolepium 305.
> murorum 65.
> nautanense 309.
> Pilosella 65.
> poliosteleum 315.
> polysteleum 304.
> Sondenii 302.
> venosum 402.

Hippuris tetraphylla 133.
> vulgaris 133.
> f. littoralis 133

Hormidium 102.

Hypericum qudrangulum 70.

Hypocharis maculata 65.

Impatiens 324.

Ionaspis epulotica 100.

Jungermanla Baueriana 123.
> Binsteadii 123.
> elongata 123.
Jungremania quinquedentata v. tenuis 123.

Koeleria glauca 212.

Laburnum Adami 348.
 » vulgare 348.
Lamium album f. laciniata 124.
Laserpitium latifolium 69.
Lathyrus maritimus 210.
 » pratensis 73.
Lecanora gelida 101—115, 176.
 » granatina 100.
 » hypnorum 113.
 » prevostii 100.
 » subfusc a v. sorediifera 290.
Lecidea ameibospora 169.
 » pallida 113.
 » panœola 113.
Leontodon autumnale 64.
Lepidium lacerum 112.
Lichen gelidus 106.
Linaria vulgaris 66.
Listera ovata 78, 94.
Lolium italicum 132.
 » linicola 132.
 » perenne 132.
 » temulentum 131.
Lonicera xylosteum 65.
Lotus corniculatus 73.
Lycopodium complanatum L. *moniliforme 433.
Lythrum salicaria 70, 80.

Macrocystis 124.
Majanthemum bifolium 80.
Marchantia polymorpha v. alpestris 123.

Marsupella apiculata 123.
 » aquatica 123.
 » Boeckii 123.
 » **Boeckii v. incrassata** 123.
 » capillaris 123.
 » condensata 123.
 » Sprucei 123.
Martinellia helvetica 123.
 » hyperborea 123.

Martinellia Kaurinii 123.
 » lapponica 123.
 » obscura 123.
 » paludosa 123.
 » purpurascens 123.
 » sarekensis 123.
 » spitsbergen sis 123.
Melampyrum nemorosum 66.
 » pralense 66.
Melandrium rubrum 76, 93.
Melanotaenium cingens 385.
Mespilus germanica 348.
Mollia Wimmeriana 420.
Mycarthonia 98.
Mycobacidia 98.
Mycocalicium 98.

Nasturtium austriacum 352.
Nereocystis 124.
Nostoc 101.

Odontoschisma Macounii 123.
Oenothera lata 421.
Ononis repens 211.
Orchis maculata 78.
 » mascula 76, 93.
 » sambucina 77, 93.
Origanum vulgare 66, 80.
Orobanche alba *rubra 373.
Oxytropis pilosa 211.

Paris quadrifolia 80.
Parmelia centrifuga 141.
 » encausta 163.
 » farinacea 338, 339.
 » furfuracea 163, 164.
 » subsp. Hypogymnia 175.
 » lanata 163.
 » physisodes 164, 338, 339.
 » tubulosa 339, 340.
Pedicularis palustris 66.
Peltidea 113.
Peltigera 114.
 » aphtosa 112.
Peltulepis sibirica 123.
Peperomia 327.
Pertusaria communis 98.
 » trochiscea 290.
Physcia ciliaris 136.
Pilularia globulifera 424.
Pimpinella saxifraga 69.
Pirus communis 348.
Pisum 347.
Plantago lanceolata 65.
Platisma ampullaceum 160.
Polycarpon tetraphyllum 361.
Polygala vulgare 72.
Polygonatum multiflorum 79.
Polytrichum gracile var. anomalum 420.
Potentilla canescens 124.
» canescens 352.
» erecta 73.
Prasanthus suecicus 123. 124.
Primula officinalis 67. 88. 93.
» farinosa 68. 93.
Pisorotichia pictava 168.
Puccinia Carici montanae 386.
Pyrenopsis meladermia 114.
» pulvinata 100.
Pyrola media 275.
» uniflora 270—275.
Quercus sessiliflora 211.
Ramalina 98.
» farinacea 172. 181.
» fraxinea 153—159. 172. 179.
» fastigiato-fraxinea 173.
Ranunculus acer 74.
Rapistrum rugosum 352.
Rhizocarpon chionaeum 290.
Rhododendron 221.
Ricasolia amplissima 112.
Rinodina laevigata 168.
» turfacea 168.
Rosa 122.
Rubus caesius 73.
Rumex roseus 332.
» simpliciflorus 332.
» vesicarius 332.
Salvia silvestris 352.
Sauteria alpina 123.
Saxifraga granulata 74. 93. 124.
Scalia Hookeri 420.
Sedum acre 74.
» maximum 74.
Silene nutans 74. 93.
Solidago virgaurea 63.
Solorina crocea 100.
» crocoides 100.
» saccata 113.
Solorinina 100.
Sonchus arvensis 80.
Spiraea ulmaria 74.
Stachys palustris 66.
Stigonema 101. 109.
Strobalanthes 324.
Tanacetum vulgare 63. 407.
Taraxacum 122.
» confertum 122.
Thunbergia 325.
Trentepohlia 98.
Trichomanes 326.
Trientalis europaea 66.
Trifolium pratense 73.
Typha angustifolia × latifolia 291.
Usnea articulata 159.
» barbata 98.
» dasypoga 171.
» intestiniformis 159.
» plicata 171.
Valeriana officinalis 65.
Vicia cassubica 210.
» cracca 73.
Viola mirabilis 187—209.
Viscaria viscosa 76.
Xanthoria parietina 135. 178.
Zoochlorella 32.
» conductrix 41.
» maxima 42. 43.
» parasitica 41.
Zooxanthella 32.
FÖRENINGENS LEDAMÖTER OCH INSTITUTIONER, SOM ENL. § 9 ERHÅLLA TIDSKRIFTEN.

* Anger ledamot, som erlagt afgift (med 100 kronor) en gång för alla.

ABELIN, R., Trädgårdsdirektör, Bastad
ADLERZ, E., Lektor, Örebro
AFZELIUS, K. R., Fil. studerande, Rimbo gatan 8, Stlhm
AHLSTRÖM, N., Läroverksadjunkt, Borås
ALMGREN, K. G., Hofrättsråd, Öster malmsgatan 48, Stlhm
ALQUIST, E., Professor, Karlavägen 20, Stlhm
ALMQVIST, E., Trädgårdsdirektör, Skara
ALQUIST, S., Lektor, Nybro gatan 11 C, Stlhm
AMINOFF, F., e. Jägmästare, Statens Skogsförööksanstalt, Stlhm
ANDERSSON, G., Lektor, Djursholm
ANDERSSON, L., Stationsinspektor, Karlstad
ANTONI, F., Med. doktor, Nyborgatan, 15 B, Stlhm
ARNELL, H. V., Lektor, Uppsala
ARRHENIUS, A., Rektor, Lundsberg, Nässundet
ARVÉN, A., Stationsföreståndare, Mullsjö
ARVIDSSON, I., Fil. doktor, Uppsala
ASKLUND, H. G., Läroverksadjunkt, Kungstensgatan 69, Stlhm
ASPMAN, M., Lärarinna, Norrtullsgatan 13, Stlhm
AULIN, F. R., Fil. doktor, Dalagatan 78 A, Stlhm
AURIVILLIUS, Chr., Professor, K. Vetenskapsakademien, Stlhm
BAGGE, A., Ingenjör, Floda station
BANCK, E., Fröken, Styrmanstg. 51, Stlhm
BAUMAN, J., Badintendent, Marstrand
BEHLM, A., Intendent, Skansen, Stlhm
BENCKERT, H. T., Rådman, Valhallavägen 25, Stlhm
BENEDICKS-BRUCE, C., Fru, Visby
BERG, Å., Jägmästare, Råneå
BERGERON, T., Studerande, Lundsberg, Nässundet
BERGGREN, J., Läroverksadjunkt, Döbelns gatan 69, Stlhm
BERGSTROM, E., Fil. studerande, Uppsala
BERLIN, A., Med. doktor, Odengatan 90, Stlhm
BESKOWSKA SKOLAN, Stlhm
BIRGER, S., Med. kandidat, Kronobergs gatan 15 B, Stlhm
BLOMQUIST, S. GSON, Assistent, Bergielund, Albaño
BOCK, S., Fil. kandidat, Uppsala
BOHLIN, K., Lektor, Asögatan 79, Stlhm
BOLLING, G., Lärarinna, Grefgatan 60, Stlhm
BORÉN, P. G., Öfverkontrollör, Malmö
BORGE, O. F., Fil. doktor, Nyborgatan 16, Stlhm
*BORGGLUND, J. II., Jägmästare, Falun
BOTANISKA INSTITUTET, Stockholms Högskola
BOTANISKA INSTITUTIONEN, Uppsala
UNIVERSITET
BRUNDIN, J. A. Z., Lektor, Malmö
BÅGENHOLM, G., Fil. kandidat, Alnarp
Hermelin, Th., Frih., Öfverjägmästare, Piteå
Hesselman, Henrik, Docent, Upplandsgatan 66, StHlm
Hofman-Bang, O. M., Fil. doktor, Experimentalfältet, StHlm
Holm, J. A., Kyrkoherde, Timrå
Holmgren, Anders, e. Jägmästare, Strömsund
Hult, J. M., Biblioteksamänunens, Uppsala
Hulting, J., Läroverksadjunkt, Norrköping
Indebetou, Govert, Fondmäklare, Linnégatan, 81, StHlm
Jansson, N. E., Fil. studerande, Thulegatan 38, StHlm
Johansson, K., Läroverksadjunkt, Visby
Johansson, N. a., f. d. Rektor, Göteborg
Jonsson, Fritz, Fil. studerande, Uppsala
Juel, H. O., Professor, Uppsala
Juhlin-Dannfelt, H., Professor, Djursholm
Jäderholm, E., Lektor, Västervik
Jernberg, M. G., e. Jägmästare, Luleå
Jönsson, Bengt, Professor, Lund

Karlson, Emil, f. d. l: e Fyringenjör, Floragatan 18, StHlm
Kempe, Fr., Fil. doktor, Strandvägen 7, StHlm
*Kiaer, Hans, Fabriksägare, Ekheim, Kragørøen ved Fredriksstad, Norge
Kinman, J. E., Jägmästare, Eksjö
Kjellberg, Gunnar, Fil. kandidat, Uppsala
Kollberg, O., e. Jägmästare, Leksand
Krok, Th. O. B. N., f. d. Läroverksadjunkt, Högborgsgatan 37 B, StHlm
Kullberg, A. E., Ingenjör, Katrineholm
Kylin, Harald, Docent, Uppsala

Köhler, Eug., Läroverksadjunkt, Strängnäs

Lager, Ester, Amanuens, Grefurgegatan 64, StHlm
Lagerberg, Torsten, Fil. licentiat, Uppsala
Lagerheim, G., Professor, Tunnelgatan 25, StHlm
Lagerkrantz, J. L., Pastor, Hornsgatan 108, StHlm
Lagerstedt, N. G. W., Läroverksråd, Karlvägen 35, StHlm
Lägerwall, B., v. Häradshöfding, Drottningholm
Landberg, Hj., Jägmästare, Gäfle
Lange, Th., Telegraphkommissarie, Visby
Larsson, P. a., Öjersbyn, Movik
Laurell, J. G., Kyrkoherde, Aspö, Strängnäs
Leijonmarck, H., Fröken, Döbelnsgatan 2, StHlm
Lewin, Maria, Lärarinna, Riddargatan 23, StHlm
Lidman, G., e. Jägmästare, Ljusn
*Lind, Jens, Cand. Pharm., Niels Ebbesensvej 14, Köbenhavns V.
Lindahl, R., e. Jägmästare, Brahegatan 34, StHlm
Lindberg, Andrea, Fru, Fleminggatan 18, StHlm
Lindberg, Harald, Magister, Helsingfors
Lindegren, E., Fil. kandidat, Appelbergsgatan 34, StHlm
Lindén, A., Lärare, Dalagatan 22, StHlm
Lindh, N. G., Amanuens, Markvardsgatan 10, StHlm
Lindegors, Th., Fil. studerande, Uppsala
Lindmark, G., Maringenjör, Grefgatan 52, StHlm
Lindefors, A. A., Tullförvaltare, Marstrand
Lindström, N. H., Trädgårdsdirektör, Bergielund, Albano
Svensk Botanisk Tidskrift

Utgifven af

Svenska Botaniska Föreningen

Redaktör: Dr. O. ROSENBERG

BAND 1. 1907 HÄFTE 1.
SVENSKA BOTANISKA FÖRENINGENS

styrelse och redaktionskommitté

under år 1907.

Styrelse:

V. B. WITTRICK, ordförande; R. SERNANDER, vice ordförande; O. ROSENBERG, sekreterare och redaktör; G. INDEBETOU, skattmästare; J. BERGGREN, K. BOH LIN, K. JOHANSSON, O. JUEL, G. LAGERHEIM, G. MALME, M. SONDÉN.

Redaktionskommitté:

O. ROSENBERG, K. BOH LIN, G. LAGERHEIM, N. SVEDELIUS, R. SERNANDER.

SVENSK BOTANISK TIDSKRIFT utkommer i fyra häften årligen. Prenumerationsafgiften (för personer ej tillhörande Svenska Botaniska Föreningen) är 15 kronor.

Till tidskriftens medarbetare!

Det är redaktionens mening att, efter det redaktionskommittén antagit en afhandling till införande i tidskriften, omedelbart befordra densamma till trycket, så att författaren kan erhålla separat af densamma äfven innan det häfte utkommit, i hvilket afhandlingen inflyter.
ÜBER ENDOZOISCHE SAMENVERBREITUNG DURCH VÖGEL

VON
SELIM BIRGER.

Einleitung.

Man pflegt bekanntlich bei der durch Tiere vermittelter Verbreitung der Pflanzen eine endozoische und eine epizoische Verbreitung zu unterscheiden: bei jener passieren im allgemeinen die Samen den Verdauungskanal der Tiere, bei dieser bleiben Teile der Pflanzen in irgend einer Weise an dem Haarkleide etc. derselben haften und werden so weiter befördert.

Dieses letztere Verbreitungsverfahren charakterisiert Sernander (23, S. 225) als ein unabsichtliches und unterscheidet im Gegen satze dazu einen dritten Verbreitungsmodus, den synzoischen, d. h. die Pflanzenteile werden von Tieren absichtlich, z. B. beim Bau der Nester¹ oder als Nahrung der Jungen oder beim Einsammeln der Wintervorräte verbreitet.

Die endozoische Samenverbreitung der Vögel ist in Skandinavien bis jetzt besonders von Hesselman (11) und Holmboe (13) studiert worden.

Hesselman untersuchte im Jahre 1895 über 70, meistens in den Stockholmer Schären geschossene Individuen von 19 verschiedenen Vogelarten. In dem Innern derselben fand er Samen von zusammen mehr als dreissig Planzenarten.

Holmboe berichtet 1900 teils über seine Untersuchung von Samenproben aus 54 norwegischen Vogelindividuen von 18 Arten, teils hat er ältere Angaben über die Samenverbreitung der Vögel in Norwegen zusammengestellt.

¹ Über Pflanzenteile in skandinavischen Vogelnestern haben berichtet: Hesselman (11, S. 103), Sernander (23, S. 233 f.), Holmboe (14, S. 29) und Verf. (2 a, S. 22—24, 2 b, S. 223).

Svensk Botanisk Tidskrift.
Schliesslich hat SERNANDER (23, S. 226) in seiner Monographie der Verbreitungsbio logie der skandinavischen Vegetation auch einige Analysen von Samenproben aus dem Verdauungskanal der Vögel mitgeteilt.\(^1\)

Die zoologische Literatur enthält aber wider Erwarten nur wenig Exaktes über diejenigen Samen und Früchte, die von Vögeln verzehrt zu werden pflegen.

In diesem Zusammenhange seien auch die von WITTRÖCK (25) in Schweden und von HOLMBOE (14) in Norwegen betriebenen interessanten Studien der höheren Epiphytenvegetation erwähnt.

Das untersuchte Material.

Während einer Exkursion in die Umgegend von Lillherrdal in der Provinz Härjedalen, Schweden, im Herbst 1903 fand Verf. am Ufer eines Flüsschens eine offenbar von einem Raubvogel zerfleischte Stockente, deren Brust und Eingeweide mit lebenden Bulbillen von *Polygonum viviparum*\(^2\) bedeckt waren. Um den toten Vogel herumgestreut lagen auch Früchtchen \(^3\) von *Ranunculus acris*.

Dieses Beispiel davon, dass sogar so empfindliche Pflanzenteile, wie es die Bulbillen von *Polygonum viviparum* sind, durch Zufall mittels Vögel verbreitet werden können, lenkte meine Aufmerksamkeit auf die Rolle, welche die Vögel bei der Verbreitung der Pflan zen spielen. Neue Beiträge zur Lehre derselben schienen mir um so wichtiger, da dergleichen Untersuchungen bisher noch nicht in Nordschweden stattgefunden hatten.

In den folgenden Jahren wurden daher mit der freundlichen Hilfe des Herrn stud. phil. KURT FALCK zahlreiche Samenproben aus geschossenen Vögeln eingesammelt.

\(^1\) Ekstam (8, S. 52 f.) gibt ebenfalls einige ähnliche Analysen von Samen, die im Innern des Spitzbergischen Schneehuhns (*Lagopus alpina var. hyperboreus*) gefunden wurden.

\(^3\) Im folgenden hat das Wort Frucht und Beere häufig in seinem populären Sinne benutzt werden müssen.
Einige der Samenbestimmungen sind von den Herren Lektor Dr. Gunnar Andersson und Landwirtschaftsinspektor Dr. A. Lyttkens gemacht bezw. nachgeprüft worden.

* * *

Zusammen sind 103 Individuen folgender 23 Vogelarten untersucht worden:

<table>
<thead>
<tr>
<th>Art</th>
<th>Anzahl d. Individ.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anas boschas L..</td>
<td>Stockente. schwedisch gräsand</td>
</tr>
<tr>
<td>A. crecca L..</td>
<td>Krikente. krickand</td>
</tr>
<tr>
<td>A. penelope L..</td>
<td>Pfeifente. bläsand</td>
</tr>
<tr>
<td>(Charadrius hiaticula L., Sandregenpfeifer strandpipare)</td>
<td>1</td>
</tr>
<tr>
<td>Corvus cornix L.,</td>
<td>Nebelkrähe. kråka</td>
</tr>
<tr>
<td>Emberiza citrinella L., Goldammer. gulsparf</td>
<td>2</td>
</tr>
<tr>
<td>E. nivalis L., Schneeammer. snösparf</td>
<td>3</td>
</tr>
<tr>
<td>Fringilla domestica L., Haussperling. gråsparf</td>
<td>11</td>
</tr>
<tr>
<td>F. linaria L. v. magnirostris, Birkenzeisig. gråsiska</td>
<td>1</td>
</tr>
<tr>
<td>F. montifringilla L., Bergfink. bergfink</td>
<td>5</td>
</tr>
<tr>
<td>(Fuligula glacialis L.. Eisente. alfågel)</td>
<td>1</td>
</tr>
<tr>
<td>Garrulus infaustus L., Unglückshäher. lafskrika</td>
<td>10</td>
</tr>
<tr>
<td>Lagopus subalpinus Nils., Schneehuhn. fjällripa</td>
<td>4</td>
</tr>
<tr>
<td>(Mergus serrator. Mittelsäger. småskrake)</td>
<td>1</td>
</tr>
<tr>
<td>Motacilla alba L.. weisse Bachstelze. sädesärla</td>
<td>2</td>
</tr>
<tr>
<td>(Parus borealis De Selys, nordische Sumpfmeise. talltita)</td>
<td>1</td>
</tr>
<tr>
<td>Pica caudata L..</td>
<td>gemeine Elster. skata</td>
</tr>
<tr>
<td>Pyrrhula vulgaris Briss., grosser Gimpel. domherr</td>
<td>1</td>
</tr>
<tr>
<td>(Somateria mollissima L.. Eiderente. ejder)</td>
<td>2</td>
</tr>
<tr>
<td>Tetrao bonasia L.. Haselhuhn. järpe</td>
<td>1</td>
</tr>
<tr>
<td>T. urogallus L., Auerhuhn. tjäder</td>
<td>14</td>
</tr>
<tr>
<td>Turdus pilaris L., Wacholderdrossel. snöskata</td>
<td>1</td>
</tr>
<tr>
<td>(Uria troile L., Trottellumme, grissla)</td>
<td>1</td>
</tr>
</tbody>
</table>

Die Klammern bedeuten, dass in den betreffenden Vögeln überhaupt keine Pflanzenteile angetroffen wurden.

In der folgenden Tabelle sind die in den von mir untersuchten Vögeln gefundenen Pflanzensamen angegeben: am Ende dieser Abhandlung berichte ich über die Untersuchung jedes einzelnen Vögel.

Da nun ein verhältnismäsig umfangreiches Material vorliegt, dürfte es zweckmäsig sein, eine Übersicht (S. 14) sämtlicher Pflanzenarten zu geben, deren Samen oder Früchte man in Skandinavien entwe der im Verdauungskanal von Vögeln angetroffen oder deren Ver-
zehrung durch Vögel man mit Sicherheit beobachtet hat. Da Holm-BOE, wie schon erwähnt, die norwegischen Beobachtungen bereits zusammengestellt hat, begnüge ich mich hier damit, dieselben unter Hinweis auf die betreffenden Pflanzenarten seines Aufsatzes zu zitieren.

Allgemeiner Bericht über das Ergebnis der Untersuchungen.

Bei der Erörterung der Rolle, die die Vögel als Samenverbreiter in endozoischer Hinsicht spielen, ist es natürlich vor allem wichtig, diejenigen Pflanzenarten festzustellen, deren Samen von Vögeln verehrt werden und die daher von den einzelnen Vogelarten besonders geschätzt sind. Die Tabelle und die Übersicht S. 14 geben hierüber Aufschluss.

Hierzu kommt noch die Frage, ob Samen den Verdauungskanal der Vögel passieren können, ohne die Keimfähigkeit einzubüssen. Diese Frage lässt sich selbstverständlich am besten durch Keimversuche mit den in den Exkrementen oder im untern Teile des Darmkanals der Vögel gefundenen Samen entscheiden. Im allgemeinen hat man sich jedoch damit begnügt nachzusehen, ob die Samen auf ihrem Wege durch den Vogel mechanisch beschädigt würden, oder man hat die Keimversuche nur mit den in der Speiseröhre oder im Magen gefundenen Samen bewerkstelligt.

Durch KERNERS (19) klassische Untersuchungen wissen wir, dass Samen je nach dem anatomischen Bau und der Funktion des Verdauungskanals der einzelnen Vogelgruppen verschieden befähigt sind, das Vogelinnerre unbeschädigt zu passieren.

Kerner hat nach diesen Gesichtspunkten die samenfressenden Vögel in drei Gruppen geteilt, worauf ich unten zurückkommen werde.

Haben die bisherigen Untersuchungen die größte Aufmerksamkeit der Frage nach der mechanischen Beschädigung der Samen im Verdauungskanal der Vögel gewidmet, so ist die Gefahr ihrer Zerstörung durch die chemische Wirkung der Verdauungssäfte bis jetzt fast gar nicht beachtet worden. Und doch läuft ja bekanntlich alles darauf hinaus, dem Samen bei seiner Passage durch den Darmkanal möglichst viele Nährstoffe zu entziehen.

Da es sehr wichtig ist, die Fähigkeit der einzelnen Vogelgruppen, die Samen zu zerkleinern, recht zu beurteilen, verdient das von mir untersuchte reichhaltige Material auch in dieser Hinsicht näher studiert zu werden. Wie die meisten andern Forscher, die sich bisher
mit diesem Gegenstande beschäftigt haben (Hesselman 11, Erikson 7 u. a.) folge ich hier Kerners Einteilung der Vögel in drei Gruppen.

Die untersuchten Wildenten zeigen jedoch, dass auch nach einer kärglichen Mahlzeit Samen noch äusserlich unbeschädigt passieren. Keimversuche mit den Nüssen von Carex Goodenoughii aus dem Mastdarm mehrerer derselben beweisen auch die Erhaltung der

Im Anschluss hieran sei auch erwähnt, dass die Menge von Kies und Steinchen sowohl im Muskelmagen der Wildenten als auch in dem des Auerwilds sehr schwankt. Besonders dürfte es den Auerhühnern im Winter wegen des Schnees oft schwer werden, Steinchen zu finden, und dann passieren jedenfalls grosse Mengen Samen ihren Darmkanal, ohne beschädigt zu werden.

Ekstams Behauptung (8, S. 52), dass die Exkremente von Gänsen auf Spitzbergen, »vor allem zahlreiche unbeschädigte Bulbillen von Polygonum viviparum, von welchen sich einige beim Versuch keimfähig zeigten«, enthielten, ist etwas auffallend. Vielleicht hat man
es aber auch hier mit solchen zu tun, die nicht den Darmkanal passiert hatten, sondern wie die oben von Vogler erwähnten wiederausgeworfen worden waren.

Die Hauptnahrung des Auerwilds in Härjedalen besteht offenbar in Beeren von Myrtillus nigra, Empetrum nigrum und, weniger häufig, Vaccinium vitis idaea. Dass das Quantum dieser von den Vögeln auch im Winter verzehrten Beeren unserer Wälder nicht gering ist, geht schon daraus hervor, dass der im Dezember geschossene Auerhahn Nr. 4 nicht weniger als 35 Krähen-, 209 Heidel- und 67 Preiselbeeren etc. verzehrt hatte.

Zu dieser Gruppe sind, nach allem zu urteilen, von den untersuchten Vögeln die Nebelkrähe, die Elster und der Unglückshäher zu rechnen. Alle drei Arten verschlucken Beeren, Samen etc. ganz. Die Krähe ist ausserordentlich gefräßig; so fand ich im Magen eines Individuums (Nr. 1) eine 0,75 qcm grosse Porzellan- scheibe; der Magen des Unglückshähers Nr. 6 enthielt eine ganze Krähenbeere.

Der Unglückshäher ist ein gewaltiger Beerenfresser; Heidelbeeren fanden sich in 9, Krähenbeeren in 6, Torfbeeren in 4 und Wacholderbeeren in 1 der zehn untersuchten Individuen. Da er einer der häufigsten und dazu noch beweglichsten Vögel von Nordschwe-
<table>
<thead>
<tr>
<th>attila</th>
<th>Garru</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>4 5 1 2 3</td>
</tr>
<tr>
<td>Aven</td>
<td></td>
</tr>
<tr>
<td>Betul</td>
<td></td>
</tr>
<tr>
<td>Brass</td>
<td></td>
</tr>
<tr>
<td>Callu</td>
<td></td>
</tr>
<tr>
<td>Capsc</td>
<td></td>
</tr>
<tr>
<td>Carea</td>
<td></td>
</tr>
<tr>
<td>C. gl</td>
<td></td>
</tr>
<tr>
<td>C. Oc</td>
<td></td>
</tr>
<tr>
<td>C. sit</td>
<td></td>
</tr>
<tr>
<td>C. sp</td>
<td></td>
</tr>
<tr>
<td>Chen</td>
<td></td>
</tr>
<tr>
<td>Empe</td>
<td>+ +</td>
</tr>
<tr>
<td>Festu</td>
<td></td>
</tr>
<tr>
<td>Galeo</td>
<td></td>
</tr>
<tr>
<td>Hiera</td>
<td></td>
</tr>
<tr>
<td>Hord</td>
<td></td>
</tr>
<tr>
<td>Junci</td>
<td></td>
</tr>
<tr>
<td>Junip</td>
<td></td>
</tr>
<tr>
<td>Melar</td>
<td></td>
</tr>
<tr>
<td>Meng</td>
<td></td>
</tr>
<tr>
<td>Myos</td>
<td></td>
</tr>
<tr>
<td>Myrti</td>
<td></td>
</tr>
<tr>
<td>M. ul</td>
<td></td>
</tr>
<tr>
<td>Oxyct</td>
<td></td>
</tr>
<tr>
<td>Phlei</td>
<td></td>
</tr>
<tr>
<td>Polgg</td>
<td></td>
</tr>
<tr>
<td>P. av</td>
<td></td>
</tr>
<tr>
<td>Ranu</td>
<td></td>
</tr>
<tr>
<td>R. rej</td>
<td></td>
</tr>
<tr>
<td>Ribes</td>
<td></td>
</tr>
<tr>
<td>Rubus</td>
<td></td>
</tr>
<tr>
<td>R. id</td>
<td></td>
</tr>
<tr>
<td>Rume</td>
<td></td>
</tr>
<tr>
<td>Selag</td>
<td></td>
</tr>
<tr>
<td>Sorbu</td>
<td></td>
</tr>
<tr>
<td>Sperg</td>
<td></td>
</tr>
<tr>
<td>Stella</td>
<td></td>
</tr>
<tr>
<td>Thlas</td>
<td></td>
</tr>
<tr>
<td>Vacci</td>
<td></td>
</tr>
<tr>
<td>Polygl</td>
<td></td>
</tr>
</tbody>
</table>

Sau-
er-
zue
en
oze
fe.
us
cht
in-
(s.
ere
re
in
en
ch
cht
uss
uss
nes
gel
lie
id-
er-
sils
bei-
so
ig-
ch
ng
be
en.
<table>
<thead>
<tr>
<th>Pflanzenarten</th>
<th>A. ass. boschas</th>
<th>A. ocellata</th>
<th>Fringilla domesticus</th>
<th>P. montifringilla</th>
<th>Garrulus infaustus</th>
<th>F. coeunculus</th>
<th>P. coeunculus</th>
<th>T. urogallus</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arctium lappa</td>
<td>1 2 4 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brachycome histrioptera</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carex echinata</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carex sp.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carex vittata</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carex viridula</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carum copticum</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carum pratense</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sisymbrium</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sisymbrium</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Erigeron altissimus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Erigeron altissimus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Erigeron altissimus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Erigeron altissimus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Erigeron altissimus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Erigeron altissimus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Erigeron altissimus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Erigeron altissimus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Erigeron altissimus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Erigeron altissimus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Erigeron altissimus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Erigeron altissimus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Erigeron altissimus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Erigeron altissimus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Erigeron altissimus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Erigeron altissimus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Erigeron altissimus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Erigeron altissimus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Erigeron altissimus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Erigeron altissimus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Erigeron altissimus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Erigeron altissimus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Erigeron altissimus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Erigeron altissimus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Erigeron altissimus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Erigeron altissimus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Erigeron altissimus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Erigeron altissimus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Erigeron altissimus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Erigeron altissimus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Erigeron altissimus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Erigeron altissimus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Erigeron altissimus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Erigeron altissimus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Erigeron altissimus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Erigeron altissimus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Erigeron altissimus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Erigeron altissimus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Erigeron altissimus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Erigeron altissimus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Erigeron altissimus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Erigeron altissimus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Erigeron altissimus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Erigeron altissimus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Erigeron altissimus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Erigeron altissimus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Erigeron altissimus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Erigeron altissimus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Erigeron altissimus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Erigeron altissimus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Erigeron altissimus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Erigeron altissimus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Erigeron altissimus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Erigeron altissimus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Erigeron altissimus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Erigeron altissimus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Erigeron altissimus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Erigeron altissimus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Erigeron altissimus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Erigeron altissimus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Erigeron altissimus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Erigeron altissimus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Erigeron altissimus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Erigeron altissimus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Erigeron altissimus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Erigeron altissimus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Erigeron altissimus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Erigeron altissimus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Erigeron altissimus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Erigeron altissimus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Erigeron altissimus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Erigeron altissimus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Erigeron altissimus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Erigeron altissimus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Erigeron altissimus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Erigeron altissimus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Erigeron altissimus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Erigeron altissimus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Erigeron altissimus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Erigeron altissimus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Erigeron altissimus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Erigeron altissimus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Erigeron altissimus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Erigeron altissimus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Erigeron altissimus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Erigeron altissimus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Erigeron altissimus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Erigeron altissimus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Erigeron altissimus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Erigeron altissimus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Erigeron altissimus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Erigeron altissimus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Erigeron altissimus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Erigeron altissimus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Erigeron altissimus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Erigeron altissimus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Erigeron altissimus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Erigeron altissimus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Erigeron altissimus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Erigeron altissimus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Erigeron altissimus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Erigeron altissimus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Erigeron altissimus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Erigeron altissimus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Erigeron altissimus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Erigeron altissimus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Erigeron altissimus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Erigeron altissimus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Erigeron altissimus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Erigeron altissimus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Erigeron altissimus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Erigeron altissimus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Erigeron altissimus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Erigeron altissimus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Erigeron altissimus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Erigeron altissimus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Erigeron altissimus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Erigeron altissimus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Erigeron altissimus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Erigeron altissimus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Erigeron altissimus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Erigeron altissimus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Erigeron altissimus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Erigeron altissimus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Erigeron altissimus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Erigeron altissimus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Erigeron altissimus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Erigeron altissimus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Erigeron altissimus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Erigeron altissimus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Erigeron altissimus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Erigeron altissimus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Erigeron altissimus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Erigeron altissimus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Erigeron altissimus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Erigeron altissimus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Erigeron altissimus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Erigeron altissimus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Erigeron altissimus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Erigeron altissimus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Erigeron altissimus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Erigeron altissimus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Erigeron altissimus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Erigeron altissimus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Erigeron altissimus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Erigeron altissimus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Erigeron altissimus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Erigeron altissimus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Erigeron altissimus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
den ist, trägt er aller Wahrscheinlichkeit nach bedeutend zur Samenverbreitung bei.

Zu dieser dritten Gruppe zähle ich die Wacholderdrossel (Turdus pilaris L.).

Das auf S. 30 erwähnte Exemplar enthielt ganze Vogelbeeren nicht nur im Magen, sondern auch im Darm. Auch in der wahrscheinlich von einer Wacholderdrossel stammenden Exkrementprobe (s. S. 30) lagen ganze Vogelbeeren (Beeren von Sorbus aucuparia).

Die Zeit, in der die Samen im Darmkanale der Säugetiere liegen bleiben, ist besonders bei den Wiederkäuern eine lange (in ROSTRUPs oben angeführtem Experiment verharrten mehrere Samen 5 Tage lang in der Kuh). Im Verdauungskanal der Vögel jedoch dürften sie nicht lange bleiben, und bei mehreren jedenfalls nicht länger als höchstens einige Stunden. HOLMGRN (15) schreibt, dass mehrere Vögel, z. B. einige Finken, täglich so viel fressen, dass die Menge der Nahrung ihr eigenes Gewicht um ein mehrfaches übertrifft.

Mehreremale ist behauptet worden, dass, wenn die durch Vögel vermittelte Pflanzenverbreitung tatsächlich die Bedeutung hatte, die man ihr beilegen will, eine Menge Pflanzenarten durch die aus Süd- europa wiederkehrenden Zugvögel nach Skandinavien verbreitet werden müssten. Dass dies nun nicht so oft der Fall ist, wird wohl teils davon abhängen, dass die epizoische Verbreitung eine nur unbedeutende Rolle spielt, und teils davon, dass die Samen nur eine so kurze Zeit im Darmkanal der Vögel verbleiben. Die Geschwindigkeit, mit der sich die Vögel fortbewegen, ist jedoch bekanntlich sehr gross.

Die Bedeutung der Beerenfrüchte für die Samenverbreitung

Es ist eine alltägliche Erscheinung, dass die Vögel mit Vorliebe die mit beerenförmigen Früchten versehenen Pflanzen aufsuchen.
Eine Untersuchung über das Vorkommen dieser Pflanzenarten in dem schwedischen Florengebiete dürfte daher nicht ohne Interesse sein.

In Neuman & Alfvengrens Verzeichnis finden sich im ganzen 1,566 heute in Schweden wild wachsende Phanerogamen. Hiervon tragen jedoch nur 124, d. h. 7,9 % Beerenfrüchte, von denen man annehmen kann, dass sie von Vögeln oder andern Tieren aufgesucht werden. Zieht man aber die an Arten sehr reichenGattungen Rosa und Rubus ab, von denen besonders die meisten Rubusarten auf das südlichste Schweden beschränkt sind, so beträgt die Anzahl der Beerenfrüchtler Schwedens nur 67 oder 4,3 % unserer Phanerogamen.

Die 124 schwedischen Beerenfrüchtler verteilen sich auf die verschiedenen biologischen Pflanzentypen so:

<table>
<thead>
<tr>
<th>Artenarten</th>
<th>% aller Arten</th>
</tr>
</thead>
<tbody>
<tr>
<td>124 Arten</td>
<td>124 Arten</td>
</tr>
<tr>
<td>Bäume und Sträucher (hiervon 38 Rubus- und 16 Rosaarten)</td>
<td>94 75,2</td>
</tr>
<tr>
<td>Halbsträucher</td>
<td>9 7,3</td>
</tr>
<tr>
<td>Kräuter (hiervon 3 Rubus-Arten)</td>
<td>21 16,9</td>
</tr>
</tbody>
</table>

Man kann daher im grossen ganzen sagen: Beerenfrüchte kommen in Schweden hauptsächlich an Bäumen, Sträuchern und Halbsträuchern vor.

Im Anschluss hieran verdient erwähnt zu werden, dass das oben angeführte Verzeichnis 155 in Schweden wildwachsende Arten (hiervon 16 Rosa- und 38 Rubusarten), Sträucher und Bäume enthält. Von ihnen besitzen 94 (65 %) beerenförmige, essbare Früchte, 4 (3 %) an Nährstoffen reiche, essbare, aber nicht beerenähnliche Früchte,

2 Halbsträucher nicht mitgerechnet.
43 Arten (29\%) haben Flugfrüchte, während nur die Früchte von 4 (3\%) Arten keine der Verbreitung durch Wind oder Tiere angepassten Organe haben. Auch wenn sich dies oder jenes gegen diese Einteilung einwenden lüsse, zeigt sie doch deutlich, wie gut die Natur für die ausgedehnteste Verbreitung der schwedischen Bäume und Sträucher gesorgt hat.

Dass die fleischigen Früchte tatsächlich eine grosse Bedeutung für die Verbreitung der Pflanzenarten haben, geht daraus hervor, dass von den nach WITTROCK (25) 97 epiphytischen schwedischen Phanerogamen Arten 20 (d. h. 21\%) fleischige Früchte besitzen. Ebenso trugen von den 78 norwegischen phanerogamen Epiphyten, die HOLMBOE (14) aufzählte, 16 (d. h. 21\%) Samen mit fleischigem Perikarp.

In LINDMANS¹ Verzeichnис der Gefässpflanzen auf den Wisbyer Ruinen 1895 sind 96 Phanerogamen erwähnt: hiervon besitzen 20 (d. h. 21\%) beerenförmige, essbare Früchte. Von den Pflanzen, die SERNANDER (23, S. 377 ff.) von den Bomarsunder Ruinen, Ålandsinseln, beschreibt, haben jedoch nur 13,7\% beerenähnliche Früchte.

Diese Beispiele mögen genügen, um zu zeigen, dass überall da, wo Pflanzen neues Land besiedeln, die mit Beerenfrucht versehenen Arten doch verhältnismässig reichlich vertreten sind.

Die Vögel suchen die Beeren bekanntlich aus mehreren Gründen auf. Einige fressen nur den Samen und verschmähen die fleischige Hülle, die also nur als Lockmittel gedient hat. Andere dagegen machen es umgekehrt: sie verzehren die fleischige Hülle, lassen aber den Samen liegen. Die meisten Vögel verzehren aber die ganze Frucht, Samen und Hülle.

Ausserordentlich wichtig in verbreitungsbioologischer Bedeutung ist aber die Tatsache, dass die meisten skandinavischen Beeren-

Dass die Früchte nicht abfallen, dürfte besonders in Nordschweiz wegen des tiefen Schnees im Winter eine grosse Bedeutung haben, zumal da die Früchte der laubabwerfenden Arten den Tieren dann auch leichter zugänglich sind.

Sehr bemerkenswert ist ferner die Tatsache, dass viele von den im Winter bei uns bleibenden Vögeln, die im Sommer hauptsächlich von Insekten und andern kleinen Tieren leben, vom Eintritt des Winters an darauf angewiesen sind, sich mit Samen zu ernähren.

Auch die Farbe der Beerenfrüchte dürfte nicht ohne Bedeutung sein, da sie die Aufmerksamkeit der Tiere auf die Beeren lenkt, wozu ausserdem auch noch die Grösse und die Art der Exposition wesentlich beitragen.

Die Farben verteilen sich bei den 124 schwedischen Arten mit fleischiger Hülle so:

<table>
<thead>
<tr>
<th>Farbe</th>
<th>Früchte haben</th>
<th>%</th>
<th>Zählt man die Rubus- und Rosa-Arten nicht mit, ergeben sich folgende Zahlen:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rote</td>
<td>57, d. h. 46%</td>
<td></td>
<td>38, d. h. 54.3%</td>
</tr>
<tr>
<td>Schwarze o. blau</td>
<td>60,</td>
<td>48.3</td>
<td>26,</td>
</tr>
<tr>
<td>Weisse</td>
<td>1,</td>
<td>0.8</td>
<td>1,</td>
</tr>
<tr>
<td>Gelbe</td>
<td>2,</td>
<td>2.4</td>
<td>2,</td>
</tr>
<tr>
<td>Grüne</td>
<td>3,</td>
<td>2.4</td>
<td>3,</td>
</tr>
</tbody>
</table>

Zählt man also die artenreiche Gattung Rubus, die sich hauptsächlich im allersüdlichsten Teile von Schweden findet, nicht mit, so ist die rote Färbung entschieden die häufigste.

Bei den S. 14 f. erwähnten Arten, deren beerige Früchte erwiesenermassen von Vögeln gefressen werden, ist die Farbe derselben so verteilt:

<table>
<thead>
<tr>
<th>Farbe</th>
<th>Früchte haben</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rote</td>
<td>17, d. h. 60.7%</td>
<td></td>
</tr>
<tr>
<td>Schwarze o. blau</td>
<td>8</td>
<td>28.6</td>
</tr>
<tr>
<td>Weisse</td>
<td>1</td>
<td>3.6</td>
</tr>
<tr>
<td>Gelbe</td>
<td>2</td>
<td>7.1</td>
</tr>
</tbody>
</table>

Schliesslich sei auf die S. 22 erwähnte Tatsache aufmerksam gemacht, dass in der Speiseröhre und dem Magen einer *Anas penelope* L. eine grünliche Masse gefunden wurde, die hauptsächlich aus 9 Algen- und mehreren Diatomeenarten bestand.

Die Möglichkeit, dass einige von ihnen den Darmkanal der Vögel lebend passieren, ist nicht ausgeschlossen. Wille (24) und Borje (3) haben schon die Rolle besprochen, die die Vögel ohne Zweifel bei der Verbreitung von Algen und Diatomeen spielen.

Im Eichhörnchen fanden sich 27 Samen von *Empetrum nigrum*. Der Magen des im August 1903 geschossenen Hasen war mit einer breiigen Masse aus Torfbeeren (*Rubus chamaemorus*) gefüllt; der des im September 1906 geschossenen enthielt ausser weniger Früchten von *Rubus chamaemorus* zahlreiche Samen von *Myrtillus nigra*.

Es will daher scheinen, als ob auch diese in Schweden sehr häufigen Tiere eine gewisse Rolle in der endozoischen Verbreitung der Pflanzen spielten.
Verzeichnis der Pflanzenarten, deren Samen oder Früchte nach sichern Beobachtungen von Skandinavischen Vögeln verzehrt werden.

Achillea millefolium, vgl. 13, S. 317.
Alisma plantago, 13, S. 311.
Artemisia campestris, 13, S. 317.
Atriplex patula, vgl. 13, S. 312.
Bidens tripartita, vgl. 13, S. 317.
Brassica campestris. Samen derselben fand Verf. in je 1 Ex. von Emberiza nivalis L. und Pica caudata L.
Bunias orientalis, vgl. 13, S. 313.
Calluna vulgaris. Früchte fanden sich im Magen von Tetrao urogallus L. (S. 29).
Capsella bursa pastoris, wird von Fringilla domestica L. gefressen (s. S. 23).
Carex chordorrhiza, wird von Anas boschas L. (11, S. 104) gefressen.
C. globularis, wird von Tetrao urogallus L. (s. S. 29) gefressen.
C. Oederi, in Anas boschas L. (s. S. 20 und 11, S. 104) angetroffen.
Centaurea jacca, vgl. 13, S. 317.
Cirsium lanceolatum. Bei Eslöf in Skåne, Südschweden, hat Verf. Pyr-
rhula vulgaris Briss., Fringilla carduelis L., F. cannabina L. und F. spinus L. die Samen dieser Art fressen sehen. Vgl. auch, was Holmboe (13, S. 317) hierüber von Cirsium sp. sagt.

Cornus suecica, wird von Larus marinus L. (11, S. 105) gefressen.

Euphorbia helioscopia. vgl. 13, S. 308.

Festuca ovina, Samen fand Verf. im Magen von Fringilla nivalis L.

Hieracium, sp. Früchte sind in Tetroo urogallus L. gefunden.

Juncus filiformis, in Anas boschas L. (s. S. 20 f.) beobachtet. HOLMBOE (13, S. 310) fand Samen von Juncus sp. in Anas crecca L.

Larix europaea, vgl. 13, S. 311.

Lotus corniculatus, vgl. 13, S. 309.

Melampyrum sp. entweder M. pratense oder M. silvaticum. Samen in Tetrao urogallus L. (s. S. 28) angetroffen.

M. uliginosa. Samen fanden sich im Magen von Larus marinus L. (11, S. 105), Anas boschas L. und Tetrao urogallus L.

Myosolpis palustris. Ein Samen ist in Fringilla nivalis L. angetroffen.

Nuphar luteum, vgl. 13, S. 310.

Nymphaea alba, vgl. 13, S. 310.

Oxycoccus palustris, vgl. 13, S. 316. Die Beeren frisst Tetrao urogallus L.

Polygonum aviculare, wird von Fringilla domestica L. (s. S. 23) und F. montifringilla L. gefressen.

P. convolvulus, vgl. 13, S. 308.

P. persicaria, vgl. 13, S. 308 f.

Potamogeton natans. Die Früchte fressst Anas boschas L. (11, S. 104).

P. perfoliatus. Früchte sind im Magen von Anas boschas L. und A. crecca L. (11, S. 104) gefunden.

P. padus, vgl. 13, S. 315.

Ranunculus acris, vgl. 13, S. 313.

R. repens, ist wie die vorige Art im Magen der Anas boschas L. (s. S. 19 f.) gefunden.

Ribes alpinum; die Samen frisst Turdus pilaris L. (11, S. 105).

R. aureum, vgl. 13, S. 314.

Rhamnus frangula, vgl. 13, S. 313.

Rhinauthus major, vgl. 13, S. 317.

Rosa sp., vgl. 13, S. 314.

Rubus arcticus, Samen im Magen von Anas boschas L. (11, S. 104) gefunden.

Svensk Botanisk Tidskrift.

Spergula arvensis, vgl. 13, S. 313. Samen fand Verf. im Magen von Em- beriza nivalis L., Fringilla montifringilla L. und Garrulus infaustus L.

Trifolium pratense, vgl. 13, S. 315.

Viburnum opulus, vgl. 13, S. 317.

Vicia cfr. cracca, vgl. 13, S. 315.

Viola sp.; HESSELMAN (11, S. 104) fand ihre Samen im Magen von Frin- gilla caelebs L.

Viscum album. HOLMGREN 15, S. 82) schreibt von Turdus viscivorus L.: »Die klebrigen Beeren der Mistel (Viscum album) scheint dieser Vo- gel sehr zu lieben, und er trägt dadurch zur Verbreitung dieser Schma- rotzerpflanze bei."

* * *

Verzeichnis der untersuchten Vögel und der in ihnen gefundenen Pflanzenteile.

Anas boschas L. Stockente. — 23 Exemplare.

Speiseröhre und Magen enthielten:
Carex Goodenoughii, mehrere hundert Nüsse.
Empetrum nigrum, 20 Beeren und 1.012 freie Samen.
Myrtillus nigra, 68 Beeren und zahlreiche freie Samen, die offen-
M. uliginosa, bar diesen beiden oder der folgenden Art ange-
hört.
Vaccinium vitis idaea, 51 Beeren.
Im Darme fanden sich massenweise und dem Anscheine nach unbeschädigte Samen von Empetrum und Myrtillus.

In der Speiseröhre:
Carex Goodenoughii, 7.912 Früchte.
C. stellulata, 26 Früchte.
Empetrum nigrum, 3 Samen.

Carex Goodenoughii, einige tausend Früchte.
Polygonum viviparum, mehrere hundert Bulbillen.
Ranunculus acris, nur wenige Nüsschen.

Carex Goodenoughii, nur wenige Früchte.
Polygonum viviparum, mehrere hundert Bulbillen.

Carex Goodenoughii, mehrere tausend Früchte und mehrere ganze Ähren.
Polygonum viviparum, nur wenige Bulbillen.

Carex Goodenoughii, mehrere tausend Früchte.
Rumex cfr. domesticus, 6 Nüsse.

Menyanthes trifoliata, 1 Samen.
Ranunculus acris, 2 Früchtchen.
Polygonum viviparum, etwa 500 Bulbillen.

Carex Goodenoughii, mehrere hundert Nüsse.
Empetrum nigrum, Samen.
Myrtillus nigra, 58 Beeren nebst zahlreichen freien Samen.
M. uliginosa.

Carex Goodenoughii, einige tausend Früchte.
Menyanthes trifoliata, 1 Samen.
Polygonum viviparum, mehrere hundert Bulbillen.

Carex Goodenoughii, mehrere hundert Nüsse.
C. Oederi, 2 Früchte.
Empetrum nigrum, mehrere hundert Samen.
Myrtillus nigra, 54 Beeren.
M. uliginosa.
Vaccinium vitis idaea, 3 Beeren.

Carex Goodenoughii, 5637 Früchte.
Juncus filiformis, 1 Frucht mit 3 Samen.
Ranunculus acris, 180 Früchtchen.
R. repens, 95
Polygonum viviparum, 23 Bulbillen.

Carex Goodenoughii?, nur wenige Nüsse.

Carex Goodenoughii, mehrere tausend Früchte.
Ranunculus acris, nur wenige Nüsschen.
R. repens.
Polygonum viviparum, wenige Bulbillen.

Im untersten Teile des Darmkanals fanden sich mehrere anscheinend ganz unbeschädigte Nüsse von Carex Goodenoughii und Früchtchen von Ranunculus acris.

Carex Goodenoughii, wenige Früchte.

Carex Goodenoughii, mehrere hundert Früchte.
Polygonum viviparum, wenige Bulbillen.
Ranunculus acris, mehrere hundert Nüsschen.

Carex Goodenoughii, wenige Früchte.
Carex Goodenoughii. | wenige Früchte.
Ranunculus acris, | Auch im untersten Teile des Darmes einige Früchte dieser Arten.

16. Hrjd. Ormosjön. \(\frac{7}{8}\) 1903.
Speiseröhre und Magen waren ganz voller Nüsschen von:
Ranunculus repens. 960 Nüsschen.
und enthielten ausserdem einige Früchte von
Carex Goodenoughii.
Im Darme einige unbeschädigte Nüsschen von
Ranunculus repens.

17. 18, 19, 20, 21. Hrjd. Lillhärrdal. \(\frac{6}{8}\) 1903.
In sämtlichen 5 Exemplaren fanden sich Früchte von folgenden
Arten:
Carex Goodenoughii.
Ranunculus acris,
R. repens,
sowie Bulbillen von
Polygonum viviparum.

22. Hrjd. Lillhärrdal. \(\frac{8}{8}\) 1903.
In Speiseröhre und Magen:
Carex Goodenoughii, einige hundert Nüsse.
Juncus filiformis, 1 Frucht mit 3 Samen.
Ranunculus acris. 2 Fruchtchen.
R. repens, 930 Fruchtchen.
Im Darme reichlich Carex-Nüsse und einige unbeschädigte Früchte
von Ranunculus repens.

23. Hrjd. Lillhärrdal. \(\frac{31}{7}\) 1903.
Speiseröhre und Magen angefüllt mit Bulbillen von
Polygonum viviparum
und einzelnen Fruchtchen von
Ranunculus acris und Nüssen von Carex Goodenoughii.
Vgl. S. 2.

Anas crecca L. Krikente. — 1 Exemplar.
Hrjd. Lillhärrdal. \(\frac{7}{8}\) 1903.
Carex Goodenoughii, 3 Nüsse.
Empetrum nigrum. 5 Samen.

Anas penelope L. Pfeifente. — 6 Exemplare. Hrjd. Lillhärrdal. \(\frac{7}{8} — \frac{12}{8}\) 1903.

1. Der Muskelmagen enthielt:
Carex Goodenoughii, Nüsse | reichlich.
Ranunculus acris, Nüsschen |

2. In Speiseröhre und Magen:
Carex Goodenoughii, 8 Früchte.
Equisetum fluviatile. Stengelstückchen.
Ranunculus acris. 3 Nüsschen.
2. In der Speiseröhre reichlich Steinchen und Stengelstückchen von Equisetum fluviatile.
 Der Darm ist mit einer breiartigen Masse angefüllt, in der reichlich Scheidezähne von Equisetum vorkommen.

4. Speiseröhre und Magen sind vollständig von einer aus Grünalgen und Diatomeen bestehenden Masse angefüllt. Von jenen enthielt die Probe nach der gefl. Bestimmung von Dr. O. BORGE:
 Conferva bombycina (Ag.) Lagerh., die Hauptmasse bildend.
 Euastrum elegans (Bréb.) Kütz.,
 Oedogonium, sp. steril,
 Ophiocylindium cochlearie (Eichw.) A. Br.,
 O. parvulum (Perty) A. Br.,
 Pediastrum Boryanum (Turp.) De Bar.,
 Pleurochaete Ehrenbergii (Bréb.) De Bar.,
 Scenedesmus denticulatus Lagerh.,
 Spirogyra sp., steril.

5. Im Darmkanal fanden sich von bestimmmbaren Pflanzenteilen nur Stückchen von:
 Equisetum fluviatile.
 Ein im Muskelmagen liegender Stein hatte einen Durchmesser von 6 mm.

6. Im untern Teile des Darmes Stengelstückchen von:
 Equisetum fluviatile.

Charadrius hiaticula L. Sandregenpfeifer. — 1 Exemplar.
Hrjd. Lillhärrdal, Juli 1903.
 Magen und Speiseröhre enthielten nur Insektenlarven und einige Wasserschnecken.

Corvus cornix L. Nebelkrähe. — 2 Exemplare.
 Im Magen:
 Hordeum vulgare, mehrere zerkleinerte Früchte.
 Myrtillus nigra, mehrere fast ganze Beeren und eine Menge freier Samen. Im ganzen 634 Samen.
 Im Magen lag auch eine 0,75 qcm grosse Tellerscherbe aus Porzellan.
 Auch im Darme Samen der Heidelbeere.

 Der Magen enthielt ausser Teilen von Käfern etc. einige Samen von Myrtillus nigra.

Emberiza citrinella L. Goldammer. — 2 Exemplare.
Im Magen Steinchen sowie Stücke von Früchten von *Avena sativa*.

 Im Magen eine ganze und mehrere zerkleinerte Früchte von *Avena sativa*.

Emberiza nivalis L. Schneemammer. — 3 Exemplare.
Nb. Pajala. 11/4 1905.

1. Enthielten:
 Stellaria media, 1 Samen.

2. In Magen und Speiseröhre:
 Brassica campestris, 22 Samen.
 Chenopodium album, 2 Samen,
 Hordeum vulgare, 2 Früchte,
 Menyanthes trifoliata, 1 Samen,
 Rubus chamaemorus, 1 Fruchtstein.
 Spergula arvensis. 87 Samen.
 Stellaria media, 294 Samen.
 Thlaspi arvense, 1 Samen.
 Ranunculus repens. 4 Früchtchen.
 R. acris, 1 Fruchtchen.
 Festuca ovina, 1 Samen,
 Carex sp., 1 Frucht.

 Hordeum vulgare, 6 Früchte.
 Ranunculus acris, 1 Fruchtchen.
 Spergula arvensis. 204 Samen.
 Stellaria media, 405 Samen,
 Carex sp., 1 Samen.
 Festuca ovina. 35 Samen,
 Myosotis palustris, 1 Samen.
 Phleum alpinum, 30 Samen.

Fringilla domestica L., Haussperling. — 11 Exemplare.

1. *Phleum alpinum*. 2 Früchte,
 Stellaria media, 7 Samen.

2. *Stellaria media*, 1 Samen.

3. *Capsella bursa pastoris*, 9 Samen,
 Stellaria media, 8 Samen.

Fringilla montifringilla L. Bergfink. — 3 Exemplare.

Garrulus infaustus L., Unglückshäher. — 10 Exemplare.

Der Magen war sonst ganz voller Stückchen von Ameisen und Käfern.

Empetrum nigrum, 36 Samen.
Juniperus communis, 4 Samen, sowie einige Blätter.
Rubus chamaemorus, 1 Fruchtstein.
Myrtillus nigra, 17 Samen.

 Ausserdem Käferteile.

Empetrum nigrum, 3 Samen.
Juniperus communis, Blätter.
Myrtillus nigra, 5 Samen.
Rubus chamaemorus, 43 Fruchtsteine.

Myrtillus nigra, 50 Samen.
Rubus chamaemorus, 7 Fruchtsteine.
Spergula arvensis, 1 Samen.

Juniperus communis, Blätter.
Rubus chamaemorus, 24 Fruchtsteine.

 Ausserdem Käferteile reichlich.

 In Speiseröhre und Magen:
Empetrum nigrum. 1 Beere und 18 Samen,
Myrtillus nigra. 2 Samen.

 Im Darm:
Empetrum nigrum, 13 Samen.
Myrtillus nigra. 51 Samen.

Myrtillus nigra. zahlreiche Samen.

 Der Magen enthielt ausser Käferteilen
Myrtillus nigra-Samen, reichlich.

 Beide enthielten Massen von Käferteilen und ausserdem Samen
von
Empetrum nigrum und
Myrtillus nigra.

 Die Probe bestand hauptsächlich aus Knospen und, weniger zahlreich, Zweigstückchen von
Populus tremula,
 sowie Kätzchen und Zweigstückchen von
Betula alba.
 Ferner:
Myrtillus nigra. 1 Beere und zahlreiche Zweigspitzen.
1. Vaccinium vitis idaea, zahlreiche Blätter.
 Die ganze Probe enthielt etwa 100 qcm.
 Betula alba, | Knospen und 0,5—1 cm lange Zweigstückchen;
 Populus tremula, | auch einige Birkenkätzchen.
 Die Probe enthielt etwa 100 qcm.
 Beide Proben, von je 150 qcm Inhalt ungefähr, enthielten Knospen und Zweigstückchen von
 Betula alba und
 Populus tremula.

Mergus serrator L., Mittelsäger. — 1 Exemplar.
 Sandhamn, Stockholmer Schären. 25/4 1905.
 Enthielt nur Gräten und Muscheln.

Motacilla alba L., weisse Bachstelze. — 2 Exemplare.
 Enthielten nur Larven und Insekten.

Parus borealis L., Nordische Sumpfmeise. — 1 Exemplar.
 Im Magen nur Teile von Ameisen und anderen Insekten.

Pica caudata L., Elster. — 9 Exemplare.
1. Hrjd. Lillhärrdal. 21/8 1903.
 Im Magen:
 Myrtillus nigra, zahlreiche Samen.
 Rubus idaeus, 5 Fruchtsteine.
 Ausserdem reichlich Fischschuppen.
 Avena sativa, mehrere zerkleinerte Früchte,
 Stellaria media, 1 Samen.
3. Hrjd. Lillhärrdal. 30/8 1903.
 Im Magen:
 Empetrum nigrum, 1 Samen,
 Hordeum vulgare, Teile von Früchten,
 Myrtillus nigra, 2 Beeren und zahlreiche freie Samen,
 Rubus chamaemorus, 1 Fruchtstein,
 R. idaeus, 3 Fruchtsteine.
 Im Darme:
 Myrtillus nigra, zahlreiche Samen (bis 125 gezählt).
 Ferner eine grosse Anzahl Fischschuppen.
 In Speiseröhre und Magen:
 Hordeum vulgare, 5 ganze Früchte und Mengen von Fruchtteilen,
 Myrtillus nigra, 66 Samen,
 Rubus idaeus, 1 Fruchtstein.
Im Darme:

Myrtillus nigra. 210 Samen.

Brassica campestris. 2 Samen,
Hordeum vulgare. Teile von zerkleinerten Früchten.
Rubus chamaemorus. 1 Fruchtstein.

Im Magen:
Avena sativa. Teile von zerkleinerten Früchten.
Hordeum vulgare.
Ribes rubrum. 25 Samen.

Magen leer. Im Dickdarm Samen von:
Myrtillus cfr. nigra.
Ribes rubrum. 3 Samen.

Im Magen:
Vaccinium vitis idaea. 2 ganze Beeren.
Myrtillus nigra. 1 ganze und mehrere Teile von Beeren.
Hordeum vulgare. mehrere Früchte.

Ausserdem Fischgräten und -schuppen.

Im Magen:
Hordeum vulgare. ganze und zerkleinerte Früchte riechlich.
Myrtillus cfr. nigra. mehrere Samen.

Pyrrhula vulgaris Briss., Grosser Gimpel. — 1 Exemplar.
Betula alba. 1 Samen.

Ausserdem zahlreiche unbestimmbare Samen.

Somateria mollissima L., Eiderente. — 2 Exemplare.
Sandhamn, Stockholmer Schären. 25/4 1905.

Enthielten nur Muscheln, Steinchen und Sand.

Tetrao bonasia L., Haselhuhn. — 1 Exemplar.

Die Probe enthielt:
Betula odorata. über 100 meistens ganze Kätzchen, ausserdem Birkenknospen riechlich.
Myrtillus nigra. 2 Beeren,
Pinus silvestris. Blätter.
Vaccinium vitis idaea. 5 Beeren.

Tetrao urogallus L., Auerhuhn. — 14 Exemplare.
Nr. 1—9 aus der Umgegend von Lillhärrdal in Hrjd. Dezember 1905.
1. Die Probe enthielt:
Andromeda polifolia, mehrere Blätter und 2 Blütenstiele,
Empetrum nigrum, 1 Frucht,
Myrtillus nigra, 2 Beeren,
Pinus abies, Blätter,
P. silvestris, richlich Blätter,
Populus tremula, mehrere Knospen,
Vaccinium vitis idaea, 116 grösstenteils ganze Beeren.

2. Dezember 1905.
Empetrum nigrum, 3 Früchte,
Myrtillus nigra, 3 Beeren und mehrere ganze Blätter,
Vaccinium vitis idaea, 29 Beeren u. » »

Betula odorata, Kätzchen,
Empetrum nigrum, 3 Früchte,
Myrtillus nigra, 1 Beere und mehrere Zweigspitzen,
Pinus abies, Blätter, richlich.
P. silvestris,»
Vaccinium vitis idaea, 24 Beeren.

4. Dezember 1904.
Die Probe aus Magen und Speiseröhre enthielt:
Empetrum nigrum, 35 meist ganze Beeren,
Myrtillus nigra, 209 meist ganze Beeren, und richlich bis zu 3 cm langen Zweigspitzen,
Pinus abies, wenige Blätter,
P. silvestris,»
Vaccinium vitis idaea, 67 meist ganze Beeren sowie ganze und zerkleinerte Blätter.
Ausserdem bis 8 cm lange Blattteile einer Grasart.

5. Dezember 1904.
Die Probe aus Speiseröhre und Magen enthielt:
Andromeda polifolia, Blätter und Zweigspitzen richlich,
Carex sp., 1 Frucht,
Empetrum nigrum, 1 Samen.
Myrtillus nigra, 29 meist ganze Beeren; ferner freie Samen, wahrscheinlich von dieser Art, richlich und 1 Blatt,
Pinus silvestris, Blätter richlich,
Vaccinium vitis idaea, 3 Blätter.

Die Probe aus Speiseröhre und Magen enthielt:
Myrtillus nigra, 19 Beeren und einige Zweigspitzen,
Pinus abies, wenige Blätter,
P. silvestris, Blätter richlich,
Vaccinium vitis idaea, 12 meist ganze Beeren.

7. Dezember 1904.
Empetrum nigrum, 362 freie Samen,
Melampyrum sp., 30 Samen von entweder M. pratense oder M. silvaticum, da nur diese beiden Arten in Härjedalen vorkommen,
29

Myrtillus nigra. 4 ganze Beeren und eine Menge freier Samen.
Pinus silvestris. Blätter, reichlich.

Andromeda polifolia. 1 Blatt.
Empetrum nigrum. 13 Samen.

Myrtillus nigra. 2 Samen.
Pinus silvestris. mehrere Blätter.

 In der Speiseröhre:
 Empetrum nigrum. mehrere Beeren.
 Hieracium sp. mehrere Früchte.
 Melampyrum sp. 160 Samen.
 Myrtillus uliginosa. Beeren und zahlreiche Blätter.
 Rubus chamaemorus. welke Blüten.
 Im Magen:
 Dieselben Pflanzenteile und ausserdem:
 Myrtillus nigra. Beeren und Blätter.
 Ausserdem Ameisen. reichlich.

 Kropf und Magen enthielten:
 Carex Goodenoughii. ganze Ähren. reichlich.
 C. globularis. ganze Ähren. reichlich.
 Empetrum nigrum. 103 ganze Beeren und mehrere freie Samen.
 Melampyrum sp. wenige Früchte mit Samen.
 Myrtillus nigra. 22 ganze Beeren und mehrere freie Samen.
 M. uliginosa. einige hundert meist ganze Blätter, aber keine
 Beeren.
 Selaginella spinulosa. Zweig mit Ähre und Sporangien.
 Im Kropf ein haselnussgrosser, 3 g schwerer Stein.

 Magen und Kropf enthielten reichlich Samen folgender Arten:
 Empetrum nigrum.
 Myrtillus nigra.
 Melampyrum sp.

 In Speiseröhre und Magen:
 Carex globularis. ganze Ähren. reichlich.
 Empetrum nigrum. einige Beeren.
 Juniperus communis. 22
 Myrtillus nigra. ganze Beeren und Blätter reichlich.
 M. uliginosa. einige hundert meist ganze Blätter.
 Pinus silvestris. Blätter reichlich.
 Polytrichum commune. mehrere hundert ganze Kapseln.
 Vaccinium vitis idaea. mehrere Beeren.

 Calluna vulgaris. mehrere hundert Früchte und zahlreiche Zweig-
 spitzen,
Empetrum nigrum, Myrtillus nigra, Vaccinium vitis idaea, mehrere ganze Beeren.
Oxycoccus palustris, 3 ganze Beeren,
Pinus silvestris, Blätter reichlich.
Myrtillus uliginosa, einige Beeren und mehrere Blätter.

Turdus pilaris L., Wacholderdrossel. — 1 Exemplar.

In Speiseröhre und Magen fast ganze Früchte von
Sorbus aucuparia, die zusammen 17 Samen enthielten.
Auch im Darme fanden sich ganze, 20 Samen enthaltende Früchte.
Von diesem Vogel stammen mit der grössten Wahrscheinlichkeit mehrere Exkremente, die an einer sog. »kalten Quelle« bei Lillhärrdal gefunden wurden. Der Winter 1904—05 war sehr kalt und um die Weihnachtszeit hielt sich die Temperatur zwischen — 30° und — 40° C. Alle Wasserläufe, auch die schnellfließenden, waren von Eis bedeckt, und die Vögel konnten, um ihren Durst zu stillen, nur Schnee verzehren oder diese »kalten Quellen« besuchen, die auch bei dieser niedern Temperatur immer noch + 2— 4° C. warm sind. In diesen Quellen wachsen Cardamine amara und Fontinalis, die denn wahrscheinlich auch von den Vögeln gefressen werden.

Die Probe enthieilt:
Sorbus aucuparia, zahlreiche Samen und ganze Beeren,
Juniperus communis, einige Samen,
Empetrum nigrum, Samen massenweise.

Uria aliole L., Trottellumme. — 1 Exemplar.
Sandhamn, Stockholmer Schären.
Enthielt nur Muscheln und Teile von Fischen.

LITERATUR.

3. O. Börge, Algologiska notiser III och IV. Botaniska notiser 1897.

17. ——. Die Anpassungen der Pflanzen an die Verbreitung durch Thiere. Kosmos Bd. 9.
18. ——. Die Klettpflanzen mit besonderer Berücksichtigung ihrer Verbreitung durch Thiere. Biblioteca Botanica Bd. 9 (1887).
ÜBER EINEN FALL VON SYMBIOSE ZWISCHEN ZOOCHLORELLEN UND EINER MARINEN HYDROIDE

VON
NILS SVEDELIUS

Diese pflegen nunmehr auf zwei grosse Gruppen verteilt zu werden: die mit gelbem Chromophyll versehenen, die Zooxanthellen, und die mit grünem, die Zoochlorellen, welche Namen auf die beiden, von Brandt i. J. 1881 aufgestellten Gattungen Zooxanthella und Zoochlorella zurückgehen. Von diesen kommen die gelben Zooxanthellen bei verschiedenen Meeresorganismen (Radiolarien, Hydrozoen, Aktinien) vor, während die grünen Zoochlorellen vorzugsweise
bei Süßwasserorganismen (Infusorien, Spongien, Hydra u. a.) angetroffen werden; Zoochlorellen sind jedoch auch bei ein paar marinen Formen nachgewiesen worden, wie z. B. der Meeresflagellate Noctiluca (Weber v. Bosse 1890) und der Meeresturbellarie Convoluta Roscoffensis (Haberlandt 1891).

Ein Bericht über einen neuen Fall von symbiotisch lebenden Zoochlorellen dürfte daher immer auf ein gewisses Interesse rech nen können. Das um so mehr, als es sich um Zoochlorellen bei einer marinen Hydroide handelt. Die Hydroiden sind nämlich eine Tiergruppe, in welcher man bisher nur einen einzigen Fall symbiotisch lebender Zoochlorellen gefunden hat, nämlich bei dem in dieser Hinsicht klassischen Untersuchungsobjekt, der Süßwasserhydroide Hydra viridis.

Schliesslich ist eine eingehende Behandlung dieser marinen Hydroide und ihrer Endophyten auch aus dem Grunde nicht ohne Interesse, weil das Vorkommen von Algen in dem Gewebe der Hydroide bei der ersten Beschreibung der Gattung völlig überschien.
worden ist. Die eigenartige histologische Struktur, welche die hier fragliche Hydroide auszeichnen soll, und die nach ihrem Beschreiber so eigentümlich ist, dass er darauf geradezu eine neue Familie begründen will, beruht nämlich eben auf dem Vorkommen der äusserst zahlreichen Algen, deren wirkliche Natur bei der Gattungsdiagnose vollständig verkannt worden ist.

Die fragliche Hydroide ist, wie bereits erwähnt, zum ersten Male eingehend von C. Pictet in der Abhandlung »Étude sur les Hydraires de la baie d’Amboine« in der Revue Suisse de Zoologie, T. I, 1893, geschildert worden, wo sie auch auf Taf. I, Fig. 12, 13 und Taf. III, Fig. 55, 56 abgebildet worden ist. Sie hat eine auf dem Substrat kriechende Hydrorhiza, von welcher aus zahlreiche verzweigte Hydrocaulen, die von einem sogen. Perisark umgeben sind, emporsprossen. Die Hydranthen sind trichterförmig, an der Spitze zu einem nach Pictet trompetenförmigen Mundkegel (Hypostom) ausgezogen und mit äusserst zahlreichen — gegen hundert — in mehreren Kränzen sitzenden Tentakeln versehen. Die für diese Art charakteristischen histologischen Eigenschaften werden von Pictet in einem besonderen Anhang geschildert (a. a. O., S. 62). Nach Pictet besteht das Entoderm aus zahlreichen Zellen mit sehr grossen Kernen, die das Innere der Tentakeln ganz ausfüllen (Pictet’s Fig. 55, 56 Taf. III), eine Struktur also, zu der sich bei

1 Diese Hydroidengattung *Myrionema* Pictet hat natürlich nichts mit der von Greville aufgestellten Phaeophyceengattung *Myrionema* zu schaffen!
2 Die betreffende Bestimmung verdanke ich dem schwedischen Hydroidenkenner E. Jäderholm in Westervik.
keiner anderen Hydroide etwas Entsprechendes findet. Diese eigentümlichen Zellen mit den grossen Kernen kamen nicht nur in den Tentakeln vor, sondern auch anderwärts in dem Hydranthen, wie auch in dem Hypostom, obwohl hier in geringerer Anzahl. Als eine andere Eigentümlichkeit für diese Hydroide wird auch angeführt, dass unmittelbar unterhalb des Hypostoms einige eigenartige entodermale, angeschwollene Partien sich finden, die von einer Art nach innen wachsender Lappen gebildet sind. Diese Lappen sind von dem Mundkanal durchzogen und von einer rings herum gehenden, ringförmigen Kavität umgeben, die durch Faltung der entodermalen Lappen unvollständig in Kammern geteilt ist. In diesen Lappen hat Pictet eine grosse Anzahl grüner Zellen beobachtet, die ihre Farbe beibehielten, auch nachdem sie längere Zeit in Alkohol gelegen hatten. Bezüglich der Natur der Lappen spricht Pictet die Vermutung aus, dass sie eine Art «fonctions digestives» hätten. Jedenfalls seien sie wahrscheinlich den «Taeniolen» bei anderen Gymnoblasten homolog. — Soweit Pictet! — Hinsichtlich der äusseren Form und des Aussehns kann ich in allem diese Beschreibung Pictet's bestätigen. Doch habe ich nicht konstatieren können, dass das Hypostom wirklich die trompetenähnliche Form besitzt, wie Pictet sie abgebildet hat (a. a. O. auf Taf. I, Fig. 13, nicht aber in Fig. 12!). Das Material, das mir jetzt zur Verfügung steht, ist in Formalin konserviert und die Tiere im allgemeinen wohl erhalten, doch ist natürlich die Möglichkeit nicht absolut ausgeschlossen, dass das Hypostom vielleicht durch Zusammenziehung seine Form geändert hat. Pictet's Untersuchungsmaterial ist andererseits äusserst spärlich gewesen, «une seule colonie portant trois ou quatre hydrantes» (vgl. a. a. O., S. 20), und die Form des Hypostoms ist von ihm nur nach Schnitten konstruiert worden. Nach meinen Beobachtungen hat es eher eine Form von dem Aussehen wie in Fig. 1, die mit der Form übereinstimmt, wie sie das Hypostom z. B. bei der nahverwandten Eudendrium insigne aufweist (nach Fig. 61 in Delage & Hérouard, Traité de Zool. concrète II, Paris 1899, S. 68, s. den Zweig rechts!). Ich habe mehrere Male an Schnittserien vergebens nach einer Mundöffnung gesucht, und es scheint mir sogar Zweifel unterworfen zu sein, ob überhaupt stets eine solche vorhanden ist. Mehr darüber unten in anderem Zusammenhang!

Die zahlreichen Tentakeln sind besonders dick im Verhältnis zum
Hypostom, das oft nicht viel dicker ist als eine grobe Tentakel (siehe Fig. 1). Diese Tentakeln sind nun ganz mit Zoochlorellen erfüllt, die das Entodermgewebe, das dort einmal vorhanden gewesen, zersprengt haben (siehe Fig. 3). Die Algenzellen sind nur von der Stützlamelle umgeben, die nach aussen an eine einfache Schicht Ektodermzellen angrenzt (siehe auch Fig. 4). Die Algen scheinen wenigstens quantitativ ihre höchste Entwicklung eben in den Tentakeln zu erreichen, denen sie auch den grünen Farbenton verleihen. Wie auch Pictet beobachtet, ist die Zahl dieser von ihm als Entodermzellen (cellules à gros noyau sphérique renferment un šn retina-|culum et un gros nucléole refringent) Pictet a. a. O. S. 62) aufgefassten Algen bedeutend geringer in dem Mundkegel. Daher tritt auch dort bedeutend klarer das Verhältnis zwischen der Alge und den Zellen des Wirtstieres hervor. Fig. 2 zeigt einen Längsschnitt durch den Mundkegel. Am weitesten nach aussen sieht man die Ektodermzellen (ect.) mit ihren Kernen und die Nesselzellen (nes.), diese letzteren besonders an der Spitze. Mehr nach innen, durch die Stützlamelle (st.) begrenzt, kommen die hohen zylinderförmigen Entodermzellen (ent.) mit ihren scharf hervortretenden Zellkernen (n.). In und zwischen diesen Entodermzellen kommen nun die Zoochlorellen (chl.) vor. Diese sind ziemlich gross, ungefähr 10 μ im Durchmesser, bedeutend grösser als die Entodermkerne. Ihre Algennatur ergiebt sich deutlich daraus, dass sie von einer mehr oder weniger dicken Wand umgeben sind, die — wenn auch ziemlich schwach — Zellulosereaktion aufweist; sie enthalten ausserdem Chromatophor, Pyrenoid, Stärke und Zellkern.

Ein Zweifel über die Algennatur dieser Körper kann demnach nicht obwaltten, und ich gehe sofort zu der Schilderung der Art und Weise ihrer Vermehrung in dem tierischen Gewebe über. In dem Mundkegel (Fig. 2) zeigen die Algenzellen eine Tendenz, so
weit wie möglich nach der Wand hin sich zu placieren, d. h. nahe dem Ektoderm, während sie nach dem Innern des Mundkanals zu so gut wie ganz fehlen. Diese Lage bringt ja auch die günstigsten Belichtungsverhältnisse mit sich. In den Tentakeln (Fig. 3) dagegen scheint kein äusseres Hindernis für eine reichlichere Vermehrung der Algenzellen vorhanden zu sein. Sie füllen dort auch fast das ganze Innere der Tentakeln aus, und von dem Entodermgewebe scheint kaum eine Spur übrig zu sein. Aber nicht nur in dem Mundkegel und in den Tentakeln kommen diese Algen vor, sondern auch anderswo in den Hydranthen, wie auch in sämtlichen Hydrocaulen finden sich mehr oder weniger zahlreich diese grossen Algenzellen in den Entodermzellen eingestreut.

Ein teilweise ganz anderes Aussehen zeigen nun diese Algen in den Lappen, die im Innern des Hydranthen um die Basis herum sich finden. Hier ist es, wo die von PICTET beobachteten grünen Zellen vorkommen. Sie finden sich hier äusserst zahlreich (Fig. 5) und füllen oft die grossen, hier fast isodiametrischen Entodermzellen völlig aus. Der Grösse nach sind sie bedeutend kleiner als die zuvor erwähnten Zellen, z. B. in den Tentakeln. Sie messen im Querschnitt nur 3—5 µ, sie liegen äusserst dicht, oft in kleinen Gruppen zusammenhängend (siehe Fig. 5, k2 und Fig. 6, c). Ihre Wände sind nicht so scharf hervortretend, während dagegen der Chromatophor äusserst intensiv gefärbt ist. Neben diesen finden sich auch Zellen von derselben Natur (chl.) wie die zuerst beschriebenen in den Tentakeln. Ausserdem ist es nicht ungewöhnlich,
hier Algenzellen beider Grössen zu finden, die sich offenbar in einer Art Auflösungszustand befinden. Sie sind leer, entfärbt und kommen zusammen mit anderen dunkleren formlosen Massen vor, die das Ausschm haben, als wären sie eine Art Exkretionsprodukt.

![Diagramme 3, 4 und 5](image)

Diese kleinen Algengruppen kommen nun eigentlich nur an dieser Stelle in der Myrionema vor, ein paar vereinzelte Individuen möglicherweise im Mundkegel, niemals dagegen welche in den Tentakeln.

In welchem Verhältnis stehen nun diese kleineren Zellen zu den grossen? Handelt es sich vielleicht um zwei verschiedene Organismen oder sind es verschiedene Entwicklungsstadien eines und desselben? Um diese Frage zu beantworten, will ich über die Entwicklungsgeschichte der verschiedenen Formen berichten, so gut sich dieses auf dem Wege der vergleichenden Methode tun lässt. Da die Algen so reichlich vorhanden sind, ist es indessen nicht sonderlich schwer, alle möglichen Stadien ausfindig zu machen. Am besten werden die Präparate hergestellt, indem man ganz einfach eine Tentakel mit einer Nadel aufreisst und durch sanftes Pressen die Algen herausdrückt, wo dann diese völlig frei im Wasser be-
obachtet werden können. Färbung einer ganzen Tentakel mit Hämatoxylin und spätere Isolierung der einzelnen Zellen ergab das beste Resultat.

Die Alge, wie sie in den Tentakeln, Hypostomen und Zweigen vorkommt, hat folgenden Bau (Fig. 6 A, B). Sie ist ungefähr von Kugelform, gewöhnlich ca. 10 μ im Durchmesser haltend, zwischen 8 und 12 μ, dem größten von mir beobachteten Durchmesser, varierend. Die Zelle (Fig. 6 A) ist von einer wohl differenzierten, scharf hervortretenden Wand umgeben. In jeder Zelle kommt ein grosser Chromatophor vor, der teilweise ganz die Wand bedeckt. Liegt die Alge günstig, so kann man sehn, dass der Chromatophor glockenförmig ist. In demselben kann man einen klaren, lichtbrechenden Körper, das Pyrenoid, und oft zahlreiche kleine Stärkekörnchen beobachten. Der Zellkern tritt erst nach der Hämatoxylinbehandlung hervor. Er liegt gewöhnlich an der einen Seite bei der Mündung des glockenförmigen Chromatophors. Man kann demnach Individuen beobachten, wo der Chromatophor zwei Pyrenoide hat. Gleichzeitig hat dann die Alge selbst eine etwas langgestreckte Form (Fig. 6 B). Nachdem der Chromatophor sich geteilt hat, wandert der Kern zwischen die beiden neugebildeten Chromatophore ein und erfährt eine Zweiteilung, wonach die neuen Zellen sich bilden. Das Bersten selbst der Mutterzelle habe ich nicht direkt beobachtet. Diese Teilung stimmt völlig mit Dangeard's Beschreibung der Zoochlorella-Zellen bei Paramaecium bursaria (a. a. O., S. 173) überein. Andere Formen der Teilung oder Vermehrung kommen in den Tentakeln oder im Mundkegel nicht vor.

Fig. 6. Chlorella-Zellen aus Myrionema Pictet. A. B von den Tentakeln und vom Hypostom, B in Zweiteilung begriffen; C von den entodermalen Lappen des Mundkanals, verschiedene Teilungsstadien (ungef. 700×1).
Anders verhält sich dagegen diese Alge in den grossen Zellen, welche die nach innen wachsenden Lappen an der Basis des Mundkanals bilden. (Fig. 5.) Hier ist, wie bereits erwähnt, die überwiegende Anzahl Algen (Fig. 5, kz.) bedeutend kleiner, im Diameter zwischen 2 und 5 μ varierend, gewöhnlich ungefähr 4 μ. Unter diesen zahlreichen kleinen Algen trifft man jedoch vereinzelte von derselben Grösse und demselben Aussehen an wie in den Tentakeln. Und dass die kleineren Algen von diesen grösseren herstammen, ergiebt sich deutlich aus dem Studium der verschiedenen Teilungsstadien. In Fig. 6, C ist eine Alge aus diesen Lappen in Teilung zu sehen. Der ganze Inhalt der Alge hat sich in 4 Portionen geteilt. In jedem Teil ist der Chloroplast sehr dicht, stark gefärbt, das Pyrenoid aber nicht zu unterscheiden. Die Kerne treten jedoch hervor, wenn auch schwach. Nach der Teilung scheint die Wand sich aufzulösen, wahrscheinlich durch Verschleimung, aber die vier Tochterzellen hängen noch eine Zeit lang zusammen (Fig. 6, C).

Es sind nicht immer nur 4 Zellen, die aus einer Teilung dieser Art resultieren, denn oft kann man mehr Tochterzellen als 4 zählen, z. B. 6 (siehe Fig. 6, C). In Wirklichkeit beträgt die Zahl der Tochterzellen in diesem Fall wohl mehr als 6, wahrscheinlich 8, es sind eben nicht alle auf einmal zu sehen. Nach dieser wiederholten Teilung löst sich auch hier die Wand auf, und die kleinen Tochterzellen werden frei. Oft hängen sie jedoch ziemlich lange in grösseren oder geringeren Gruppen zusammen. Diese kleinen Algenindividuen scheinen nun, wenn auch langsam, zu wachsen. Man kann oft Gruppen beobachten wie in Fig. 6, C (in der Mitte). In vielen Fällen sind die kleinen Gruppen ziemlich ausgewachsen, so dass der glockenförmige Chromatophor hervorzutreten beginnt. In Fig. 6, C (unten) schliesslich sieht man einen Fall, wo die beiden zusammenhängenden Individuen von einer auffallenden Verschiedenheit bezüglich der Grösse sind. Das eine ist bedeutend grösser mit deutlich unterscheidbarer Form des Chromatophors, und hier tritt auch das Pyrenoid wieder sehr deutlich hervor. Man kann endlich hier auch Individuen beobachten, die bezüglich der Grösse alle möglichen Übergänge von den kleinen Individuen mit 4—5 μ im Durchmesser bis zu den grossen mit 10 μ im Durchmesser bilden. So habe ich solche beobachtet, deren Durchmesser 6, 7, 8 und 9 μ betrug.

Diese Alge vermehrt sich demnach im Hydroidenkörper auf zwei verschiedene Weisen, nämlich durch eine Tei-
lung des Inhalts teils in nur zwei (Fig. 6 B), teils in 4 bis mehrere Portionen (Fig. 6 C), wobei die Membran der Mutterzelle in die neuen Individuen nicht übergeht, sondern birst und allmählich sich auflöst. Im ersteren Falle wird die Teilung durch eine Teilung des Pyrenoids eingeleitet. Ein solches ist demnach sofort in den Tochterzellen wahrnehmbar. Im letzteren Falle dagegen kann das Pyrenoid bei den Tochterzellen nicht wahrgenommen werden, bevor diese nicht eine gewisse Größ e erreicht haben. Diese auf die letztgenannte Weise gebildeten Individuen wachsen dann allmählich zu derselben Größ e wie das Mutterindividuum heran. Die erstere Art der Vermehrung durch Zweiteilung kommt vorzugsweise in den Tentakeln, sowie im Mundkegel und in den Zweigen der Hydrocaulen vor, die letztere Art dagegen nur in dem Gewebe, das die Lappen an der Basis des Mundrohrs bildet, dagegen niemals in den Tentakeln. Es ist jedenfalls aus dem schon Angeführten klar, dass wir es trotz des verschiedenartigen Aussehens hier mit einem und demselben Organismus zu tun haben: nur die Vermehrungsmethoden verursachen die Differenzen.

Welche Stelle nimmt nun diese Alge im System ein, und inwiefern stimmt sie mit zuvor beschriebenen Algenformen überein? Durch die Form des Chromatophors (Glockenform) und durch das Vorkommen von Pyrenoiden erweist sie sich deutlich als zu den Protococcaceen im weiteren Sinne gehörig, und da sie auch beweglicher Fortpflanzungskörperchen, d. h. Zoosporenbildung, entbehrt, ist es klar, dass sie zur Familie Scenedesmaceae nach OTTMANN'S Begrenzung und hier zu der Gattung Chlorella BEYER gehört, d. h. eben zu derselben Gattung wie die Alge bei Hydra viridis, von der Beyerinck gezeigt hat, dass sie mit der frei lebenden einzelligen Alge, der er den Namen Chlorella vulgaris gegeben hat, identisch ist. Es herrscht nunmehr also kein Zweifel bezüglich der Gattung, und es erübrigt nur, diese Chlorella mit den anderen bekannten Arten zu vergleichen.

Brandt's i. J. 1882 aufgestellte Gattung Zoochlorella zählte zwei Arten. Z. conductrix mit einem Durchmesser 3–6 μ und Vorkommen in Hydra und Infusorien und Z. parasitica mit einem Durchmesser 1,5–3 μ mit Vorkommen in Spongilla (einer Süßwasserspongie). Im Jahre 1890 wies Beyerinck die grosse Übereinstimmung zwischen diesen Zoochlorellen und einigen frei lebenden Pleurococcaceen nach, welche Beyerinck als eine besondere Gattung Chlorella mit den Arten Chl. vulgaris (Grösse 2–6 μ) und Chl. influsio-
num (Grösse 1—4 µ) beschrieb, zu welchen — jedoch als eine Art Untergattung, Zoochlorella, ausgezeichnet durch nur endophytische Lebensweise — Chl. parasitica (Grösse 1,5—3 µ) und Chl. conductrix (Grösse 3—6 µ) hinzugefügt wurden. In einer später hinzugefügten Anmerkung giebt indessen Beyerinck an, er sei durch Kulturversuche zu dem Resultat gekommen, dass die Hydra-Alge (d. h. Chl. conductrix) völlig identisch ist mit Chlorella vulgaris. In einer späteren Arbeit (1893) dagegen äussert er wieder Zweifel darüber, ob seine aus Hydra isolierten Algen wirklich das typische »Hydrachlorophyll« seien und nicht möglicherweise eine verschluckte Chlorella, die ihre Keimfähigkeit beibehalten hat. Über die morphologische Identität dieser beiden Organismen (d. h. Chlorella vulgaris und der Hydra-Zoochlorella) hegt Beyerinck jedenfalls keinen Zweifel.

Später hat Famintzin (1891) noch eine symbiotisch mit Infusorien lebende Zoochlorella-Art entdeckt und beschrieben, die wegen ihrer Grösse den Namen Zoochl. maxima erhalten hat (Querschnitt 12 µ), und die sich in mehr als 4 Zellen teilt.

Ausserdem hat Dangeard (1900) in seiner bereits oben angeführten Abhandlung über »les Zoochlorelles du Paramesèum bursaria« eingehend die Frage nach der Natur und Verwandtschaft der Zoochlorellen behandelte und ihren Bau und ihre Entwicklung bei dem Infusor Paramesèum geschildert. Er weist darauf hin, dass die Zoochlorellen sich dadurch teilen, dass die Mutterzelle stets sich in 4 Tochterzellen teilt, was normalerweise nicht der Fall sei bei der frei lebenden Chlorella, wo die Teilung gewöhnlich nach Beyerinck zu einer Anzahl von 8, 16 usw. Tochterzellen führe. In Wasserkulturen zeigte es sich jedoch nach Dangeard unter gewissen Umständen, dass auch die frei lebende Chlorella nur durch 4-Teilung sich vermehre, so dass hierdurch noch ein weiterer von den Einwänden gegen die Identifizierung von Chlorella und Zoochlorella seine Beweiskraft einbüßte.

Artari hat später (1902) mitgeteilt, dass er von Chlorella vulgaris zwei verschiedene ernährungspophysiologische Rassen beobachtet hat, von denen die eine unorganische Nahrung bevorzugt, die andere besser bei Gegenwart organischer Substanz fortkommt, wie auch dass nach seiner Beobachtung die Chlorophyllbildung bei der selben Alge im höchsten Grade von dem Nährsubstrat abhängt.

Die nächste Untersuchung über Chlorella vulgaris, die uns vorliegt, rührt von Grillzesco (1903) her, der den Einfluss der verschiedenen
Nährmittel auf diese vielumstrittene Alge sorgfältig studiert hat. Als ein
wichtiges Resultat sei hervorgehoben, dass bei der Teilung der
Chlorella nach Grintzesco die Anzahl der Tochterzellen von
der Nahrungsmenge im umgebenden Medium abhängt. Nach
Grintzesco teilt sie sich in zwei Tochterzellen unter ungünstigen
Ernährungsverhältnissen, und es ist dies ein Zeichen dafür, dass
die Alge auf schmale Kost gesetzt ist. Teilung in 4 oder 8 Toch-
terzellen dagegen tritt unter günstigen äußeren Verhältnissen ein,
D. h. bei reichlicher Nahrungszufuhr. Außerden hat die Ernährung
einen sehr grossen Einfluss auf die Größe der Chlorella-Zellen.

Nach allen diesen Darlegungen dürfte es demnach klar sein, dass
morphologische Unterschiede zwischen den Zoochlorellen und Chlo-
rella nicht vorhanden sind, weder hinsichtlich des Baues des Pro-
toplasten noch hinsichtlich der Art und Weise der Teilung. Denn
wie Grintzesco gezeigt hat, dass die frei lebende Chlorella je nach
den Umständen sich in 2—4—8 oder mehr Tochterzellen teilen
cann, so zeigt es sich ja auch bei der Myrionema-Zoochlorella,
dass sie sich sowohl in 2—4 als auch noch mehr Tochterzellen
teilen kann. Da ich nun also eine Zoochlorelle gefunden
habe, die innerhalb eines und desselben Organismus genau
dieselbe Abwechslung bezüglich der Teilung zeigt wie die
freil lebende Chlorella, so verschwindet damit noch einer von
den Einwänden, die sich gegen die Identifizierung
dieser Organismen erheben liessen. Dass endlich die Grö-
ssenverhältnisse ein konstantes Artmerkmal darstellen sollten, lässt
sich schwerlich aufrechterhalten (vgl. Grintzesco, Artari). Alle,
die diese Algen in Kultur gehabt haben, haben ja auf ihr Schwank-
en in dieser Hinsicht hingewiesen. Und da es nun sich gezeigt
hat, dass eine und dieselbe Alge innerhalb eines Organismus der
Grösse nach so verschiedene Formen aufweisen kann wie diese
Myrionema-Alge, und dass dieses mit der Teilungsweise zusammen-
hängt, so ist es klar, dass die Massenverhältnisse mit grosser Vorsicht
bei der Unterscheidung der Arten anzuwenden sind. Famintzins
Zoochlorella maxima ist so z. B. nicht grösser als die Myrionema-
Chlorella, die andererseits alle Übergänge bis zu den Formen mit
nur ungefähr 5 µ Durchmesser herab zeigt, wie sie sich auch in
ebenso viele Tochterzellen teilt wie Zoochlorella maxima. Auf die
Grösse allein lassen sich daher keine Artcharaktere gründen, was ja
auch Artari sehr deutlich hervorgehoben hat.

Es lassen sich also jedenfalls keine morphologischen Merkmale als

Nachdem Beyerinck seine Chlorella vulgaris aufgestellt hat, sind indessen verschiedene andere Chlorella-Arten beschrieben worden: von Krüger (Chl. protothecoides 1894), Chick (Chl. pyrenoidosa 1903), Beyerinck selbst (Chl. variegata 1904) und schliesslich von Artari (Chl. communis 1906). Das Kennzeichnende für alle diese Chlorella-Arten ist, dass sie alle morphologisch gleich sind, dagegen aber scharfe physiologische Charaktere besitzen. Innerhalb Chlorella vulgaris kann man demnach eine ganze Reihe ernährungsphysiologischer oder biologischer Rassen unterscheiden, welche durch ihr Verhalten gegenüber den verschiedenen N- und C-Quellen wie auch durch ihr verschiedenes Vermögen der Chloropyllbildung charakterisiert sind. Es liegt natürlich ausserhalb der Grenzen der Möglichkeit, sich in dieser Hinsicht irgendwie über die vorliegende in Myrionema wachsende Art zu äussern, von welcher mir gegenwärtig nur konserviertes Material zur Verfügung steht. Die Bestimmung muss sich daher auf morphologische Merkmale beschränken, sodass diese Alge bis auf weiteres als Chlorella vulgaris Bey. zu bezeichnen ist.

Schliesslich noch einige Worte zu der Frage nach dem Verhältnis zwischen der Alge und dem Wirtstier. Da alle Exemplare, die ich von Myrionema amboinensis beobachtet habe, stets mit zahlreichen Chlorellen versehen waren und das Gleiche mit diesem
Tier auf den Molukken der Fall war, so ist man wohl zu dem Schluss berechtigt, dass *Chlorella* normalerweise als Endophyt in dieser Hydroide *Myrionema* enthalten ist, und dass wir es also mit einer typischen Symbiose zu tun haben. **Brandt** hat ausführlich die eventuellen gegenseitigen Vorteile diskutiert, die Alge und Tier in diesen von ihm als *Phytozoen* bezeichneten Konsortien haben müssten. Wahrscheinlich liegen wohl die grössten Vorteile aufseiten des Tieres. Denn dass die *Chlorella*-Zellen teilweise ihrem Wirtstier zum Opfer fallen, unterliegt keinem Zweifel. Darauf deuten zahlreiche übereinstimmende Beobachtungen seitens mehrerer Verfasser hin. Auch bei der *Myrionema* kann man ohne Schwierigkeit, besonders in denen Lappen an der hinteren Mündung des Mundkanals, blasse, gleichsam ausgesogene *Chlorella*-Individuen beobachten, die in Auflösung begriffen sind, und zwar sowohl grosse als kleine Individuen (siehe Fig. 5 *chl*). Dass sie verzehrt werden, dürfte unzweifelhaft sein. Hier scheinen ja auch die Entodermzellen besonders geeignet dazu zu sein, als nahrungsaufnehmendes Gewebe zu dienen. **Pictet** schreibt ihnen ja auch *fonctions digestives* zu. Dagegen scheinen die *Chlorella*-Zellen in den Tentakeln niemals in Auflösung begriffen zu sein, hier sind es im Gegenteil die Algen, die das Übergewicht haben, indem von den Entodermzellen nur Spuren, d. h. Reste beobachtet werden können. Die Algen entwickeln sich in solcher Menge, dass sie sich pressen und die Tentakeln vollständig ausfüllen, ja, geradezu auftreiben.

Eine Sache, die mir nicht völlig klar erscheint, ist die, weshalb die *Chlorella* in den Tentakeln und sonst in den Hydrocaulen nur durch Zweiteilung sich vermehrt, während unterhalb des Hypostoms in den Lappen vorzugsweise 4—8-Teilung stattfindet. Eine befriedigende Erklärung hierfür vermag ich nicht zu liefern, da aber **Grintzesco** gezeigt hat, dass die Ernährungsverhältnisse einen höchst bedeutenden Einfluss auf die verschiedenen Arten der Teilung haben, so dass z. B. Nahrungsengel 2-Teilung, reichliche Nahrungszufuhr dagegen 4—8-Teilung hervorruft, so wird wohl wahrscheinlich etwa ein ähnliches Verhältnis hier mitgespielt, und dies um so mehr, als besonders durch **Artari**'s Untersuchungen es sich gezeigt hat, wie verschieden *Chlorella* in mehreren Hinsichten unter verschiedenen äusseren ernährungsphysiologischen Verhältnissen sich verhält. Wie aber nur diese die verschiedenen Teilungsweisen hier bei *Myrionema* sollen erklären können, scheint mir doch noch in Dunkel gehüllt zu sein. Möglicherweise ist jedoch der Umstand, dass
sie in den Tentakeln so dicht gepackt vorhanden sind, die Ursache dafür, dass eine Art Nahrungsmangel eintritt, der darin resultiert, dass hier nur Zweiteilung stattfindet.

SAMMANFATTNING

År 1890 lyckades Beyerinck uppvisa, att den Zoochlorella, man sedan länge kände ifrån sötvattenshydroiden Hydra viridis, var fullt öfverensstämmende med en fritt levande grönalg, som nu beskrefs
och benämndes *Chlorella vulgaris*. Alltså hade man här att göra med en organism, som icke nödvändigt var bunden till att leva endo-

fytiskt inom sitt värdjur, utan även kunde existera fullt själv-

ständigt. Dessa *Beyerinck*s iakttagelser hafva sedermera bekräftats af *Dangeard* (1906), som visat, att Zoochlorellan hos infusorien *Paramacium bursaria* även sannolikt är identisk med den fritt lef-

vande *Chlorella vulgaris*. Enda olikheten vore, att den endofytiska Zoochlorellan icke vid sina delningar uppdelade sig i lika många dotterceller som den fritt levande *Chlorella vulgaris*.

Å korallrefven vid staden Galle ä Ceylon har jag nu iakttagit en marin hydroidpolyp (*Myrianema amboinensis* Pictet), som regel-

bundet i sina våfnader för gröna Zoochlorella-celler i stor mycken-

het. Då någon marin hydroid ej förut beskrivits med dylika en-

dofter, och då dessutom Zoochlorellor endast ett par gånger iakttagits hos marina former, så torde en mera ingående skildring icke vara utan sitt intresse, så mycket mer som dessa algars verkliga natur alldeles förvissetts, när Pictet för första gången beskrev hydroiden i fråga. Af Pictets skildring framgår tydligen, att algecellerna af honom uppfattats som beståndsdelar af djurvåfnaden, i det de nämligen beskrivvas som entodermceller med mycket stora cell-
kärnor.

Fig. 1 visar en bild i längdsnitt af hydroid-polypen i fråga, d. v. s. endast af dess öfre del med munkäglan (*hyp*) och de många ten-

taklerna (*tent*). Flera dylika polyper sammanhänga nedtill, i det de utväxa från ett gemensamt, på underlaget krypande grensystem. Tentaklerna samt munkäglan och polypens s. k. innerblad (*ent*) är nu sättet för talrika gröna alger, hvilka särskilt i tentaklerna äro så ymniga, att de utfylla och nästan utspänna deras inre (Fig. 3, 4) sedan de söndersprängt de våfnadspartier, som där förut funnits. I munkäglan (Fig. 2) äro de icke så talrika, endast liggande enstaka i entodermcellerna. Vid munkåglangs bakre mynning finnas entoder-

mala ansvällningar, som tillsammans bilda ett kransformigt parti (Fig. 1, *el*). Hvars celler äro alldeles utfyllda med alger, men hvilka här hafva ett något avvikande utseende. De äro små, endast 3—5 µ i diameter, under det att de i tentaklerna hafva en storlek växlande mellan 8—12 µ. Vid en mera ingående undersökning visar det sig nu, att dessa olika algtyper endast äro olika former af en och samma algart. Denna har i tentaklerna, i munkäglan och i polypens våfnad för öfrigt en byggnad, som synes å Fig. 6 A och B. Den innehåller en stor klockformig kromatófor med tydlig pyrenoid. Algen förökas
genom tudelning, som inledes genom att pyrenoiden delas (Fig. 6 B), först därefter delar sig cellkärnan. I väfnadspartiet vid munkäglangs bas däremit delar sig denna alg företrädesvis på sätt, som synes å Fig. 6 C, d. v. s. genom en uppdelning i talrika, 4—8, dotterceller. Dessa äro små, hafta till en början föga urskiljbar pyrenoid och cellkärna, men däremit mycket starkt färgad kromatofor. Att nu dessa olika algformer hörna tillsammans visas af öfvergångsstadier (Fig. 6 C, nederst), där man kan iakttaga dylika små alger i tillväxt, och när då kromatoforen växer, framträder äfven pyrenoiden.

Hvad slutligen beträffar Chlorellornas förhållande till värddjurens, så torde framhållas, att de största fördelarna af denna symbios nog äro på djurets sida. Att Chlorella-celler falla offer för sitt värddjur är otvifvelaktigt, ty ofta iakttagar man i entodermansväxlingarna rester af liksom utsugna Chlorella-celler.

Hvarför nu denna Chlorella i tentaklerna o. s. v. endast delar sig genom tudelning, uti entodermpartierna vid munkäglan åter genom 4—8-delning, kan jag icke förklara. Men då man vet genom Grint-Zescos undersökningar, att olika näringsförhållanden hafva ett avgörande inflytande på denna algs delningssätt, så är kanske förklaringsgrunden härtilt närmast att söka i några dylika orsaker.
LITTERATURVERZEICHNIS

Chlorella variegata, ein bunter Mikrobe. Recueil des travaux botaniques Neerlandais, 1904.

DELAGE et HÉBOUARD, Traité de Zoologie concrète Tome II, 1re Partie, Paris 1899.

Svensk Botanisk Tidskrift.

Oltmanns, Fr., Morphologie und Biologie der Algen. I, II. Jena 1904—05.

EIGENARTIGE, REIN FLORALE SPRÖSSE BEI ZWEI SCHWEDISCHEN ARTEMISIA-ARTEN
VON
NILS SYLVEN.

2 Vergl. meinen oben zitierten Aufsatz "Om refloration etc." S. 74—75.

Im Bergianischen Garten kommt *Artemisia maritima* teils in der systematischen Abteilung, und zwar in ihrer var. *suffruticosa* Hn. (aus Schonen), teils in der für Westküsten-Pflanzen reservierten Garten-Abteilung vor. Mitte September vorigen Jahres befanden sich die Exemplare der oben genannten *A.maritima* var. *suffruticosa* in voller Blüte. Aber ausser den gewöhnlichen, grossen, zusammengesetzten, terminalen Infloreszenzen wurden hier bei näherem Nach-

Fig. 1. *Artemisia maritima* L. var. *suffruticosa* Hn.
suchen, in den Axillen der untersten, nun bereits verwelkten und abgefallenen Laubblätter, kleine, eigenartige, rein oder so gut wie rein florale, Reformationsspross-ähnliche Seitensprosse entdeckt (Fig. 1, 2). Da die eigentliche, terminale, zusammengesetzte Hauptinfloreszenz in ihrer vollen Blüte stand (vergl. Fig. 1), konnte hier von einer wahren Reformation durchaus keine Rede sein; eine Art eigenartiger sekundärer Floralprossen schien hier vorzuliegen. Im Gegensatz zu den oben genannten Reformationssprossen der Artemisia vulgaris waren diese sekundären Floralprossen nur auf die untersten Axillen beschränkt. Andererseits war ihre äußerst schwache Ausbildung (Fig. 1, 2) gleich in die Augen fallend. Die untersten, mehr gehäuft Sprosse waren gewöhnlich die stärksten (Fig. 2 a). In ihrer am stärksten ausgebildeten Form bestanden sie aus einer 1 bis 2 cm. langen Achse, unten mit einigen Niederblättern oder Niederblattähnlichen Blattbildungen bekleidet, oben mit einigen wenigen, dicht zusammengeballten, äußerst kurz- oder ungestielten Blütenköpfchen versehen. Die oberen, entfernter stehenden Sprosse waren stets mehr reduziert: die obersten (etwa 3—7 cm. über dem Boden an der relativen Hauptachse) bestanden sogar aus einem einzigen, kurz- oder ganz ungestielten Blütenköpfchen (Fig. 2 b).

Da nicht nur die Stützblätter der sekundären Sprosse, sondern oft auch die nächstfolgenden oberen Laubblätter bei der Ausbildung der genannten Sprosse abgefallen sind, und die relativen Hauptachsen also unten ganz nackt dastehen, könnte man hier von einer

Fig. 2. Artemisia maritima L. var. suffruticosa Hs
Art Cauliflorie sprechen, eine Blütenbildung an nackten, holzartigen, doch, im Gegensatz zu echter Cauliflorie (Blütenbildung an altem Holze!), diesjährigen Stämmen oder Zweigen.

Eigenartige, rein florale Sprosse in den unteren Laubblattaxillen habe ich auch an den im Bergianischen Garten gepflanzten, aus Öland stammenden Exemplaren der *Artemisia laciniata* Willd. gefunden. Die hier vorgefundenen Floralsprosse waren jedoch alle erheblich stärker ausgebildet als diejenigen der *A. maritima var. suffruticosa*. Die alleruntersten, basalen Axillen am Sprosse der *A. laciniata* waren in der Regel ganz steril; zuerst ein Stückchen (5 cm. oder so) am Sprosse hinauf finden wir hier die genannten Floralsprosse (Fig. 3). Sie stehen hier ziemlich weit von einander entfernt, sie

Fig. 3. Artemisia laciniata Willd.
sind relativ lang und ausserdem viel reicher an Blütenköpfchen als diejenigen der A. maritima var. suffruticosa. Gewöhnlich sind sie von unten auf ziemlich dicht mit kurz- oder so gut wie ungestielten Blütenköpfchen versehen; selten ist ihr unterer Teil blütenlos, nur mit kleinen Schuppenblättern besetzt. Die Länge der Floralsprosse beträgt etwa 3—4 (—8) cm. Die Stützblätter sind gewöhnlich bei der Ausbildung der Sprosse abgefallen.

FIGURFÖRKLARING

Fig. 1. Artemisia maritima L. var. suffruticosa HN. Blommande årsskott med vid basen utbildade, axillära, dvärgartade, rent florala sidoskott. — Bergianska trädgården, Sept. 1906. (1/5 nat. storl.)

Fig. 2. Artemisia maritima L. var. suffruticosa HN. Nedre delen af årsskott med dvärgartade, rent florala: a starkare, b af blott en enda blomkorg uppbåggda sidoskott (1/1). (4/5 nat. storl.)

Fig. 3. Artemisia lacinata WILDL. Nedre delen af årsskott med i de nedre örtbladsvecken utbildade, reflexionsskottliknande, dvärgartade, rent florala sidoskott. — Bergianska trädgården, Okt. 1906. (4/5 nat. storl.)
DISCOSIA ARTOCREAS (Tode) Fr., EINE LEPTOSTROMATACEE MIT EIGENTÜMLICHEM PYKNIDENBAU

VON

TYCHO VESTERGREN.

Die häufigste und bekannteste Art der Gattung Discosia, die in Saccardos Sylloge III 19 Arten umfasst, dürfte Discosia Artocreas (Tode) Fries sein. Nach den Angaben der mykologischen Litteratur

besitzt dieselbe eine Mündungspapille, und ein Blick auf Fig. 1, welche die Pykniden von *Discosia Artocreas* in 20facher Vergrößerung wiedergibt, scheint ja auch diese Behauptung nur zu bestätigen. Aber an dünnen, senkrecht zum Substrate durch die Pyknide gelegten Schnitten fand ich wider Erwarten, dass es sich tatsächlich ganz anders verhält. Diese sog. Mündungspapille ist faktisch die Spitze einer sterilen Hyphensäule, die die Pyknide vom Boden bis zum Dache durchzieht. Das schildförmige Dach hängt mit der Spitze der Säule zusammen, die von dem ringförmigen, von Konidien erfüllten Pyknidenraum umgeben ist.

Die reifen Pykniden findet man im Früh-

58

Der flache Boden der Pyknide ist aus 3—4 Schichten von ungefähr isodiametrischen, braunen Zellen gebildet. Von diesem Boden erhebt sich in der Mitte jene Hyphensäule, deren Zellen im untern Teile isodiametrisch, aber im obern Teile mehr in der Säulenrichtung gestreckt sind. Unter der Kutikula besteht das Dach aus einer einfachen Schicht isodiametrischer Zellen (Fig. 2).

Nur aus dem Boden der Pyknide spriessen die Konidien an der Spitze ihrer sehr zarten, spärlich septierten Konidienträger hervor.

Letztere sind von recht verschiedener Länge, so dass man festsitzende, völlig ausgebildete Konidien in recht verschiedenen Höhen findet, was durch Raumgründe bedingt sein dürfte.

Die Konidien (Fig. 3) sind schwach gelblich gefärbt, wurstchenförmig, immer 4zellig; die zweitoberste Zelle ist konstant grösser als die drei andern. Welches Ende einer Konidie das oberste oder
das unterste ist, lässt sich immer leicht entscheiden, auch wenn sie abgefallen ist. Das untere Ende, mit dem die Konidie am Träger sitzt, ist nämlich gerade abgeschnitten, das obere dagegen stumpf zugespitzt.

Fig. 12 zeigt das Anschwellen der Trägerspitze zur Konidie, die sich schliesslich abschnitt, indem sich an der Grenze der Konidie und des sehr schmalen Trägers eine Querwand bildet. Erst wenn die drei Querwände der Konidie schon angelegt sind, beginnen die beiden Borsten sich durch Ausbuchtungen der Endzellen der Konidien zu entwickeln. Die Borsten sind endständig, aber gegen die konkave Seite der Konidie gerückt. Jede Borste erreicht etwa die Länge des Konidienkörpers.

Obgleich die Konidien über ein Jahr trocken im Herbar gelegen hatten, war es sehr leicht, dieselben in Pflaumendekokt im hängenden Tropfen zum Keimen zu bringen.

Die Keimung geht sehr regelmässig von statten, und zwar bei jeder Konidie in derselben Weise. Die ganze Konidie schwillt an und hat schliesslich mehr als die doppelte Grösse erreicht. In 99 Fällen von 100 sendet die zweitoberste Zelle, die, wie oben erwähnt, grösser als die übrigen ist, an der konvexen Konidienseite einen Keimschlauch aus. Diese Keimhypse verzweigt sich bald und wird septiert. Fig. 5—6 zeigen zwei Konidien vor dem Keimen, Fig. 7—8. in derselben Vergrösserung, zwei in der oben erwähnten charakteristischen Weise ausgekeimte Konidien. Diese Keimhyphe verzweigt sich bald und wird septiert. Fig. 5—6 zeigen zwei Konidien vor dem Keimen, Fig. 7—8. in derselben Vergrösserung, zwei in der oben erwähnten charakteristischen Weise ausgekeimte Konidien. Fig. 9—11 zeigen einige anormale und sehr seltene Keimungsmodi. In Fig. 9 hat die oberste Zelle einen Keimschlauch in der Längsrichtung der Konidie ausgesandt, während die grosse zweitoberste Zelle keinen Keimschlauch bildet. In Fig. 10 haben die beiden mittleren Zellen ausgekeimt. in Fig. 11 sendet die grosse zweitoberste Zelle der Konidie zwei Keimschläuche aus.

Die so zum Keimen gebrachten Konidien liessen sich auf festem Nährboden (Pflanzenzongkogelatine) leicht weiterentwickeln. Es entstanden jedoch, trotz der langwierigen Kultur, keine Pykniden. Es trat nur ein anfangs schneeweisser, dann an der Basis schwarzbanner Hyphenfilz hervor, an dessen freien Hyphenenden die für die Pykniden charakteristischen Konidien entstanden. Nicht selten aber fanden sich Konidien, deren Gestalt von der gewöhnlichen
abwich. Fig. 13 stellt eine Konidie von 6 Zellen dar, von denen die beiden untersten länglich und hyphenähnlich waren. Die beiden Borsten waren auch bei dieser Konidie normal entwickelt. Nur durch den Platz der untern Borste war es möglich, die Grenze zwischen der Konidie und der Hyphe festzustellen.
BLOMMOR OCH INSEKTER PÅ SKABBHOLMEN I ROSLAGEN SOMMAREN 1901.

NÅGRA IAKTTAGELSER AF

CARL SKOTTSSBERG.

Mit deutscheu Resümé.

Min ursprungliga plan gällde en såvidt möjligt allsidig blombio- logisk undersökning, som skulle ha tagit flera somrar i anspråk. Arbetenå 1901 kunde tyvärr icke igångsättas förrän i början af Juni, och redan i början af Augusti måste jeg lämna Skabbholmen; denna uppenbara olägenhet beräknade jeg att under kommande sommar kunna afhjälpa. Redan under sommarens lopp måste jeg emeller- tid högst väsentligen förändra mina planer, enär jag engagerades som botanist åt den svenska antarktiska expedition, som i Oktober samma år utgick. Jag sökte därför genast att så mycket som möj-ligt begränsa mina undersökningar å Skabbholmen.

Den varma och torra sommaren 1901 visade en utomordentlig rikedom på insekter; jag kan icke påminna mig att någonsin ha

1 Ytan ungefär 21 hektar.
sett sådana massor af dagfjärilar som det året på Skabbholmen. Jag inskränkte därför min undersökning till förnämligast en studie öfver dagfjärilarnas uppträdande, med afsikt att utröna deras betydelse för korspollinationen och i detta hänseende jämföra dem med humlorna.

Oaktadt min undersökning visar stora luckor och i flera punkter långt ifrån tillfredsställer mig, har jag dock velat publicera den. Det är nämligen numa uteslutet att jag skulle kunna på samma sätt återupptaga mina studier. Äfven om dessa ej ha något större intresse i den form de nu visa sig, kanske de dock kunna ge någon botaniker anledning till en undersökning af liknande art, hvilken, om den blev fullförd, enligt min övertygelse skulle kunna bli af vikt.

I föreliggande uppsats har jag även medtagit smärre notiser och observationer, som icke ha någon betydelse för frågan om det periodiska uppträdandet af blommor och insekter.
1. **Särskilda anteckningar.**

Chrysanthemum leucanthemum L.
Blomning 30/9—början af Aug. Under Juli hörde den till en av de mera dominerande arterna. Besökare: *Polyommatus virgaureae* sags i stora skaror besöka Chrysanthemum, särskilt 10—20 Juli, då den stod i sitt högsta flor; Anthrocera lonicæ (1 blst. 19/7):
Mordella aculeata (1 2/7); Leptura sp. (1 19/7).

Achillea millefolium L.
Blomning — Juli, — '— §. Uppträder i många samhällen och är fläckvis ganska dominerande. Besökare: *Polyommatus virgaureae* sågs i stora skaror besöka *Chrysanthemum*, särskilt 10—20 Juli, då den stod i sitt högsta flor: Anthrocera lonicæ (1 blst. 19/7); Gonepteryx rhamni (1 31/7), Cœnonympha pamphilus (1 27/7, 19/7). Anthrocera lonicæ (1 19/7), Procris staticæ (1 20/7); Coleoptera: obe-
kant art (1 20/7). Diptera: pollensamlande (1 6/7, 1 20/7).

Tanacetum vulgare L.
blst. 19/7, 26/7, Vanessa urticæ (19/7).

Aster tripolium L.
Blomning Juli—Augusti. Besökare: Diptera: pollensamlande
(1 blst. 29/7).

Solidago virgaurea L.
Började blomma 25—27/7. Utgjorde säkerligen den mest i ögonen fallande Augustiväxten; ännu 19/9, funnen blommande. Besökare: Äfven för denna växt räcker *Polyommatus virgaureae* till: den är ju också uppkallad efter densamma och lägger sina ägg på dess blad: mycket talrika besök 27/7, 31/7, 27/7: Lycæna amanda (1 blst. 30/7). L. astrarche (1 korg 30/7), Erebia ligea (1 do. 31/7); Bombus sp.
(9/2); Diptera (27/7).

Centaurea jacea L.
Började blomma 6/7: i full blom i midten af Juli: starkt i aflagande

1 Nomenklaturen i enlighet med Neuman och Alfvengren, Sveriges Flora, Lund 1901.
2 Betyder att 1 ind. af Anthrocera besökte 1 blomställning af Chrysanthemum. o. s. v.
3 Betyder att 1 ind. af Polyommatus besökte 3 blomställningar af Tanacetum o. s. v.
men funnen blommande ännu 19/9. Dominerande och synnerligen mycket besökt. Besökare: Bombus lapidarius och terrestris, allmänt iakttagna 20/7;—31/7, tidigare visserligen ickesällsyrta, men dock i ringare antal; Bombus sp. (12/7). Hesperia comma (1 blst. 21/7, 22/7, 1 26/7, 5 27/7, 4 30/7, 2 31/7), Erebia leigea (2 22/7, 2 26/7, 2 28/7, 1 31/7), Argynnis adippe (1 27/7, 1 28/7, 1 30/7), Pieris napi (1 29/7, 1 22/7), Argynnis ino (3 22/7), Aphanotopus hyperanthus (1 30/7); Gonepteryx rhamni (1 28/7), Lycaena argyrognocon (1 22/7), Pieris brassicae (1 27/7), Polyommatus virgaureae (1 27/7), Procris statices (1 23/7, 1 24/7), Anthrocera lonicerae (1 24/7, 1 27/7).

Cirsium lanceolatum (L.) Scop.
Blommade under Juli månad. Besökare: Bombus sp. (1 blst. 26/7); Coleoptera: Leptura sp. (1 blst. 26/7).

Cirsium palustre (L.) Scop.
Började blomma de sista dagarna af Juni; i aftagande i början af Augusti. Allmän och ganska dominerande på fuktiga ängar, hvilka dock på Skabbholmen inta en obetydlig areal. Besökare: Hesperia comma (1 blst. 28/7, 2/7), Anthrocera lonicerae (1 21/7, 1 28/7); Bombus sp. (1 21/7, 2 22/7, 3 23/7, 5 27/7, 1 28/7); Diptera (27/7).

Cirsium heterophyllum (L.) All.
Den 1—4 Juli slog här och där en blomställning ut, några dagar senare stod den i full blom. Den 31/7 var blomningen slut; jag fann då äfven mogna frukter. Förutom pollensamlande flugor, som mycket allmänt infunno sig, iakttagos följande besökare: Bombus lapidarius och terrestris (9), allmänna; Apis mellifica (11/7, 17/7, 18/7, 21/7); Argynnis adippe (1 blst. 12/7, 13/7, 20/7, 23/7, 2 31/7); Gonepteryx rhamni (1 21/7, 26/7, 2 23/7, 27/7), Pieris napi (5 18/7), Hesperia comma (2 21/7); Erebia leigea (1 27/7), Anthrocera lonicerae (mellan 12/7 och 26/7 mycket ofta antecknad), Procris statices (1 blst. 11/7, 1 12/7, 1 20/7); Cetonia aurata (2 12/7).

Sannolikt är det en annan humle-art än B. terrestris som åsyftas, ty denna skulle väl knappt nå det 15 mm. långa rörets botten. Ej heller alla fjärilar äro lämpade för denna art; säkra pollinerare torde vara Pieris napi, Erebia leigea, Anthrocera lonicerae, Procris statices. På de lokaler där C. heterophyllum förekommer, är den under högsommaren en brillant företeelse.

Cirsium arvense (L.) Scop.
Blommade 1/7—8. Besökare: Polyommatus virgaureae (3 blst. 27/7).

Leontodon autumnale L.
Blomning midten af Juli—Sept. Besökare: Polyommatus virgaureae (1 blst. 21/7), Pieris napi (1 25/7).

Hypocharis maculata L.

Började blomma 25/6: starkt i aftagande 20/7; mogna frukter samlades 31/7. I början af Juli iakttogs, att korgarna slöto sig vid 6-tiden på aftonen och åter öppnades vid 8-tiden på morgonen. Besökare: pollensamlande och -ätande flugor mycket allmänna; Anthrocera lonicerae (1 blst. 11/7, 1 12/7).

Hieracium pilosella L.

Blomning senare delen af Juni, Juli. Besökare: flugor talrika, t. ex. 3/7; i samma ögonblick 27 st. å hvar sin af 27 blst.

Hieracium murorum L. s. l.

Blommade hela Juli månad. Besökare: Diptera, talrika: Bombus terrestris (1 blst. 21/7), Polyommatus virgaureae (1 26/7), Erebia ligea (1 27/7), mätarefjäril (1 27/7).

Campanula rotundifolia L.

Blomningen började 15/7; funnen blommande ännu 19/9. Besökare: Bombus lapidarius ½ (1 bla 22/7, Lidö, 3 23/7, 4 30/7, 4 30/7), B. terrestris ½ (6 20/7); 2 Bombusarter (27/8).

Campanula persicifolia L.

Valeriana officinalis L.

Lonicera xylosteum L.

Blomning 18/6 sparsam, 15/6 rätt allmän; slut 20/6. Rikligt med frukt 31/7. Besökare: Bombus sp. ½ (11 blr å 2 buskar 14/6).

Galium boreale L.

Blomning 1/7 — ¾. Besökare: Anthrocera lonicerae (1 bla 20/7).

Galium verum L.

Blomning slutet af Juli—slutet af Aug. Besökare: Erebia ligea (1 blst. 27/7, 1 30/7), Pieris brassicae (1 31/7).

Plantago lanceolata L.

Svensk Botanisk Tidskrift.
Linaria vulgaris (L.) Mill.
Blomning slutet af Juli—Aug. Besökare: Bombus sp. ♀ (4 blr 21/7); 3 Bombus sp. (talr. blr 12/8).

Euphrasia tenuis (BRENN.) WETTST.

Euphrasia bohonica KIHM.

Pedicularis palustris L.

Melampyrum nemorosum L.
Började blomma 10/6; den 12/7 ännu vid full vigör; i allmänhet afblommad 1/8, men enstaka blommande ännu 19/9. En albinosform med alldeles hvita högblad och ljus grönska, men med blommor normalt färgade, observerades. Besökare: talrika humlor, B. lapidarius ♀ (21/7, 27/7), B. terrestris ♀ (12/7, 21/7, 27/7); Gonepteryx rhamni, ♂ och ♀ (åtsk. blr 27/7); enligt framställningen hos KNUTH voro dessa senare besök förmodligen resultatlösa (II: 2. p. 180).

Melampyrum pratense L.
Blomning 21/7—8. Besökare: Bombus lapidarius ♀ (3 blr 21/7 Lidö).

Origanum vulgare L.
Blomning senare hälften af Juli—Aug. En af de mera framträdande sensommarväxterna och mycket uppmärksammad af insekter. Besökare: Bombus-arter, allmänna; Polyommatus virganeae i stor mängd 22/7, 25/7, 28/7; Aphantopus hyperanthus (1 blst. 25/7, 1 27/7, 1 27/7, 1 27/7), en mätarfjäril (1 27/7).

Clinopodium vulgare L.
Blomning 11/7—8.

Stachys palustris L.
Blomning 27/7—8. Besökare: Bombus terrestris ♀ (2 blr 27/7).

Gentiana campestris L. z suecica MURB.
Blomning 24/6 (ett individ sedt) —15/7.

Trientalis europaea L.
Blomning Juni—början af Juli.
Glaux maritima L.

Primula officinalis L.
Blomningen började ungefär 15/6; den 9⁄6 stod växten ännu i full blom; 15/6 blomning starkt i astagande, 15⁄6 nästan slut.
Kronans storlek hos den i de yttre skären förekommande Primula officinalis ölverträffar alldeles säkert storleken hos den som växer inne i landet, ehuru jag tyvärr icke med tabeller kan bevisa detta mitt påstående. Hesselman hade i förväg gjort mig uppmärksam på förhållandet i fråga; detta hade dock varit obehöftligt, ty skillnaden är så tydlig, att den frapperar hvarje besökare.

För att utröna storleksvariationen på Skabbholmen mätte jag ett stort antal blommor, dels oberoende af den blomställning de tillhörde, dels hvarje axel för sig. Resultatet är framställdt i nedanstående tvenne tabeller.

Tab. I.

<table>
<thead>
<tr>
<th>Kronbrämets diameter i mm.</th>
<th>9 10 11 12 13 14 15 16 17 18 19 20</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antal blom med detta tal</td>
<td>1 3 18 31 75 82 165 149 84 22 2 2</td>
</tr>
</tbody>
</table>

Af 634 undersökta blommor, tillhörande 90 axlar, hade alltså 165 en diameter af 15 mm., där alltså den på det hela taget Regelrätta kurvans topp-punkt är belägen. Storleksmedeltalet är 14.97 mm.

Tab. II.

Gruppering i storleksklasser af 90 undersökta axlar.

<table>
<thead>
<tr>
<th>Diam.-medeltalet i mm. för kronbrämets pr individ</th>
<th>11—12 12—13 13—14 14—15 15—16 16—17 17—18</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antal individer med detta tal</td>
<td>2 3 14 20 28 19 2</td>
</tr>
</tbody>
</table>

Tydligt framgår häraf, att hvarje blomställning tillhör en viss storleksyp, och att icke det medeltalet, som fåtts af hela antalet utan

Enligt Kirchner och Schultz (se Knuths Blütenbiol. II: 2, p. 311) skall kronbrämet hos den mikrostyla formen vara något mindre än hos den makrostyla. Af de 90 undersökta blomställningarna voro 47 makrostyla, 42 mikrostyla och en blandad. Tyvärr kan jag icke återfinna den anteckning jag gjorde om förhållandet mellan brämstorlek och heterostyli.

Vid ett par tillfället fann jag blommor med kort kronpip, icke näende öfver fodret och med det lilla brämet inneslutet mellan fodertänderna; ståndarknappar och märke stodo på samma höjd. Dessa blommor sutto i det inre af blomställningar och hade väl på tidigt stadium af de omkringsittande blommorna hämmats i sin utveckling. Inblandade i för öfrigt normala blomställningar ha rena hanblommor iakttagits, med förkrympt pistill.

Bränet är plattare, mera utbredt. Färgen varierar mellan svavelgult (vanligast) och höggult, med någon dragning åt brandgult. De röda lläckarna framträdde mycket olika starkt, än som smala, något spolformiga strimmor; än breda, så att de nästan flyta ihop till en röd ring.

På grund af min alltför sena ankomst till Skabholmen har jag inga insektbesök antecknade för Primula officinalis. Såsom fruktbarhetstabellen längre fram visar, besöktes den mycket under sin egentliga blomningstid.

Primula farinosa L.

Började blomma i slutet af Maj; i full blom 9/6. Afblommad omkring 17.

Enligt Hermann Müller (Alpenbl.1 p. 364—365) kan man i Mellaneuropa urskilja tvenne »blombiologiska» former af denna växt, en alpin form, som han undersökt i Alperna, och en låglandsform, som han undersökt från Pommern. Den förra skulle ha trängre

1 Alpenblumen o. s. v. Leipzig 1881.
ingång till pipen och vara tillpassad för dagfjärilar, den senare med sin vidare mynning mera för humlor och bin. Reducerade till mm. få vi följande medeltal av Müllers mätningar:

<table>
<thead>
<tr>
<th>Alpin form</th>
<th>makrostyl 0.81</th>
<th>Låglandsform</th>
<th>makrostyl 1.27</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>mikrostyl 0.86</td>
<td></td>
<td>mikrostyl 1.19</td>
</tr>
</tbody>
</table>

Det föll mig in att se efter huru saken förhöll sig på Skabbholmen, om vi där skulle finna Müllers humle- och fjärilform. At 28\(^1\) undersökta makrostyle var minimum 0.9 mm., maximum 1.1; medeltalet 0.997 eller lämpligen 1 mm.. Af 56 undersökta mikrostyle var minimum 1 mm., maximum 1.4 och medeltalet 1.1 mm. Den Primula farinosa, som förekommer på Skabbholmen, står alltså midt emellan formerna hos Müller, hvilkens undersökning nog behöfde göras om på större material.

Besökare: Pieris brassicae (talr. blíst. \(10/6\)), Argynnns selene (1 bla \(12/6\) Lidö). Cœenonympha pamphilus (1 \(13/6\)), Melitæa cinxia (1 blíst. \(15/6\)).

Calluna vulgaris L.

Började blomma \(27/7\): i blom ännu \(10/9\). Dominerade å de fläckar, där den förekom. Besökare: Bombus sp. \(\frac{5}{7}\) (talr. bl. \(25/7\), \(30/7\), \(32/7\), \(28/7\), \(9/9\)–\(12/9\)); Lepidoptera: Polyommatus virgaureae (åtsk. blr \(27/7\), \(28/7\)), Lycæa argyrognomon (åtsk. blr \(27/7\)).

Pimpinella saxifraga L.

28—30 Juli anteknades börjande blomning. Besökare: Diptera (1 blíst. \(30/7\)).

Angelica silvestris L.

Blomning \(15/7\)–\(24/7). Besökare: Diptera allmänt; Bombus terrestris \(\frac{5}{7}\) (\(27/7\)); Erebia ligea (\(27/7\)).

Heracleum spondyliuim L.\(^*\) sibiricum L.

Blommade \(30/6\)–början af Aug. Besökare: det fullkomligt vimlar af flugor å denna växt; den \(2/7\) anteknade jag, att på en blíst. samtidigt sutto 27 flugor, på en annan 15; dessa senare bortskrämdes, men efter ett par minuter sutto 6 där igen, om de samma eller andra kunde jag ju icke ataga mig att afgöra. Den \(6/7\) räknade jag å en blíst. 20, å en annan 25 flugor.

Laserpitium latifolium L.

Blomning \(5/7\)–\(31/7). Besökare: Diptera allmänt; Mordella aculeata (1 blíst. \(13/7\)).

\(^*\) Antalet undersökta blommor är för litet: anmärkas må dock, att Müller drog sina ständigt citerade slutsatser ur ett ännu mindre material. 9—11 blr
Anthriscus silvestris (L.) Hoffm.

Epilobium angustifolium L.
Blomning omkr. $15/7 - 8/$. Besökare: Bombus sp. (23 blt $20/7$),

Lythrum salicaria L.
Blommade $10/7 - 8/7$ slutet af Aug. Hörde till högsommarens mera dominerande växter. Besökare: Bombus-arterna voro de flitigaste besökarna af Lythrum och förekommo allmänt. Mera undantagsvis såg jag fjärilar: Hesperia sylvanus (2 blt $18/7$), Pieris napi (1 blt $25/7$), Lycæa argyrogrammon (1 $25/7$), L. astrarche (1 $27/7$), Polyommatus virgaureae (1 $25/7$), Gonepteryx rhamni (1 $27/7$).

Hypericum quadrangulum L.
Blommade $15/7 - 8/7$ början af Aug. Besökare: Bombus lapidarius \ominus (1 blst. $21/7$, 1 $21/7$, 1 $21/7$, 1 $23/7$). Humlornas besök bestå i ett hastigt, men intensivt pollensamlande; på ett par sekunder ha de farit öfver en blomma.

Geranium sanguineum L.
Började blomma $15/6$, i full blom $20/6$, efter midten af Juli i aftagande och in allmänhet slut $25/7$.

Jag fann af denna växt tvenne blomformer, tvåkönade och honblommor, jänta öfvergångsformer emellan dem. På Skabbholmen var könsfördelningen af samma art som uppgifvits från andra håll (se Knuths Blutenbiol. II: 1, p. 231); växten var gynomonoik eller vaurigare gyn Dioik. Hos den gyn monoika formen äro de tvåkönade blommorna ofta något defekta med hänsyn till antalet ständare, så att hos denna alla öfvergångar mellan rena \ominus och rena Θ kunna finnas. Honblommorna äro i allmänhet något mindre än de tvåkönade; dock är skillnaden ej så betydlig som hos G. silvaticum.

De tvåkönade blommorna voro ganska starkt proterandriska. Dock hade vanligen icke alla anterorna förlorat sitt pollen, när märkena utbredde sig. Så kunde också hos G. silvaticum ofta vara fallet, men blef af betydelse endast hos den förra, som har betydligt kortare och mindre utböjda ståndarsträngar än den sistnämnda. På grund häraf inträffar ofta, att sedan märkena blifvit fullt utbredda, anterer, ännu innehållande pollen, stå emellan och på alldes samma nivå som märkena, hvarvid självpollinering bör kunna äga rum. För öfrigt kan i detta sammanhang nämns att ståndarna icke alltid utvecklade sig i samma ordning. Ibland följde de hyllets
utveckling, så att de, som först blottades, hastigt mognade, oberoende af, om de tillhörde yttre eller inre kransen; ibland åter utvecklades de, sedan blomman slagit ut, ungefär samtidigt, under det att i andra fall en betydande skillnad uppstod mellan de båda kransarna, såsom det i allmänhet blifvit beskrifvet. Att de inre i så fall utveckla sig först beror utan tvifvel på att de bildar den ur organogenetisk synpunkt yttre kransen.

Besökares: Lycæna eumedon besökte under Juni såväl G. silvaticum som sanguineum; den senare var ganska allmän, men icke så dominerande som silvaticum: särskilt fick den längre fram i Juli svåra konkurrenser. Då G. silvaticum blommat slut, överflyttade L. eumedon hela sitt intresse på G. sanguineum, men var nu mindre talrik än förut; dess flygtid slutade omkr. 25/7, samtidigt med att Geranium afslutade sin blomning. Öfriga fjärilar: Argynnis selene (1 bla 22/6, 4 2/7, 1 5/7, 2 6/7); Vanessa urticae (2 30/6, 1 30/6), Lycæna argyrognomon (1 10/7, 1 11/7, 1 13/7), Melitæa cinxia (1 23/6, 1 25/6), Pieris napi (1 2/7). Lycæna semiargus (1 6/7), Hesperia sylvan (1 11/7), Procris statices (1 2/7), Hymenoptera: ett bi (2 blr 30/6), Bombus lapidarius (9 6/7).

Geranium silvaticum L.

Började blomma omkring 1/6. Intog under Juni månad en särdeles dominerande ställning, var en af de soliga ängarnas viktigaste karaktärsväxter och färgade dem fläckvis alldeles rödgredelina. Vid undersökningens början, den 9/6, stod den redan rikt i blom; den 1/7 var den i allmänhet utblommad.

De tväköande blommorna äro enligt mina ialttagelser alltid starkt proterandriska; homogama former, som t. ex. Müller (Alpenbl. p. 175) afbildat, fann jag icke. Nektarierna äro belägna mellan de inre (organogenetiskt yttre och först utvecklade) ståndarna och foderbladen, hvilka i sin fördjupning mottaga honungen. Denna skyddas för »objudna gäster« och uttorkning dels genom de historiskt bekanta haren å kronbladets klo, dels genom styfvare här å ståndarbasen. De förras betydelse för förhindrande av uttorkning hade jag tillfälle att övertyga mig om: tog man bort kronbladen, torkade honningen mycket fort i solvärmeförbättrades. i regel fördelade på skilda individ. Den utan all fråga allmännaste var den rent tväköande: den har de största blommorna: af 83 undersökta, från 25 individ, ficks ett medeltal af 27.6 mm. i diameter. Ståndarna äro 10 mm. långa, pistillen ca

Besökare: Den dominerande Geranium silvaticum var åtföljd af en dominerande fjäril, Lycæna eumedon, som ständigt syntes om svärma densamma för att suga honung. Den lägger sina ägg på bladen af Geranium, så att sambandet mellan växt och insekt är ganska intimt. Näst Lycæna eumedon var Argynnis selene den vanligaste besökaren, men af mycket mindre betydelse. Vidare ha följande besök iakttagits: Pieris napi (8 blr 15/6), Melitaea cinxia (1 17/6, 1 17/6, 1 22/6), Pieris brassicae (3 21/6, 6 21/6), Cænonympha pamphilus (1 15/6), Parnassius mnemosyne (1 15/6), Anthocharis cardamines (3 17/6), Lycæna semiargus (1 17/6), Hesperia sylvanus (17/6); Bombus terrestris (2 17/6).

Geranium lucidum L.

I full blom 15/6. Slut i början af Juli. — Redan innan de små, skära kronbladen bredt ut sig, skjuter pistillen ut sina rosenröda, något åtskilda märken; dess längd är då 7 mm. Ståndarna äro då endast 4 mm. långa; de förlängas emellertid nu betydligt, så att ståndarknapparna, de öppna sig, stundom nå upp till märkena; dessa stodo emellertid ännu nästan vertikalt, men bredde strax däran ut sig. Jag fann sålunda växten svagt proterandrisk, icke proterogyn (ss. hos KNUTH, Blutenbiol. II: 1, p. 234 anges), då ju pistillen endast skenbart hinner före ståndarna.

Polygala vulgar L.

Blomning 9/6—8/6. Besökare: Lycæna semiargus (1 blst. 20/6).
Lathyrus pratensis L.

Blomning 17/6—slutet af Juli. Besöka: Lycæna semiargus (1 blst. 6/7); Bombus lapidarius, åtskilliga indiv. (20/7, Lidö). Enligt Knuth, Blütenbiol. II: 1. p. 337 förmå fjärilar icke verkställa pollinationen, och äro deras besök salunda för växten värdelösa.

Vicia cracca L.

Blommade 16/6—omkr. 1/7. Redan i slutet af Juli fann jag mognna frön; fruktssättningen var riklig. Besöka: Lycæna semiargus (1 blst. 6/7, 1 blå 8/7), L. argyrognomon (21/7, Lidö); Bombus lapidarius (1 blå 1/7; 20/7 och 21/7 talr. blå, Lidö). Om besök af fjärilar, se föregående.

[Lotus corniculatus L.]
Besöka: Bombus lapidarius (talr. blå 21/7, Lidö.)

Trifolium pratense L.

Började blomma omkr. 1/7. I full blom hela Juli—Aug. Allmän och ganska dominerande under sitt högsta flor. Besöka: Bombusarter observerades dagligen och stundligen besöka denna växt. Därjämte observerades ett antal Rhopalocera: Argynnis adippe (2 blst. 11/7, 2 11/7, 1 13/7, 1 23/7), Hesperia comma (2 20/7, 2 23/7, 1 27/7), Polyommatus virgaureae (2 13/7), Papilio machaon (1 12/7), Pieris brassicae (1 11/7), Anthrocera ionicæ (2 11/7, 2 13/7).

Rubus caesius L.

Blommade under Juli. Besöka: Bombus lapidarius (4 blå 21/7).

Comarum palustre L.

Potentilla erecta (L.) Dalla Torre.

Blomning Juni—Sept. Besöka: Sväfflugor (1 blå 22/6, 2 29/7); Coenonympha arcania (1 17/7).

1 Finnes ej å Skabbholmen.
Potentilla anserina L.

Genus rivale L.
Började blomma omkr. 1/6; blomningen slut 1/7. Besökare: Bombus sp. (19/6).

Spiraea ulmaria L.
Blomning slutet af Juni—början af Aug. Besökare: huvudsakligen flugor; Bombus terrestris (1 blst. 26/7).

Saxifraga granulata L.
Blomning omkr. 15/5—24/6. De starkt proterandriska blommorna voro större än Skabbholmen än inne i landet.

Sedum maximum (L.) Suter.

Sedum acre L.
Blomning under Juli. Besökare: Bombus lapidarius (åtsk. blr 10/7).

Dentaria bulbifera L.
Blommade 15/6—1/7. Intar ett ganska framstående rum i lunddäldernas skuggflora. Besök ha icke iakttagits.

Berberis vulgaris L.
Blomning under Juni. Besökare: Bombus terrestris (17/6).

Ranunculus acer L.
Blomningstid Juni (huvudsakligen) —Juli. Besökare: Coenonympha pamphilus (2 blr 20/6); f. ö. pollenätande flugor.

Silene nutans L.

Den tvåkönade blomman har ett 12—13 mm. högt föder; kronan är 17—20 mm. i diam.; de mogna ständarna är 17—18 mm. långa; fruktämnet är 4 mm., märken 5 mm., hvita, å 1, å 2 småningom violetta i spetsen samt betydligt förlängda. Å honstadium är fruktämnet 5—6 mm. långt, stift och märken ca 18 mm., med 12—13 mm. utskjutande ur blomman. Honblom-
man har 8—9 mm. högt foder. Kronan är endast 11—12 mm. i diameter, fruktämnet af samma utseende som i ofvan beskribna fall.

På Skabbholmen gjorde jag en del iakttagelser på Silene nut- ans, som kunna förtjäna att här nämnas. Beträffande antesen förlopp kom jag genom att dag för dag observera några blommor till ett i någon män nytt resultat. Trenne blommor (a, b, c) utvaldes och märktes samt observerades under några dagar. Med a 2 30/, menas att blomman a på aften den 30/, utvecklat sin andra stän- dankrans o. s. v.

\[
\begin{array}{cccc}
 & 30/; & 31/; & 1/; & 2/; \\
a & \odot 2 & \odot 1 & \odot 2 & \text{slut} \\
b & \odot 1 & \odot 2 & \text{slut} & \text{—} \\
c & \odot 1 & \odot 2 & \odot 1 & \odot 2 & \text{slut} \\
\end{array}
\]

Med all önskvärd tydlighet framgår häraf, att jag fann antesen räcka fyra nätter, två på hanstadium, två på honstadium. Jag för- modar, att det är på samma sätt annorl ädes.

Beträffande tiderna för blommans öppnande och slutande samt doftens intrådande kan jag endast meddela ett par notiser. Den 3/, började blommorna öppna sig kl. 6 e. m. Följande dag voro de öppna ännu kl. 6.30 f. m., men slutna kl. 8 f. m. Den 20/, började de öppna sig mellan 4.30 och 5.30 e. m., alltså något tidigare än 3/; den 7/; började de sluta sig redan före kl. 7.30, men de allra sista
rullade icke in sina kronblad förrän 8.30; timmen är sålunda något framflyttad; m. a. o., natten har blifvit något längre. Den $^{39}/_7$ an-tecknade jag att det tog 45 minuter för en blomma att rulla in kron-bladen. Kl. 5.30 e. m. samma dag kunde jag, trots det att blommorna nu voro öppna, icke förmärka någon doft alls; kl. 7.30 (alla blom-mor för länge sedan vidöppna) märktes en svag doft, som kl. 9 vuxit till den härliga, hyacintartade doften. Besökare: Tvenne nattfjärilar, tyvärr icke tillvaratagna (hvar sin blå, $^{22}/_7$ kl. 10.30 e.m.).

Melandrium rubrum (Weig.) Garcke.

Blomning: Juni—början af Juli. Den blommande Melandrium hör till de mest lysande företeelserna å holmen. Färgen syntes mig här mera briljant än inne i landet och diametern større. Jag mätte 33 blommor och fick följande resultat:

<table>
<thead>
<tr>
<th>Diam.</th>
<th>21</th>
<th>22</th>
<th>23</th>
<th>24</th>
<th>25</th>
<th>26</th>
<th>27</th>
<th>28</th>
<th>29</th>
<th>30</th>
<th>31</th>
<th>32</th>
<th>33</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antal</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>4</td>
<td>4</td>
<td>5</td>
<td>4</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

Medeltalet är 28.1 mm. Enligt den hos Knuth (Blütenbiol. II: 1, p. 175) lämnade beskrifningen af blomman skulle dess diameter bli icke fullt 24 mm. Någon skillnad i storleken mellan ♂ och ♀ kunde jag icke se. Tyvägnade blommar fann jag, trots sökande, icke.

Viscaria viscosa (Gil.) Asch.

Dianthus deltoides L.

Blomning $^{1}/_7—^{1}/_6$. Besökare: Pieris napi (1 blå $^{22}/_7$).

Orchis mascula L.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>21</td>
<td>3</td>
<td>24</td>
<td>4</td>
<td>18</td>
<td>1</td>
<td>19</td>
</tr>
<tr>
<td>2</td>
<td>16</td>
<td>1</td>
<td>17</td>
<td>5</td>
<td>13</td>
<td>0</td>
<td>13</td>
</tr>
<tr>
<td>3</td>
<td>15</td>
<td>4</td>
<td>19</td>
<td>6</td>
<td>21</td>
<td>2</td>
<td>23</td>
</tr>
</tbody>
</table>

Orchis sambucina L.

Enligt gängse åsikter, älsken bestyrkta af de besök jag sett uppgivas, är D. sambucina en humleblomma. Det förvånade mig genast, att jag icke lyckades få se något besök; men då jag kommit underfund med, att humlor voro sällsynta på Skabbholmen i början af Juni. tänkte jag mig möjligheten af, att andra steklar eller kanske fjärilar förrättade pollinationen, men att besöken redan voro slut. För att närmare efterse detta undersökte jag 17—20 Juni ett antal blomställningar. Resultatet blev följande:

1) En redan vissen blst. af 11 blr. 10 hade ännu sina pollinier kvar 17/6. 2) En blst. om 14 blr, af hvilka de nedre voro vissna, de öfre ännu fullt friska undersöktes 19/6. Alla de 28 pollinierna sutto kvar orörda. Ingen ansvällning af fruktämnen kunde iakttagas. 3) Samma dag undersöktes en annan blst. om 10 blr, mer eller mindre vissnade. De 9 hade alla pollinier kvar; i den 10:de voro de borta: den voro alldeles vissen, men visade ingen anstöd till att ha blifvit befruktad. 4) Ett annat individ med 8 blr hade samtliga intakta. 5) Den 29/6 undersöktes ett individ med 18 blr. alla nästan vissna: 17 voro intakta, en hade blifvit besökt. 6) En blst., nästan vissen, med 20 blr, hade alla intakta.

De undersökta blomställningarna voro valda alldeles på måfå, och tycktes alla befanna sig i ett stadium, då de icke längre hade mycket att hoppas af insektvärlden. Emellertid visade sig ju besöken ha varit mycket sparsamma också under den föregående tiden. Senare, efter \(\frac{1}{7} \), undersökte jag en del blomställningar för att se efter i hvilken grad blommorna satte frukt. Resultatet blev följande:

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10</td>
<td>0</td>
<td>10</td>
<td>23</td>
<td>10</td>
<td>0</td>
<td>10</td>
</tr>
<tr>
<td>2</td>
<td>10</td>
<td>0</td>
<td>10</td>
<td>24</td>
<td>11</td>
<td>3</td>
<td>14</td>
</tr>
<tr>
<td>3</td>
<td>24</td>
<td>0</td>
<td>24</td>
<td>25</td>
<td>11</td>
<td>3</td>
<td>14</td>
</tr>
<tr>
<td>4</td>
<td>15</td>
<td>1</td>
<td>16</td>
<td>26</td>
<td>3</td>
<td>0</td>
<td>20</td>
</tr>
<tr>
<td>5</td>
<td>19</td>
<td>0</td>
<td>19</td>
<td>27</td>
<td>16</td>
<td>0</td>
<td>16</td>
</tr>
<tr>
<td>6</td>
<td>19</td>
<td>0</td>
<td>19</td>
<td>28</td>
<td>11</td>
<td>2</td>
<td>13</td>
</tr>
<tr>
<td>7</td>
<td>19</td>
<td>0</td>
<td>19</td>
<td>29</td>
<td>18</td>
<td>0</td>
<td>18</td>
</tr>
<tr>
<td>8</td>
<td>14</td>
<td>0</td>
<td>14</td>
<td>30</td>
<td>10</td>
<td>0</td>
<td>10</td>
</tr>
<tr>
<td>9</td>
<td>24</td>
<td>0</td>
<td>24</td>
<td>31</td>
<td>15</td>
<td>0</td>
<td>15</td>
</tr>
<tr>
<td>10</td>
<td>11</td>
<td>0</td>
<td>11</td>
<td>32</td>
<td>11</td>
<td>2</td>
<td>13</td>
</tr>
<tr>
<td>11</td>
<td>9</td>
<td>0</td>
<td>9</td>
<td>33</td>
<td>17</td>
<td>0</td>
<td>17</td>
</tr>
<tr>
<td>12</td>
<td>18</td>
<td>2</td>
<td>10</td>
<td>34</td>
<td>9</td>
<td>2</td>
<td>11</td>
</tr>
<tr>
<td>13</td>
<td>14</td>
<td>0</td>
<td>14</td>
<td>35</td>
<td>13</td>
<td>0</td>
<td>13</td>
</tr>
<tr>
<td>14</td>
<td>13</td>
<td>0</td>
<td>13</td>
<td>36</td>
<td>11</td>
<td>4</td>
<td>15</td>
</tr>
<tr>
<td>15</td>
<td>11</td>
<td>2</td>
<td>13</td>
<td>37</td>
<td>12</td>
<td>4</td>
<td>16</td>
</tr>
<tr>
<td>16</td>
<td>12</td>
<td>0</td>
<td>12</td>
<td>38</td>
<td>13</td>
<td>1</td>
<td>14</td>
</tr>
<tr>
<td>17</td>
<td>14</td>
<td>2</td>
<td>16</td>
<td>39</td>
<td>13</td>
<td>0</td>
<td>13</td>
</tr>
<tr>
<td>18</td>
<td>15</td>
<td>0</td>
<td>15</td>
<td>40</td>
<td>16</td>
<td>0</td>
<td>16</td>
</tr>
<tr>
<td>19</td>
<td>18</td>
<td>0</td>
<td>18</td>
<td>41</td>
<td>16</td>
<td>0</td>
<td>16</td>
</tr>
<tr>
<td>20</td>
<td>20</td>
<td>2</td>
<td>22</td>
<td>42</td>
<td>15</td>
<td>0</td>
<td>15</td>
</tr>
<tr>
<td>21</td>
<td>14</td>
<td>0</td>
<td>14</td>
<td>43</td>
<td>14</td>
<td>0</td>
<td>14</td>
</tr>
<tr>
<td>22</td>
<td>5</td>
<td>0</td>
<td>5</td>
<td>44</td>
<td>7</td>
<td>1</td>
<td>8</td>
</tr>
</tbody>
</table>

Antalet undersökta blommor är 644; af dessa visade 20 frukt-sättning, i procent uttryckt 3.1\(^1\); sannerligen i betraktande af blommans organisationshöjd intet lysande tal. 30 blr, 4.6 \(\frac{9}{6} \), hade blivit beröfva sina polliner.

Orchis maculata L.

Blommade Juni—början af Juli. Ett individ med 22 blr, stående i full blom, undersöktes: 14 blr hade båda pollinierna kvar; 4 hade förlorat båda, 4 ett.

Listera ovata (L.) R. Br.

Blommade början af Juni—början af Juli. Den \(\frac{4}{7} \) undersökte jag 25 blomställningar för att se hur pass mycket de varit besökt.

\(^1\) Enligt Hesseman var detta tal sommaren 1900 (ogynnsam) 2.2 \(\% \) (9,588 blr undersökta).
<table>
<thead>
<tr>
<th>Nr</th>
<th>Obesökt</th>
<th>Besökt</th>
<th>S:a blr</th>
<th>Nr</th>
<th>Obesökt</th>
<th>Besökt</th>
<th>S:a blr</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>28</td>
<td>6</td>
<td>34</td>
<td>14</td>
<td>19</td>
<td>12</td>
<td>31</td>
</tr>
<tr>
<td>2</td>
<td>30</td>
<td>15</td>
<td>45</td>
<td>15</td>
<td>32</td>
<td>9</td>
<td>41</td>
</tr>
<tr>
<td>3</td>
<td>22</td>
<td>10</td>
<td>32</td>
<td>16</td>
<td>21</td>
<td>18</td>
<td>39</td>
</tr>
<tr>
<td>4</td>
<td>14</td>
<td>13</td>
<td>27</td>
<td>17</td>
<td>15</td>
<td>21</td>
<td>36</td>
</tr>
<tr>
<td>5</td>
<td>20</td>
<td>5</td>
<td>25</td>
<td>18</td>
<td>21</td>
<td>9</td>
<td>30</td>
</tr>
<tr>
<td>6</td>
<td>18</td>
<td>15</td>
<td>33</td>
<td>19</td>
<td>38</td>
<td>11</td>
<td>49</td>
</tr>
<tr>
<td>7</td>
<td>10</td>
<td>18</td>
<td>28</td>
<td>20</td>
<td>16</td>
<td>12</td>
<td>28</td>
</tr>
<tr>
<td>8</td>
<td>30</td>
<td>13</td>
<td>43</td>
<td>21</td>
<td>14</td>
<td>14</td>
<td>28</td>
</tr>
<tr>
<td>9</td>
<td>29</td>
<td>13</td>
<td>42</td>
<td>22</td>
<td>14</td>
<td>9</td>
<td>23</td>
</tr>
<tr>
<td>10</td>
<td>11</td>
<td>21</td>
<td>32</td>
<td>23</td>
<td>21</td>
<td>6</td>
<td>27</td>
</tr>
<tr>
<td>11</td>
<td>17</td>
<td>8</td>
<td>25</td>
<td>24</td>
<td>17</td>
<td>14</td>
<td>31</td>
</tr>
<tr>
<td>12</td>
<td>11</td>
<td>9</td>
<td>20</td>
<td>25</td>
<td>18</td>
<td>11</td>
<td>29</td>
</tr>
<tr>
<td>13</td>
<td>18</td>
<td>15</td>
<td>33</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Resultatet är för Listera ovata betydligt gynnsammare än för de undersökta Orchis-arterna. Av 811 undersökta blommor hade icke mindre än 307 eller 37.85 % blifvit besökt.

Allium scorodoprasum L.
Blomning Juli månad. Besökare: Bombus sp. (3 blr \(27/_{12}\)).

Allium schoenoprasum L.
Blommade \(15/_{6}-15/_{7}\). Enligt Knuth (Blütenbiol. II: 2, p. 498) är b) sibiricum funnen svagt proterandrisk, dock ej mer än att själfpollinering kunde äga rum; c) alpinium fann Ricca proterandrisk och besökt av små Crambus-arter. Enligt mina iakttagelser på Skabholmen är arten där starkt proterandrisk och själfpollinering ute-sluten. Besökare: Coleoptera: obekant art, kröp omkring i blommorna alldeles inpadrad med pollen (\(17/_{6}, 20/_{6}\)); Vanessa urticae (1 blst. \(5/_{7}, 1 9/_{9}\)).

Allium ursinum L.
I full blomning i början af Juni; i aftagande från \(1/_{2}\). Riklig fruktsättning. Fröna spridda \(31/_{7}\). Bildar i de skuggiga hasselsnåren rätt stora fläckar och verkar i full blom ganska dominerande å dessa lokaler. Därinne ser man vanligen hvarken humlor eller fjärilar, utan blott flugor och skalbaggar; det är ock flugor jag funnit som besökare: \(15/_{6}, 21/_{6}, 22/_{6}\). Mina iakttagelser öfver blommans utveckling öfverensstämma med skildringen i Knuths Blütenbiol. II: 2, p. 495.

Polygonatum multiflorum (L.) ALL.
Blomning under Juni. I allmänhet stå ståndarknapparna på samma höjd som märket; som blomman är homogam eller svagt proterandrisk, är möjlighet till själfpollinering gifven.
Majanthemum bifolium (L.) F. W. SCHM.
Blomning början af Juni—början af Juli. Besökare: Diptera (1 blst. 21/8).

Paris quadrifolia L.
Blommade hela Juni; afblommad i början af Juli. Är fläckvis ganska dominerande å skuggiga ställen. Mot slutet af antesen råta ståndarna, som förut varit starkt utåtböjda, åter upp sig, och stå till sist hopslagna öfver märkena. Om, såsom ofta är fallet, pollen ännu finnes kvar, kan själlpollinering lätt inträffa.

* * *

Den 19/7 gjorde jag ett besök å ett par små, kala, ute i hafsvandet belägna skär, Stora Håkanskär och Vattungarna. Det var en lugn, solig och mycket varm dag. I bergsskrefvorna fannos åtskilliga rikt blommande örter, ss. Lythrum salicaria, Epilobium angustifolium, Geranium sanguineum, Origanum vulgare, Sonchus arvensis m. fl. I allmänhet torde det väl vara ganska ondt om fjärilar å så vindexponerade skär som dessa, men följande anteckning visar i hvilken mängd de med ens kunna infinna sig under en lugn dag.

Å stora Håkanskär observerade jag under ett par timmars besök Lycæna argyrognomon (i stor mängd), Parnassius apollo, Argynnis ino, Satyurus semele, Polyommatus virgaureae, Coenonympha pamphilus, Hesperia comma, Vanessa urticae och Procris statices. Följande besök antecknades:

Epilobium angustifolium besöktes af Lycæna argyrognomon (talrit), och Polyommatus virgaureae.

Geranium sanguineum af Argynnis ino och Coenonympha pamphilus.

Lythrum salicaria af Lycæna argyrognomon (talrit), Satyurus semele, Parnassius apollo och Procris statices.

Origanum vulgare af Polyommatus virgaureae (talrit) Lycæna argyrognomon och Argynnis ino.

Sonchus arvensis af Vanessa urticae.

På Vattungarna flögo Parnassius apollo, Lycæna argyrognomon och eumedon samt Satyurus semele.
2. Försök till en uppdelning af sommaren i perioder, karakteriserade af vissa, dominerande växtarter och insektgrupper.

Jag har redan i inledningen anfört de arbeten af Robertson och Loew, hvari de på statistisk väg kommit till den slutsatsen, att det existerar en parallelism i uppträdandet af en viss insektgrupp och de växter, som genom sin blomkonstruktion visa sig vara tillpassade till densamma, så att man t. ex. finner humlorna talrast den tid då växter, som ha "humleblommor", äro i majoritet bland de blommande o. s. v. Min ursprungliga plan omfattade en undersökning af detta förhållande och jag hade ock för afsikt att hopbringa ett tjänligt statistiskt material. Det var vidare min afsikt att föra undersökningen ännu ett steg längre, att nämligen söka spåra upp de fall, där man kunde påvisa ett samband mellan en bestämd växtart och en viss insektart, ja om möjligt taga reda på någon sannolik orsak därtill. Emellertid blev min undersökning, som ofvan sagts, afbruten, och jag kan därför icke lämna några statistiska uppgifter, icke med siffror styrka mina uttalanden, hvilka endast bilda en skissartad framställning, som dock pekar at det håll jag tror vara det rätta.

Jag har försökt att dela vegetationsperioden i fyra afdelningar, karakteriserade af vissa allmänna växter med i ögonen fallande blomningsfenomen och vissa insekter eller insektgrupper.

Första perioden

omfattar tiden t. o. m. Maj månad; jag har dock härunder icke gjort några direkta iakttagelser.

Om de samtidigt arbetande insekterna kan jag endast uttala en eller annan förmodan. Den första perioden är säkert ojämförligt fattigare på insekter än de senare. Endast flugor och skalbaggar finnas i större antal. Af fjärilar flyga på Skabholmen under vårperioden sannolikt Anthocaris cardamines, Pieris brassicae och napi.
samt med säkerhet Gonepteryx rhamni och Vanessa urticae. **Humlorna** äro troligen sällsynta. Den lilla undersökning jag gjort öfver fruktbarheten hos vårblommande Orchis-artor (se ofvan!) visar, i huru ringa grad de besökas. Växter med tillpassning för fjärilar eller flugor eller insekter i allmänhet, ha det nog bättre ställdt. Åtminstone visar Primula officinalis god fruktsättning (se nedan!) Hvad det är för fjärilar, som förrätta pollinationen hos Primula, vet jag ej, men skulle förmoda Gonepteryx och Pieris-artorna: Knuth uppger (Blütenbiol. II: 2, p. 311) bl. a. den förstnämnda.

Andra perioden.

Lika litet som någon annan period är denna skarpt afgränsad, och flyter alldeles ihop med den tredje. På grund af vissa arters dominerande uppträdande har jag dock skiljt dem åt, så att den andra perioden kommit att omfatta Juni månad.

I slutet af månaden tillkomma en del arter, hvilka emellertid mera tillhöra Juli, hvarför de bättre räknas dit: Comarum palustre, Hypochaeris maculata, Lathyrus pratensis, Silene nutans, Vicia cracca.

Af de ofvan uppräknade, egentliga Juni-växterna, är det endast *Geum rivale*, *Melampyrum nemorosum*, *Myrtillus nigra*, Orchis maculata, Pedicularis palustris och Polygonatum-artorna, som kunna stämplas som utpräglade humleblommor. Humlorna voro, åtminstone till midsommar, ingalunda talrika, och ökades icke mycket
före Juli månads ingång. De öfriga av de anförda arterna besökas
af smärre hymenoptera, diptera och framför allt fjärilar. De mera
långsnablade fjärilarna (snabel > 10 mm.) voro under Juni betyd-
ligt i minoritet. Af någon betydelse voro endast Pieris-arterna, hvilka
dock i allmänhet afslutade sin första flygtid under månaden. Anto-
charis cardamines, Hesperia sylvanus, Papilio machaon och Parnas-
sius mnemosyne, som åven förekommo, syntes icke spela stor roll
såsom besökare. Af de nämnda växterna torde det endast vara
Melandrium rubrum, som erfordrar en fjärilsnabel af mera än 10
mm:s längd. De öfriga arterna besöktes af kortsnablade fjärilar,
hvilka, om och ej så många arter, dock voro utomordentligt individrika.
Detta gäller framför allt Lycæa eumedon, hvars larv lever på Ge-
ranium silvaticum och tycktes ha specialiserat sig på denna
växt. En del andra fjärilar, bland dem Argynnis selene, besökte ock
Geranium. För öfrigt märktes Melitaea cinxia och athalia, Lycæa
semiargus, Coenonympha pamphilus och arcania samt Satyrus se-
mele, men de syntes ej egna några speciella växter sin uppmärk-
samhet. Naturligtvis förekomma talrika flugor, med hvilkas upp-
trädande jag alls ej sysselsatt mig.

Tredje perioden.

Denna period är ganska väl karaktäriserad: därunder infalla en
hel rad viktiga högssommarväxters blomningstid: de aflösa nu Ger-
anium silvaticum, som förut gifvit ängarna deras prägel. Ger-
anium sanguineum tillhör äfven denna period, men fördunklas snart
af andra, mera dominerande arter. Perioden kan anses vara slut
omkring 1 Aug.: då ha redan flera viktiga sensommarväxter börjat
blomma. Följande lista ger någon föreställning om Juli-blommorna
på Skabbholmen: Achillea millefolium, Allium schoenoprasum och sco-
rodoprasum, Aster tripolium, Campanula glomerata och persicafolia,
Centaurœa jacea, Chrysanthemum leucanthemum, Cirsium arvense, hetero-
phyllum, lanceolatum och palustre, Comarum palustre, Dianthus del-
toides, Epilobium angustifolium, Galium boreale, Geranium sangui-
neum, Heracleum sibiricum, Hieracium murorum och pilosella, Hypo-
charis maculata, Laserpitium latifolium, Lathyrus pratensis, Lythrum
salicaria, Melampyrum nemorosum, Polygala vulgare, Potentilla an-
serina, Rubus caesius, Sedum acre, Spiræa filipendula och ulmaria,
Trifolium pratense, Valeriana officinalis, Vicia cracca m. fl. Under
senare delen af Juli tillkommor Angelica silvestris, Campanula ro-

Till sist kunna nämnas *Coenonympha pamphilus* och *arcania*, *Epinephelae jurtina*, *Erebia ligea* (ofta sedd på *Centaurea jacea*) och *Procris statices*.
Fjärde perioden

Det är särskilt en del omständigheter, förknippade dels med en växts organisation, dels med den besökande insektens arbetssätt, som förtjänar att tagas i betraktande. Vi tänka oss att vi samtidigt antecknat att Paris quadrifolia och Geranium silvaticum besöktas av hvar sin insekt. För att besöket hos Paris skall ha de gynnsammaste följdena, bör insekten komma från en Paris-blomma och bege sig till en annan. Men det är i ett fall som detta, där växten är enblommig, långt ifrån säkert, ty insekten måste flyga från ett individ till ett annat och kan, om icke växten bildar bestånd, under vägen lätt bli lockad att visitera helt andra växter. I en hel mång fall blir ett besök resultatlöst, emedan det kanske förlutit en god stund sedan insekten besökte en blomma af samma art och på sin väg besökt en del andra samt förlorat det pollen, som på

En sak, som även fortjänar att mera, än som brukar ske, beaktas är de olika blombesökande insekternas arbetssätt. Somliga se ut att fullt medvetet söka upp blomma efter blomma, andra åter drifva omkring och komma liksom af en händelse att någon gång öfverföra pollen på vederbörligt märke.

Som bekant stå humlorna främst af de mera intelligenta besökarna. Såsom ett litet exempel kan jag nämna, att de visade sig redan på afstånd skilja mellan äldre och yngre blommor af Geum rivale: de styrade kurs på de lutande blommorna, under det ingen notis togs om de på äldre stadium uppräta. Deras arbete är nästan alltid särdeles systematiskt: komma de till en rikblommig eller i annat fall beståndbildande art, besöka de vanligen ett rätt stort antal blommor i följd och säkra därigenom resultatet. Denna iakttagelse kunde jag göra alla dagar. Ett par exempel antecknades:

Den \(21/7\) tog jag märke på en humla, som besökte Melampyrum nemorosum. Under de 6 minuter, jag iakttog henne, besökte hon ungefär 80 blir i 42 blomställningar och fortsatte säkerligen sin verksamhet äfven sedan jag aflägsnat mig. Med samma hastighet arbetade en annan, som jag \(27/7\) såg besöka Campanula persicæfolia: hon medhann ordentlig inventering af 9 blir på 40 sek. Dock händer det äfven, att humlorna äro en smula nyckfulla; så sägs \(17/6\) en,
som först besökte 2 blr å Lonicera xylosteum, därefter 2 å Geranium silvaticum, sedan åter Lonicera, 9 blr, hvarifrån den begaf sig till Berberis.

Fjärilarna äro i allmänhet mera slarfviga och gifvetvis betydligt underlägsna humlorna. Dock har af det föregående framgått, att de ibland kunna specialisera sig på vissa arter och regelbundet och ordentligt besöka dem (Lycaena eumedon, Polyommatus virgaurea, Anthrocera lonicera). 1 Flugorna äro såkert af stor betydelse för en del arter på Skabbholmen, särskilt umbellater; de krypa ganska planlöst omkring i blommor eller blomställningar, men torde förmedla pollination i ganska stor skala.

Skalbaggar träffar man ej själv i blommor, och de kunna väl ibland tillfälligtvis spela någon roll vid pollenöverförandet.

Om man hos en insektblommig växt, som icke är autogam och ej heller apogam — hvarom man i dessa dagar har allt skäl att först öfvertyga sig — finner riklig fruktåtning, torde man däraf kunna sluta, att besöken varit tillräckliga. Är däremot fruktåtningen ringa eller ingen, kan åtminstone orsaken därtill vara, att lämpliga besökare icke infunnit sig i tillräckligt antal. Det kan ibland vara af intresse att se, i hvilken grad en viss art besökes. Detta torde lämpligast ske därigenom, att man under en stund (t. ex. 1—2 tim.) observerar en eller ett par blomställningar hvarje dag medan antesen varar, och antecknar alla besökare, som infinner sig. Genom denna metod bör man få ett ganska säkert resultat och bli i stand att beräkna, om alla blommor i den observerade blomställningen fått mottaga besök eller ej. Den 23; iakttog jag under 2 timmar 4 korgar af Centaurea jacea; hvar och en af dem fick under denna tid omkr. 16 besök. Jag anfar, att denna växt icke lider någon brist på besökare. I min ursprungliga plan ingingo dylika observationer i stor skala. I sammanhang därmed tänkte jag på alla allmännare arter, som icke eller i ringa mån äro autogama, undersöka fruktåtningen: jag är emellertid endast i stånd att lämna uppgift om trenne arter, hvilka emellertid alla höra till de dominerande.

1 Amanuensen L. von Post i Uppsala har meddelat mig att han den 22; 1900 i en lösäng å Ridön i Mälaren iakttagit en ovanligt stor mängd Thecla W album, som med påtaglig förkärlek besökte Angelica silvestris.
1. *Primula officinalis.*

<table>
<thead>
<tr>
<th>Nr</th>
<th>Med frukt</th>
<th>Utan frukt</th>
<th>Sa blr</th>
<th>Nr</th>
<th>Med frukt</th>
<th>Utan frukt</th>
<th>Sa blr</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>3</td>
<td>6</td>
<td>23</td>
<td>0</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>2</td>
<td>5</td>
<td>5</td>
<td>10</td>
<td>24</td>
<td>5</td>
<td>2</td>
<td>7</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>7</td>
<td>9</td>
<td>25</td>
<td>4</td>
<td>3</td>
<td>7</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>8</td>
<td>9</td>
<td>26</td>
<td>5</td>
<td>7</td>
<td>12</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>4</td>
<td>7</td>
<td>27</td>
<td>5</td>
<td>2</td>
<td>7</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>2</td>
<td>8</td>
<td>28</td>
<td>4</td>
<td>5</td>
<td>9</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>2</td>
<td>9</td>
<td>29</td>
<td>4</td>
<td>5</td>
<td>9</td>
</tr>
<tr>
<td>8</td>
<td>3</td>
<td>2</td>
<td>5</td>
<td>30</td>
<td>5</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>9</td>
<td>6</td>
<td>0</td>
<td>6</td>
<td>31</td>
<td>5</td>
<td>9</td>
<td>14</td>
</tr>
<tr>
<td>10</td>
<td>3</td>
<td>6</td>
<td>9</td>
<td>32</td>
<td>1</td>
<td>13</td>
<td>14</td>
</tr>
<tr>
<td>11</td>
<td>5</td>
<td>1</td>
<td>6</td>
<td>33</td>
<td>11</td>
<td>0</td>
<td>11</td>
</tr>
<tr>
<td>12</td>
<td>6</td>
<td>4</td>
<td>10</td>
<td>34</td>
<td>4</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>13</td>
<td>6</td>
<td>2</td>
<td>8</td>
<td>35</td>
<td>8</td>
<td>1</td>
<td>9</td>
</tr>
<tr>
<td>14</td>
<td>5</td>
<td>0</td>
<td>5</td>
<td>36</td>
<td>6</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>15</td>
<td>7</td>
<td>4</td>
<td>11</td>
<td>37</td>
<td>3</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>16</td>
<td>11</td>
<td>2</td>
<td>13</td>
<td>38</td>
<td>6</td>
<td>6</td>
<td>12</td>
</tr>
<tr>
<td>17</td>
<td>4</td>
<td>4</td>
<td>8</td>
<td>39</td>
<td>3</td>
<td>11</td>
<td>14</td>
</tr>
<tr>
<td>18</td>
<td>3</td>
<td>5</td>
<td>8</td>
<td>40</td>
<td>11</td>
<td>1</td>
<td>12</td>
</tr>
<tr>
<td>19</td>
<td>3</td>
<td>4</td>
<td>7</td>
<td>41</td>
<td>8</td>
<td>4</td>
<td>12</td>
</tr>
<tr>
<td>20</td>
<td>4</td>
<td>3</td>
<td>7</td>
<td>42</td>
<td>12</td>
<td>3</td>
<td>15</td>
</tr>
<tr>
<td>21</td>
<td>9</td>
<td>1</td>
<td>10</td>
<td>43</td>
<td>15</td>
<td>0</td>
<td>15</td>
</tr>
<tr>
<td>22</td>
<td>5</td>
<td>1</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Af 386 undersökta blommor satte 232, eller 60.1 %, frukt, ett ganska gynnsamt resultat.

2. *Geranium silvaticum.*

<table>
<thead>
<tr>
<th>Nr</th>
<th>Med frukt</th>
<th>Utan frukt</th>
<th>Sa blr</th>
<th>Nr</th>
<th>Med frukt</th>
<th>Utan frukt</th>
<th>Sa blr</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>12</td>
<td>16</td>
<td>28</td>
<td>15</td>
<td>11</td>
<td>25</td>
<td>36</td>
</tr>
<tr>
<td>2</td>
<td>7</td>
<td>20</td>
<td>27</td>
<td>16</td>
<td>8</td>
<td>9</td>
<td>17</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>7</td>
<td>11</td>
<td>17</td>
<td>8</td>
<td>6</td>
<td>14</td>
</tr>
<tr>
<td>4</td>
<td>8</td>
<td>16</td>
<td>24</td>
<td>18</td>
<td>8</td>
<td>8</td>
<td>16</td>
</tr>
<tr>
<td>5</td>
<td>11</td>
<td>10</td>
<td>21</td>
<td>19</td>
<td>0</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>6</td>
<td>10</td>
<td>7</td>
<td>17</td>
<td>20</td>
<td>3</td>
<td>13</td>
<td>16</td>
</tr>
<tr>
<td>7</td>
<td>6</td>
<td>11</td>
<td>17</td>
<td>21</td>
<td>4</td>
<td>7</td>
<td>11</td>
</tr>
<tr>
<td>8</td>
<td>2</td>
<td>38</td>
<td>40</td>
<td>22</td>
<td>4</td>
<td>9</td>
<td>13</td>
</tr>
<tr>
<td>9</td>
<td>5</td>
<td>9</td>
<td>14</td>
<td>23</td>
<td>7</td>
<td>2</td>
<td>9</td>
</tr>
<tr>
<td>10</td>
<td>5</td>
<td>8</td>
<td>13</td>
<td>24</td>
<td>20</td>
<td>6</td>
<td>26</td>
</tr>
<tr>
<td>11</td>
<td>4</td>
<td>14</td>
<td>18</td>
<td>25</td>
<td>15</td>
<td>8</td>
<td>23</td>
</tr>
<tr>
<td>12</td>
<td>7</td>
<td>11</td>
<td>18</td>
<td>26</td>
<td>13</td>
<td>5</td>
<td>18</td>
</tr>
<tr>
<td>13</td>
<td>25</td>
<td>11</td>
<td>36</td>
<td>27</td>
<td>12</td>
<td>4</td>
<td>16</td>
</tr>
<tr>
<td>14</td>
<td>1</td>
<td>25</td>
<td>26</td>
<td>28</td>
<td>10</td>
<td>13</td>
<td>23</td>
</tr>
</tbody>
</table>
De undersökta blommornas antal är 975; av dem hade 456 eller 46.76 % satt frukt, ett icke vidare högt tal, då man tänker på, att Geranium silvaticum såg ut att vara en av de mest besökta växterna.

3. *Geranium sanguineum.*

Endast 183 blommor hade salunda undersöckts, af hvilka 144 = 78.68 % satt frukt.
Papilio machaon L.1 — H. M. 18—20 m. m.)
Sedd då och då mellan $17/_b$ och $12/_b$: larven tagen å Angelica $15/_b$ och $30/_b$.

(Parnassius Apollo L. (H. M. 12—13) såg jag på Håkanskär och Vattungarna, men icke på Skabbholmen, där den väl dock andra år torde visa sig.)

Parnassius mnemosyne L.
Flög ganska allmänt i strandsnåren mellan $11/_b$ och $1/__b$, efter denna datum knappast sedd.

Pieris brassicae L. — (H. M. 16.)
Flög omkr. $1/6$—början på Juli (I); därefter $23/_5$—8 (II), tämligen allmän.

Pieris napi L. — (H. M. 10—12.)
Flög rätt allmänt $1/5$—$21/6$ (I); sedan $17/_7$—8 (II).

Anthocharis cardamines L. — (H. M. 12.)
Sågs här och där till $21/6$; därefter ej sedd.

Leucophasia sinapis L. — (H. M. 10.)
Ganska sällsynt $15/_6$—början af Juli (I); därefter $22/_5$—8 (II).

Gonepteryx rhamni L. — (H. M. 16—17.)
Den $23/_b$ sågs å Rhamnus frangula en ♀. Sedan icke sedd förrän $21/_7$, två ♀ och $22/_7$, en ♀; från $23/_7$ mera allmän.

Polyommatus virgaurea L. — 5—7. (H. M. 8—9.)

Lycaena argyreogommon Bergstr. — 5—7.
De första exemplaren för sommaren sågos $5/_7$; från $6/_7$ mera allmän; redan i slutet af Juli märkbart i aftagande.

Lycaena optilete Knoch. — 6—7. (H. M. 7—8.)
Ett exemplar fångades $21/6$; sedan icke sedd förrän $5/7$, då den började bli allmän å ljungmark. Den $31/7$ var den åter sparsam.

Lycaena astrarche Bergstr.
Ett exemplar taget $2/7$, ett $5/7$; ej sällsynt $12/7$—$31/7$.

1 Nomenklatur i enlighet med Chr. Aurivillius. Nordens fjärilar, Stlm, 1891.
Lyccena eumedon Esp. — 6—7. (H. M. 9—10.)

Mycket allmän. Flög hela Juni, aftog märkbart i början av Juli, dock sedd till \(\frac{23}{4} \).

Lyccena amanda SCHN. — 7.
En o tagen \(\frac{21}{6} \), flera ind. \(\frac{28}{9} \). Från \(\frac{1}{12} \) ganska allmän, efter \(\frac{20}{7} \) sällsynt: \(\frac{30}{7} \) togs ett exemplar.

Lyccena semiargus ROTT. — 7—8 (H. M. 7—8).

Tämligen allmän. Flög från \(\frac{9}{6} \) början af Juli allmänt: sedan sparsammare, men ännu \(\frac{22}{7} \); observerad här och där.

Vanessa Urticzæ L. — 12 (H. M. 14—15).

Sedd till \(\frac{15}{7} \); ej sällsynt: därefter ej sedd förrän \(\frac{30}{9} \); då 1 exemplar observerades.

Vanessa antiopa L.

Ett ex. \(\frac{27}{9} \), ett \(\frac{13}{9} \).

Argynnis adippe L. — (H. M. 13—14.)

De första exemplaren sågos \(\frac{1}{7} \); sedan allmän, dock förmärktes ett aftagande i antal under de sista dagarna af Juli.

Argynnis ino ROTT. — 9—10 (H. M. 9—10).

Flög \(\frac{39}{9} \) — \(\frac{22}{1} \); allmänt.

Argynnis selene Schiff. — 8 (H. M. 9—10).

Allmän hela Juni: aftog i början af Juli och sågs icke efter \(\frac{21}{7} \).

Melitaea cinxia L.

Flög allmänt hela Juni, aftog i början af Juli och sågs icke efter \(\frac{15}{7} \).

Melitaea athalia L. — 6—8 (H. M. 8 \(\frac{1}{2} \) — 10).

Sågs här och där \(\frac{17}{7} \) — \(\frac{22}{1} \).

Erebua ligea L. — 8—9 (H. M. 9).

Flög \(\frac{21}{7} \) — \(\frac{1}{5} \); allmänt.

Satyrus semele L. — 10.

Sedd rätt allmänt \(\frac{10}{1} \) — \(\frac{21}{9} \); sedan icke sedd förrän \(\frac{15}{7} \); hvarefter den några dagar var allmän, men sedan åter aftog. Tvenne generationer?

Coenonympha arcania L. — 5—6.

Började flyga \(\frac{23}{7} \); allt talrikare mot slutet af Juni, allmän under Juli till fram emot månadens slut.
Coenonympha pamphilus L. — 5—6 (H. M. 6 \(\frac{1}{2} \)—7).
Mycket allmän. Hela Juni och Juli. Sedd till den \(\frac{9}{5} \). Flög längre in på aftonen än andra dagfjärilar.

Pararge mæra L. — (H. M. 13—14.)
1 exemplar taget \(\frac{30}{6} \), sedan sedd här och där.

Hesperia comma L. — (H. M. 15—16.)
Flög allmänt \(\frac{20}{7} \)—\(\frac{8}{7} \).

Hesperia sylvanusa L. — (H. M. 16.)
Den \(\frac{17}{6} \) 2 exemplar sedda; \(\frac{20}{h} \) flera. Allmän i Juli till \(\frac{22}{7} \), då den märkbart aftog, och snart aldeles upphörde att visa sig.

Aphantopus hyperanthus L. — 5—6.
1 exemplar sedt \(\frac{4}{7} \), 2 \(\frac{5}{7} \); från \(\frac{6}{7} \) allt allmännare under hela min vistelse på holmen (till \(\frac{3}{8} \)).

Epinephele jurtina L. — 8 (H. M. 10).
Flög \(\frac{5}{7} \)—\(\frac{8}{7} \).

Syrichus malvae L. — (H. M. 7—8.)
Flög allmänt vid min ankomst till holmen (\(\frac{9}{6} \)); blev efter mid- sommar sparsam och sågs knappast efter \(\frac{1}{i} \).

Procris statices L. — (H. M. 9.)
Flög allmänt från början af Juli.

Anthrocera ionicæ Esp. — 11—13 (H. M. 12).
Ett och annat individ togs under de första dagarna af Juli; allmän från \(\frac{11}{7} \)—\(\frac{8}{7} \).

RESUMÉ

Im Sommer 1901 begann der Verfasser auf der kleinen Insel Skabbholmen in Roslagen (Provinz Uppland, Schweden) eine blüten- biologische Untersuchung, die ursprünglich beabsichtigte, eine monographische Schilderung von Blüten und Insekten in ihrem Verhältnis zu einander auf der oben erwähnten Insel zu werden. Dieser Plan ist indessen bald gescheitert, weil der Verfasser durch seine in demselben Jahre eingetroffene Teilnahme an der schwedischen Südpolarexpedition Interessen ganz anderer Art erhielt, die seit mehreren Jahren seine Zeit in Anspruch nehmen. Die Untersuchung wurde deshalb begrenzt zu einer Übersicht von der Teilnahme der

Im ersten, speziellen Kapitel werden eine Anzahl Beobachtungen über Blütezeit, Bestäuber u. s. w. mitgeteilt. Von diesen verdienen folgende in dieser kurzen Übersicht referiert zu werden.

Von Primula farinosa wurden 84 Blüten untersucht (28 makro., 56 mikrostyl), um zu ermitteln, ob wir auf Skabbholmen die Hummel- oder Falterform Hermann Müllers hätten. Die Zahlen stimmen indessen weder mit der einen noch der anderen, sondern liegen ungefähr in der Mitte (Falterform: makro. 0.81, mikro. 0.86; Hummelform: makro. 1.27, mikro. 1.19; Skabbholmer Form: makro. 1.0, mikro. 1.1 Mm.).

Geranium sanguineum zeigte 2- und 5-Blüten, ist auf Skabbholmen gynomonözisch oder häufiger gynodiozisch; die 2-Blüten sind kleiner.

Geranium silvaticum tritt triözisch auf. Die 5-Blüten sind seltener; stehen hinsichtlich der Grösse in der Mitte zwischen 2 und 5.

Silene nutans ist auf Skabbholmen ausgeprägt nachtblühend; gynomono- oder -diozisch verteilte 2-Blüten wurden gefunden. Die Anthese dauert nicht, wie es von Kerner geschildert wird. drei, sondern vier Nächte, und zwar stehen die Blumen zwei Nächte auf männlichem, zwei auf weiblichem Stadium.

Von den auf Skabbholmen vorkommenden Orchis-arten wurden zwei hinsichtlich der Fruchtbarkeit untersucht. Es ergab sich, dass bei Orchis mascula von 115 Blüten 11 oder 9.56 %, bei Orchis sam-
Listera ovata wird ohne Zweifel mehr als die Orchis-arten besucht — von 811 Blüten 307 oder 37.85 %.

Für zahlreiche andere Arten wurden eine Anzahl Notizen ermittelt, die auch aus dem schwedischen Text verständlich sind. Am Schlusse des Kapitels wird ein Ausflug nach ein paar gewöhnlich windigen Schären äußerst am offenen Meere erwähnt. Es war ein ruhiger Tag, Massen von Tagfaltern hatten sich eingefunden und besuchten lebhaft Lythrum salicaria, Epilobium angustifolium, Geranium sanguineum u. a.

Im zweiten Kapitel macht der Verfasser einen Versuch den Sommer in Perioden einzuteilen, die durch gewisse dominierende Pflanzen und Insekten charakterisiert werden.

Die 3. *Periode* umfasst den eigentlichen Hochsommer (Juli). Jetzt blühen eine Menge Pflanzen; besonders Compositen sind dominierend, wie Achillea millefolium, Centaurea jacea, Chrysanthemum leucanthemum, Cirsium heterophyllum, ferner Lythrum salicaria, Trifolium pratense u. a. Jetzt sind auch unter den Insekten die Hummeln sehr zahlreich. Von den Faltern sind jetzt die langrüsseligen zahlreicher als im Juni; Gonepteryx rhamni, Argynnis adippe, Anthrocera lonicera, besonders letztere, besuchten Cirsium heterophyllum; Hesperia comma besucht Centaurea jacea etc. Von
einigen kurzrüsseligen gab es jenen Sommer sehr grosse Scharen. Lycæna argyrognomon besucht Lythrum salicaria, Aphantopus hyperanthus Origanum vulgare, Polyommatus virgaureæ, überaus häufig, hat Chrysanthemum und Achillea für sich ausgewählt.

Der Verfasser macht ferner darauf aufmerksam, dass die Arbeitsmetoden der verschiedenen Insekten verdienen beobachtet zu werden, wenn sie auch in der Hauptsache bekannt sind. Einige Beispiele der planmässigen Arbeit der Hummeln werden angeführt. Diese Planmässigkeit finden wir im allgemeinen nicht bei den Faltern; es gibt doch Beispiele von Arten, die beinahe ebenso ordentlich wie Hummeln arbeiten (Lycæna eumedon, Polyommatus virgaureæ, Anthrocera loniceræ).

Zum Schluss giebt der Verfasser die Fruchtbarkeit dreier dominierenden, xeno- oder geitonogamen Arten an:

Primula officinalis: von 386 Blüten 232 oder 60.1 % mit Frucht.
Geranium silvaticum: von 975 Blüten 456 oder 46.76 % mit Frucht.
Geranium sanguineum: von 183 Blüten 144 oder 78.68 % mit Frucht.

In einem Anhang werden Beobachtungen mitgeteilt über die Flugzeiten der auf Skabbholmen vorkommenden Tagfalter: 32 Arten nebst 2 Closterocera werden erwähnt.
OM NÅGRA FORMER FÖR ART- OCH VARIETETS- BILDNING HOS LAFVARNA
AF
RUTGER SERNANDER.

KAP. I. Begreppet lafart och gonidiesubstitution som artbildande faktor.

Af de flesta moderna lichenologer och systematici kallas lafvarna "dubbelorganismer", d. v. s. man anser att en laf består av en svamp och en alg. Följden af denna åskådning borde enligt min tanke vara denna, att laf skulle vara ett rent biologiskt begrepp, och att i det botaniska systemet de respektive svamparna och algerna skulle behandlas särskilt och benämnas hvar för sig. Så är emellertid visst icke fallet. Praktiskt sett räknar man i systematiken med och behandlar lafvarna d. v. s. konsortierna mellan svampar och alger som systematiska enheter. Och bakom detta tillvägagångssätt står i flera fall en bestämd teoretisk åskådning. Reinke framhåller med all kraft lafvarnas egendomliga morfolologiska utbildning och vill på grund af denna, samtidigt med att han klart och tydligt på alla andra områden tager konsekvensen af Schwendenerianismen och dessutom antager ett polyfyletiskt ursprung för lafsvamparna, vindicera lafvarna en själfständig plats som särskild växtklass inom systemet. Forsell ger uttryckligen följande definition på den systematiska lafarten: "Unter Flechtenart verstehen wir also die Vereinigung (mutualistische Symbiose) einer gewissen Algenart mit einer gewissen Pilzenart" o. s. v.

Sålunda afser man t. ex. med namnet Usnea barbata en benämning på det konsortium, som bildas af en viss svamp och en viss alg. Algen får behålla det namn den har inom det fykologiska sy-

1 Abhandlungen über Flechten.
2 Gloeolichenen p. 9.

Svensk Botanisk Tidskrift.

Då vissa svampar omspinnar eller i sin kropp upptaga vissa chlorophylophyceer eller cyanophyceer, hvilkas assimilat de göra sig till gofo, blir detta en speciell form för deras näringslif, som i intet har med deras systematiska plats att skaffa, men som ställer dem inom samma biologiska kategori. I en mängd lafar, troligen det stora flertalet af nu levande former, ha tydligen svamparna i många led fullföljt sin fyllogenetiska utvecklingshistoria som dylika symbi-

1 Cultur flechtenbildender Ascomyceten ohne Algen.
2 Kultur von Flechtenfragmenten.
Men om också hårigenom svampgrupper, hvilka före licheniseringen stått hvarandra ganska fjärran, antagit parallellformer i skottets utbildning på grund af en gemensam sträfvan att gifva de i detsamma inneslutna algerna gynsamma förhållanden för deras assimilation. eller hvar för sig med dessa alger alstrat spridningsenheter —— soredier — som till sin natur stå tämligen isolerade inom växtriket, kunna dessa förhållanden icke i någon mån påtvinga alla de olika svamparna någon annan systematisk gemenskap, än de haft före licheniseringen.

Då jag nu påbörjar en kritisk undersökning, innehållande bidrag till kännedomen om några af de olika former för art- och varietetsbildning, som finnas eller funnits bland lafvarna, vill jag sålunda ha klarställt, att i en lafs fylogei ingå såväl den densamma konstituerande algens som svampens utvecklingshistoria och att, då beskrifningarna i öfverväldigande grad äro byggda på svampen inom de respektive konsortierna, de rådande systematiska namnen måste anses tillhöra denna. Orden lafart och lafläkte kunna af praktiska grunder ej utplånas, men man måste göra klart för sig, att man därvid menar lafsvampart resp. lafsvampsläkte.

Enår arbetbeschrijningen inom lichenologien, som nu framhållits, i så öfverväldigande grad är byggd på svampen såsom sådan, och sålunda praktiskt sedt samma namn skulle kunna användas för lafsvampen som för det konsortium, i hvilket den ingår, kan det synas, som om här förelåge ett principiellt hårklyfveri utan vidare reell innebörd. Men att så icke är fallet visa blott annat de systematiska enheter, som av ett flertal lichenologer accepteras för de fall, då s. k. gonidiesubstitution eller näringsalgbbyte ägt rum. Åskådningssättet om konsortiet som systematisk enhet har haft ett stort inflytande på den hithörande lichenologiska nomenklaturen, och det är tack vare detta, som ytterst närstående, kanske understundom till samma storart hörande, om ej identiska lafsvampar kommit, som jag anser med orätt, att ryckas mer eller mindre långt från hvarama inom systemet, därför att goniiderna varit systematiskt skilda. Som en preliminär utredning af den första form för artbildning bland lafvarna, nämligen genom detta näringsalgbbyte, som jag nu tar till behandling, måste sålunda min principiella standpunkt härutinnan framställas. För dom, som anse, att konsortiet är den egentliga bäraren af det systematiska namnet, kan naturligtvis ej ett sådant gå under

1 Vogler. Verbreitungsmittel der Alpenpflanzen.
samma namn, om ett ombyte av näringsalg äger rum i detsamma. Äro de vikarierande algerna befryndade, bibehålles det gemensamma släktnamnet, men olika arter uppställas; äro de så vidt skilda, som fallet är med chlorophyllophyceer och cyanophyceer, uppställas särskilda släkten.

Särskilt i fråga om de s. k. parallellsläktena inom Thore Fries' klasser Archilichenes å ena sidan samt Sclerilichenes, Phycilichenes och Gloeolichenes å den andra har man gjort sig skyldig till alldeles uppenbara öfverdrifter. Almqvist\(^1\) t. ex. framhåller, att Lecanora Prevosti (Fr.) Th. Fr. och Ionaspis epilolica (Arn.) Th. Fr., den första med gonidier af Palmella-typ, den senare af Trentepohlia-typ, äro »forme re ipsa vix ut varietates distinguendae«. Det erkännas allmänt, att lafs vamparna Solorina croceoa (L.) och S. crocoides (Nyl.) äro hvarandra ytterligt lika. Men icke förty hänföra en del författare, som icke äro anti-Schwendenerianer, för hvilka naturligen ett sådant förfarande är fullt logiskt, ofta den senare till ett särskilt släkte Solorinina Nyl., därför att gonidierna hår äro cyanophyceer, hos den förra chlorophyllophyceer, blandade med cefalodiebildande cyanophyceer. Forssell\(^2\) visar på samma sätt, att Pyrenopsis pulvinata (Schier.) knappt kan skiljas från Lecanora granatina Sommerf. annat än på sina gonidier, hvilka dock konstant ingå i den senares cefalodier. Men ändock bibehåller han för bägge olika släktnamn.

Jag tror, att de nu påpekade absurditeterna i uppfattningen af artbegreppet inom »parallellsläktena« delvis ha sin rot däri, att man utan vidare utgått från, att lafs klasser, helt och hållet grundade på gonidiernas beskaffenhet, äga systematiskt berättigande såsom sådana. Antar man att gonidierna ha ett så stort värde för de stora systematiska enheterna, hvilken betydelse skola de ej då ha som släkt- och art-skiljande! »Uebrigens fordert die Consequens einen Character, welcher höherere systematischen Einheiten begründet, bei niedrigeren nicht ganz ausser Acht zu lassen« säger angående gonidieolikheter en sådan auktoritet som Forssell,\(^3\) hvilken jag gärna i detta sammanhang citerar på grund af det klara och logiska sätt, på hvilket han å sin utgångspunkt yttrar sig i dessa principfrågor. — Från min standpunkt bli i stället de på näringsalgernas beskaffenhet grundade lafslasserna rent biologiska och ej systematiska grupper.

För att ytterligare illustrera min uppfattning i dessa frågor och

\(^1\) Monographia Arthoniarum p. 7.
\(^2\) Die anatomischen Verhältnisse der Lecanora granatina.
\(^3\) Gloeolichenen p. 34.
för att visa, huru nödvändigt det enligt min tanke är att skilja det systematiska artbegreppet från det biologiska konsortie-begreppet, skall jag i det följande söka utreda några punkter af de i detta häneende synnerligen upplysande cefalodiernas biologi och utvecklingshistoria.

Från Enaforsholm i Jämtland har jag genom min vän Dr K. Hedom erhållit synnerligen väl utbildade och på många utvecklingsskeden stående exemplar af *Lecanora gelida*, insamla af honom juli 1904 vid Enaällfvens strand på de svagt stupande hällarna af den här anstående vackra hornbländeglimmerskiffern, och sedermera har jag af Kand. Th. C. E. Fries erhållit ytterligare utmärkt material (1904) från samma lokal.

Om man närmare undersöker glimmerskifferns yta, upptäcker man på vissa regioner mellan de större lafindividen en del små bildningar, hvilka vid mikroskopisk granskning dokumentera sig, något hvilket redan makroskopiskt är ganska tydligt, som unga lafbålar. Dessa äro af två slag. Det ena slaget är en grönalgsförande *Lecanora gelida*-bal och visar redan på ett mycket tidigt stadium dess karakteristiska uppdelning i från centrum radierande flikar. Det andra består af bildningar, som till det yttre äro alldeles lika med de minsta af cefalodierna på grönalgsbålarna, och vid mikroskopisk granskning visa de sig också vara byggda af hyfer och samma alg. Den alg de innehålla är en tämligen storcellig *Chroococcus* sp., och vi kalla den i det följande för *cyanofycebalen*.

1 *Lichenes Scandinavie* p. 135.
2 *Cephalodierna* p. 51—53. Tab. 1. Fig. 1—2.
Huru ha nu dessa tvenne slag af lafbålar uppkommit? Om man
undersöker grönalgsbålar, som nått en diameter af åtminstone 3—5
mm., finner man att den är tätt besatt med radially anordnade so-
raler, som från att i början ha haft en mera rundad omkrets under
bållflikarnas radiali tillväxt utdragas till långsträckta bildningar af
ända till 4 mm. längd på en bredd af 0,5—0,75 mm. I dessa so-
raler alstras ymniga, 28—45 μ i diameter hållande soredier. Tafl.
I. Fig. 1—3. Dessa äro uppyggda af en grupp alger af bålens
vanliga Palmellace-typ, stadda i en litlig delning och omspunna af
eft hylparplektentyn, som äfven inträger mellan algerna. Ur ge-
nom yttre agentier — vind eller vatten — kringspridda soredier ha
nu tydlig af de små grönalgsbålarna uppväxt. De cefalodiellliknande
cyanofycebålarna måste ha bildats af en Chroococcus och Lecanora-
hyfer, hvilka på något sätt råkat i beröring med hvarandra. Men
hvarifrån ha dessa komponenter kommit?

Det lyckades mig efter åtskilligt sökande att på stenens yta finna
några fritt lefvande Chroococcus-kolonier af den i cyanofycebålen in-
gående arten; tydlig hade den, som i cyanofycebålarnas frekvens
antydde, vissa är eller årstider varit vanligare. Dessa kolonier
svällde starkt vid anfuktning till 0,05—0,1 mm. breda och ungefär
lika höga massor med grynig yta. Men hvarifrån hade hyferna
kommit in i sadana kolonier? Något inträngande af utlöpande
hyfer från grönalgsbålarna afven under deras allra första utveck-
lingsstadijer visade sig bestämd icke äga rum. Apothecier och
pyknid saknades alldeles, hvordan möjligheten att hyfystemet kom
fram af groende ascosporer eller pyknokonider var uteslutnen. Jag er-
inrade mig då en i litteraturen hittills nästan alldeles afglömd upp-
gift af Bonzi, 1 att han funnit groende Amphiloma murorum-soredier
afspöra en art konidier, som med Hormidium bildade nya Amphii-
oma-bålar. Med anledning häraf började jag, då groende soredier
ej stodo att få på själfva skifferytan, i soralerna leta efter sådana.
Efter en del arbete lyckades det mig också att i dessa (och än
vackrare i material från Torne lappmark, Västra Kaitesuolo på
kloritisk glimmerskiffer, leg. Thore C. E. Fries 1925/26) ej blott
finna groende soredier utan även att groddslangarna mycket rik-
tigt lätta sönderföllo i konidier. Från flera af de rundadt kubiska
cellerna i det paraplektentkymatiska hyllet utgå ofta excentriskt
papillartade utbuktningar. Då en sådan under tillväxten vidgar och
förlänger sig, lägga de sig gärna något utmed sorediens yta. Myc-

1 Sporidi sorediali di Amphiloma murorum.
ket snart uppdelas de genom tvärväggar och alltid så att toppcellen blir långst. Tafl. I. Fig. 1—3. Dessa cellrader lossa mycket lätt isär, och styckena, bestående af 1 eller 2—3 celler, tjänstgöra utan tvivel som konidier. Tafl. I. Fig. 4—5. Jag har nämligen ej direktt sett dem gro, men väl på Chroococcus-kolonierna iakttagit relativt korta hyfer, som inträngt från ytan och hvilka i sitt växande ej hunnit mer än ett stycke ner bland alggrupperna. Tafl. I. Fig. 7. Dessa hyfer likna till septering och apikalcell aldeles de soredie-groddslangar, hvilka sönderfalla i de fragment, hvilka jag tolkar som konidier och som de element, med hvilka L. gelida tar Chroo-
coccus-kolonierna i sitt väld. ¹ Troligen fasta sig många konidier på samma algkoloni.

Cyanofycebalen har vid sitt första konstituerande såsom sådan ungefär samma storlek, som den Chroococcus-koloni ur hvilken den framgår. Moderkoloniens undulerande ofvansida utbytes snart mot en slät yta, och hyfsystemet spaltar alggrupperna genom vertikalt ställda knippen. Alla hyfer åro starkt septerade. Individen, som en tid åro ungefär halfklotformiga, få en eller annan svagt antydd bålllik, men bli icke öfver 0.2 mm. i diameter. Tafl. I. Fig. 9. De tillväxa nämligen föga, om ej den kontakt med grönalgsbålen, hvarom strax skall talas, inträder. De kunna understundom uppträda i stor mängd, under Seiberts objektiv n:0 0 med 8 mm. diameter har jag i synfältet räknat ända till 25 stycken. Då de under tillväxten råka hvarandra på sådana områden, sker ingen sammanväxning, utan tillväxten hämmas ögonblickligen på ömse sidor om kontakten. Tafl. I. Fig. 10.

Grönalgsbålen konstituerar sig snabbt ur den groende sore-
dien. Redan innan individet nått 0.1 mm. i diameter, är det fullt differentierad i de lager som återfinnas i den äldre bålen. Den bildar först en nästan halvsårisk kropp, som genom radial tillväxt snart plattas och i periferen uppdelar sig i fläkter. Till-
växten är i allmänhet likformig åt alla håll. Tafl. I. Fig. 8. Bålen kan utveckla sig på detta sätt fullt själfständigt till en eller annan millimeters diameter. Men förr eller senare, oftast mycket tidigt, stöter den mot en cyanofycebal. Det är att märka att utsikten för en sådan sammanstötning betydligt ökas, därigenom att båda bäl-
slagen tyckas utveckla sig under lika yttre förhållanden: de saknas

¹ På stenen i Kaitesuoloxemplaren växte sparsamt en Palmellaceae fullkomligt lik den i grönalgsbålen. Möjligens bildas åfven sådan af denna alg och de nu beskrifna konidierna.
alldels på större delen af stenens yta, för att på vissa begränsade partier anrikas tillsammans, om och i växlande proportioner. Tafl. I. Fig. 11.

Med denna kontakt inträder ett nytt skede i de bäge bålslagens utvecklingsfenomen, hvilka badanefter komma att förlöpa i intim förbindelse med varandra. L. gelida-individén undergår en mycket märklig förändring, då de träffa en annan gelida-individ, vare sig denna håller grönalger eller cyanofyceer. Som nyss antyddes för kontakten mellan cyanofycebalarna, upphör tillväxten genast vid beröringspunkten. På ömse sidor om denna punkt fortsätter emellertid tillväxten, hvadan kontaktstået utbredes till en linje. På detta sätt komma de stora grönalgsbålarna att sammanflyta till fält, där gränserna mellan de olika individen äro svara att urskilja. Tafl. I. Fig. 11. I det fall, som vi nu ha att göra med, då en grönalgsbal träffar en cyanofycebål, har den förra större tillväxtsintensitet än den senare. Resultatet blir också, att cyanofycebålen, eller vi kunna nu upptaga det traditionella namnet cefalodiet, blir inneslutet af grönalgsbålen till början i en hjärtformig inbuktning i densamma Tafl. I. Fig. 12—13, till slut som medelpunkt i en mer eller mindre cirkelrund skifva Tafl. I. Fig. 14.

Fig. 1. *Lecanora gelida* från Enaforsholm C 12. Fot. O. Juel.

Fig. 2 *Lecanora gelida* från Enaforsholm Cl 13. Fot. O. Juel.

1) att jag ej kunnat iakttaga några hyfer intrånga från cefalodiet i den lefvande *Lecanora*-bålen, men väl ymnigt i dess genom öfver-skuggningen dödade delar.

2) att pseudocefalodiet som växer direkt på stenen, endast när 0,1—0,2 mm. i diameter, då däremot det centrala cefalodiet, som växer på ruttnande *Lecanora*-bål, när mångdubbelt större dimensioner, enligt Th. Fries 1 en diameter af ända till 15 mm.

Ytterligare komplicerad blir denna antagonistiska symbios genom en ej så sällsynt inträdande motattack från *Lecanora*-bålen. Det finnes en svag punkt på det centrala cefalodiet, innan det ännu under sin solfjäderformiga utbredning slutit de yttre flankflikarna tillsamman, nämligen själfva proximaldelen. Om cefalodiet så tidigt omgårdas af *Lecanora*-bålen, att det ej på nämndt sätt hunnit tillsluta den inbuktning, i hvars spets proximaldelen ligger, kan denna med sin ringa tillväxtsintensitet och ringa höjd öfver underlaget blifva öfverväxt af ett skott från *Lecanora*-bålen. Detta skott kommer da att snart skiljas från sitt moderskott vid sammanslut-

ningen af inbuktningen på cefalodiet samt att sedermera växa epifytiskt på detta. Liksom cefalodiet under sin tillväxt lefver epifytiskt på Lecanora-balen n:o 1 och successive dödar den, lefver nu Lecanora-balen n:o 2 epifytiskt på cefalodiet, successive dödande detsamma. På en 12 mm. lång radie af en dylik complex voro inifrån utåt de olika individen fördelade salunda:

1) Lecanora-bal n:o 2 .. 2 mm.
2) Ännu ej öfverväxt primärt cefalodium 2 »
3) Lecanora-bal n:o 1 .. 6 »
4) Sekundärt cefalodium ... 1 »
5) Lecanora-bal n:o 1 .. 1 »

Äfven de sekundära cefalodierna kunna på alldeles samma sätt bli betäckta af en epifytisk Lecanora-bal n:o 3.

För att fa en öfversikt af huru en utbildad L. gelida med den utvecklingshistoria, som vi nu sökt skissera, kommer att gestalta sig, torde vara lämpligast att kasta en blick pa de snitt genom kontaktern mellan grönalgsbalarna och cyanofycebalen, som äro afbildade Tall. II. Fig 1—2.

Den grönalgsbal, som kommit upp pa cefalodierna, är mycket tunn: särskilt gäller detta medullarlageret. Rhizoiderna samla sig
till rhiziner, hvilka trånga ner ett stycke mellan cefalodiets flikar och i dess springor.

Det är väl att märka att hela den framställning, jag nu lämnat, grundar sig på material, där Chroococcus varit algen i cyanofycebalen. Men det är pa Stigonema-delvis även Nostoc- förande cefalodier, som FORSELL gjort sina iakttagelser och kommit till sina från mina avvikande resultat. Kanske sålunda olika cyanofyceer förhålla sig olika mot grönalgsbalen?¹

De sekundära cefalodierna äro stundom anordnade i en krets eller en del af en sådan. Jämför det vackra individkomplexet, som är afbildat i Fig. 3. Troligen har en mycket ymnig förekomst af Stigonema — vare sig licheniserad eller ej — infallit på den tid, då den ifragavarande cefalodieförande kretsen af grönalgsbalen befann sig som marginaldel.

Jag har med afsikt lämnat denna laga och detaljerade framställning af Lecanora gelida-cefalodiernas utvecklingshistoria och biologi, emedan den lämnar stöd för en helt annan uppfattning af ce-

falodiernas natur och därmed delvis afven af deras betydelse för artbildningsfrågan än den, som vanligen i anslutning till Forssells grundläggande studier gör sig gällande.

Forssell 1 uppställer den frågan, om cefalodierna äro lafvarna till nytta eller ej. Denna fråga besvarar han jakande, i det han under hänvisning till Engelmanns upptäckt av att den assimilatoriska effekten är relativt starkast hos de enkla ljusstrålar, hvilkas färg utgör komplementfärgen till de assimilande cellernas färg, anser, att en lafbål med såväl gröna som blågröna gonidier bör under annars lika villkor kunna assimilera mer än samma lafbål med endast det ena slaget gonidier.

Frågan skulle därför kunna uppdelas sålunda. Hvilket gagn i näringsfysiologiskt hänseende ha resp. det grönalgsförande konsorntiet, det cyanofyceeförande konsortiet och själfva lafsvampen af de ofvan skildrade symbiotiska förhållandena?

Utgår man från den grönalgsförande bålen och dess lif såsom sådan, kommer man till det resultatet att cefalodierna äro för densamma afgjordt skadliga bildningar; de blifva, som också Lundström 2 framkastat för cefalodierna i allmänhet, ett slags phyccocyclidier. Det kan omöjligt nekas till, att det för grönalgsbålen vore fördelaktigare, om den icke vore hemsökt af de epifytiskt på densamma vegeterande cyanofyceeförande bålarna.

Däremot har denna en afgjord fördel af symbiosen. Vi erinra oss att det egentligen först var genom ett saprofytskt tillgodogörande af de dödade grönalgsförande bålen, som cefalodierna kunde komma öfver det ungdomsstadium, på hvilket de stannade, då förbindelse med den grönalgsförande bålen icke inträdde.

1 Cephalodierna p. 98—101.
2 Die Anpassungen der Pflanzen an Thiere p. 71.

Denna fråga om gagnet skulle äfven kunna öfverflyttas till de lifsfenomenen, som höra samman med reproduktionen.

Om man närmare granskar cefalodiernas uppträdande hos andra lafarter, skall man finna, att Lecanora gelida-cefalodierna icke stå
fullt så isolerade, som man skulle tro, och att atskilliga af de slut-satser, som här ofvan dragits på grund af dessas utvecklingshistoria och biologi, ha mera generell räckvidd. Det intima, efter det yttre att döma icke antagonistiska samband mellan hyfväfnadspar-tier med olika partier, som FORSELL förutsätter, finnes otvifvelaktigt hos flera ladvår cefalodier, särskilt de mera diffusa inne i bålen utbredda cephalodia immensa1 — jag lämnar cyanofyceernas näringsfysiologiska nyta för ladvåns alldeles ur räkningen — men å andra sidan erbjuder vissa cefalodier stora analogier med de från grönalgabålen individualiserade Lecanora gelida-cefalodierna. Särskilt skulle jag vilja fästa uppmärksamheten vid Ricasslia amplissima (Scop.) och Peltigera aplnosa (L.), hos hvilka cefalodiernas utvecklingshistoria framför allt genom FORSELLS undersökningar,2 är synnerligen väl utredd.

På den bladartade, plagiotropa, men starkt veckade jättebålen af Ricasslia amplissima finnas uppräta, rikt förgrena rudbilda bilden-ningar, hvilka genom sin svartgröna färg än mer sticka af från Ricasslia annars gråhvita färgton. Dessa bildningar äro cefalodier, enligt FORSELL innehallande Polijcoccus punctiformis Kütz. Sedan långliga tider tillbaka ha dessa cefalodier på grund af sin genomgripande olikhet med den bal, från hvilken de utga, dragit sig botanisternas uppmärksamhet. Det märkliga är, att de i stället alldeles likna mörka Phycolicheues, framför allt, som redan DILLEXIUS3 framhöll, Leptogium lacerum (Sw.) v. bolacina Acz. Man har också framkastat, att det skulle vara denna inf, som lever parasitiskt på Ricasslia. FORSELL har emellertid visat, att de äro verkliga cefalo-dier, som uppkommit sa, att Polijcoccus genom Ricasslia undre barklager trängt in i märglagret, där först uppträttat som rundade gyttringar, och att från dessa slutligen buskliga gyttringar, bestående utom af algen utaf Ricasslia i högsta grad förändrade hyf-system, trängt upp ofvan balens öfvre sida. Cefalodiernas morfologiska själfständighet är salunda genom omkasningen i skottsyste-mens form, förgrenung o. s. v. än mera utpräglad än hos Lecanora gelida. — Hos flera andra Ricasslia-arter ha NYLANDER och FORSELL påvisat alldeles likartade cefalodier. Peltigera aplnosa är välbekant genom sina cefalodier, hvilka som graaktiga fläckar äro utspridda öfver den i fuktigt tillstånd gräs-

1 Cephalodierna p. 91.
3 Historia mucorum p. 197—198.

Forsell har en särskild grupp bland cefalodierna, som han kallar pseudocefalodier, hvilka i viss mån står de nu behandrade utvecklingshistoriskt nära. Dessa cefalodier bildas redan vid sporens groning i protothallus därigenom, att groddtrådar omslingra algkolonier av annan typ än de normala gonidierna. De står i ringa samband med öfriga delar af bålens samt åro omslutna af ett eget barklager, hvilket visserligen kan sammanväxa med bålens men därmed icke stå i genetiskt samband. Hvad som särskilt utmärker dessa cefalodier är vidare den tydliga tendens till själfständig utveckling, som de visa. Hittills åro de funna hos ett fåtal arter: Solorina saccata (L.) var. spongiosa (Sw.), Lecidea pallida Th. Fr. och antagligen Lecanora hypnorum (Hoffm.) samt Lecidea panevola AcH. — Hvad som i detta sammanhang äger särskild betydelse är just den tydliga tendens till själfständig utveckling, som dessa bildningar visa. Forsell säger visserligen, att de bildas i protothallus, hvarmed hen menar, att flera groende sporer tillsammans bilda en protothallus af hverandra korsande hyfer, som på vissa punkter omslinga chlorophyceer, på andra cyanophyceer och med dem hvar för sig bilda bålvåtor, som sedan mer eller mindre intimt sammanflyta. Af stort intresse vore emellertid att få konstateradt, om ett pseudocephalodium kan utveckla sig själfständigt, utan att uppstå på någon med den normala bålen gemensam protothallus, något som Forsells skildringar ingalunda gör otroligt.

1 Céphalodies sur Pelligera aphantosa p. 548—559.
2 Cephalodiern. p. 38—39. Tafl. I. Fig. 5.
3 Cephalodiern. p. 91—92.

Svensk Botanisk Tidskrift.
Hvilken betydelse ha nu dessa individualiserade cefalodier för frågan om artbildningen hos lafvarna?

Men det torde kunna ifrågasättas, om ej dylika individualiserade cefalodier någon gång verkligligen blifvit införda i litteraturen under särskilda artnamn. Det har i det föregående framhållits, att de hos Lecanora gelida icke kunna producera några slags spridningsenheter. Och hos inga andra af de individualiserade cefalodierna åro apothecier, pyknid eller soraler, som kunde alstra sådana, anträffade. Nu finnas några lafvar med cyanofocegonidier beskrifna, hos hvilka aldrig dessa organ åro funna. Det är mig en gåta, huru dessa skulle kunna ha uppkommit (och uppkomma), om de ej åro cefalodiebildningar af någon laf, och då ytterst antagligt någon archilichen, vare sig nu denna lämnat soreder, hvilkas alger undanträngts af en viss cyanophyce, eller ascosporer eventuellt konidier, hvilkas groddslangar med denna cyanofyce bildat bål. Sådana åro t. ex. Pyrenopsis meladermia (Nyl.) Forss.1 De åro också endast tillfälligtvis anträffade; Pyrenopsis meladermia en gång i Enare lappmark af Edwin Nylander, men sedan aldrig återfunnen. — Det förefaller mig ingalunda osannolikt, att de små Lecanora gelida-bållarna med enbart Chroococcus en gång råka ut för det ödet att beskrivvas som en ny, »steril lafart».

Emellertid stå vi här i realiteten inför ett kapitel, som helt säkert åfven för frågan om verklig artbildning bland lafvarna är af allra största intresse. Det kan icke förnekas, att då en lafsvamp ingått varaktig symbios med en annan näringsalg än den normala, kan härutinnan ligga en faktor, som dels gör att vissa mutationer af densamma, hvilka med den gamla näringsalgens varit olämpliga i kampen för tillvaron och därför genast borteliminerats, nu kunna vid sitt framträdande fortleffa, dels kanske ock framkallar nya, livskraftiga mutationer. Och jag vill villigt erkänna, att den biologiska karaktär, som ligger i att två morfollogiskt lika svampar förete

1 Glocolichenen p. 52—53.
obligat näringsfysiologisk olikhet i symbiosens natur, också berättigar deras särskiljande som arter: biologiska arter (Jakob Eriks-son), om man så vill. Men det gäller att verkligen påvisa att denna olikhet är obligat. — Utgångspunkten för de blivande undersökningarna på detta område ha vi helt säkert att söka i just de ofvan berörda parallellsläkternas förbindelser ej blott med hvarandra utan ock med cefalodierna. Särskilt vill jag som ett lämpligt studiematerial framhålla släktet Pyrenopsis, hvilket helt säkert har mycket intima förbindelser med de af enkla, hyalina ascosporer utmärkta Lecideaceerna och Lecanoraceerna.

Hvad som i det följande kallas art- och varietetetsbildning hos lafvarna har endast med lafsvampen att göra. Så vidt man hittills kan se, har den fyllogenetiska utvecklingen af lafalgerna inom lafkroppen varit ytterst obetydlig, enär de all a låta identifiera sig med utom lafven fritt lefvande — tyvärr ofullständigt kända — storarter. Framtida undersökningar kanske dock kunna påvisa särskilda elementararter af dessa hos de lafvar, hvilka själfva jämte sina närmaste förfäder endast reproducerats genom soredier. De undersökningar öfver de s. k. modifikationsformerna hos lafgonidierna, som Hedlund påbörjat, ärö i detta hänseende beaktansvärda.

De nya synpunkter, hvilka genom mutationsteorien flödat in öfver botaniken, hafva ännu knappast hunnit tillämpas annat än på de fanerogama växterna. De studier, som jag här framlägger öfver lafsvamparnas art- och varietetetshildning, bär endast anspråk på att kritiskt sofrå en del material, som tydligen har fullständiga analogier med vissa mutationsföreteelser hos fanerogamerna. Rent tekniska svårigheter möta, då man för kryptogamerna och nu särskilt lafvarna skall arbeta med de omfattande kulturer och experiment, som här häftsas. Men om vi också ännu ej beträffande lafvarna kunna experimentellt angripa hithörande problem med ens tillnärmelsen af den precision, som varit möjlig vid behandlingen af vissa fanerogamer, kunna vi dock lämna några preliminära bidrag till deras lösning genom att utreda de ifragasatta mutanternas morfologiska karaktär samt deras förändringar under olika ökologiska förhållanden.

Polymorphismen hos klorofyceer. (Forts.)

ALBERT NILSSON föddes den 8 aug. 1860 i Dalhemens socken på Gotland. Fäderneöns märkliga natur bidrog att redan tidigt väcka hans hag för naturvetenskapen och medan han ännu var skolyngling, öfversatte han den ryske geologen Friedrich Schmidts arbete Beiträge zur Geologie der Insel Gotland, hvilken öfversättning dock aldrig utkom af trycket. Men botanik var hans egentliga fält som skolyngling, och när han 1884 som student kom till Uppsala, blev detta hans huvudämne. Under sin universitetstid synes han med förkärlek ha ägnat sig åt fysiologisk växtanatomii, som vid den tiden var ett modernt ämne. Gradualafhandlingen
«Studier öfver stammen som assimilerande organ», vilken ventilerades i december 1887, faller också inom detta gebit. Följande år blev han först docent vid Uppsala universitet och sedemera regnelliansk aniamnuens vid Riksmuseet. Från denna hans verksamhet härstammar det stora och rikt illustrerade arbetet öfver släktet *Xyris*.

Hans arbeten äro hvarken synnerligen många, ej heller omfattande, men man märker lått, att bakom dem finnes ett mycket grundligt och samvetsgrant arbete. För kändomen om de svenska skogstyperna och deras utvecklingshistoria samt för kändomen om Sveriges vegetation öfver huvud taget ha de ett bestående värde.

I sin forskning var Nilsson den lugne, gedigne, trågade och klart tänkande arbetaren, ej så mycket den idërike, som går nya och egna vägar. Kritisk skärpa, klarhet, blick för det väsentliga i de växlande växtsammansättningen göra, att hans arbeten inom växtfysiononiken höra till de bästa som publicerats om nordisk vegetation.

För all naturvetenskap var Nilsson starkt intresserad. Han var medlem i många naturvetenskapliga sällskap, ss. Botaniska sällskapet, Botanist-klubben, Geologiska föreningen, Antropologiska sällskapet, Naturvetenskapliga föreningen, lika liktigt deltagande i de allvarliga förhandlingarna som i de sällskapliga samkvämen. I dessa kretsar liksom bland skogsämnen var han högt skattad för sitt enkla, flärdlösa väsen och sin gedigna karaktär.

Här nedan lämnas en förteckning öfver af Nilsson utgiffna skrifter.

På tyska i Botan. Cblt. Bd. 27, s. 27—30.

1895. Om barrträdsrötter och deras uppträdande i våra skogar. 8:o (15 + 1 s.). — Tidskr. för Skogshushållning 1896.

Områdets växtlighet och inflytande på trädens sjukdomar af Alb. Nilsson, s. 2—14.

1897. Om Norrbottens myrar och försumpade skogar. — Tidskr. för Skogshushållning 25, s. 11—30.

> Om Norrbottens växtlighet med särskild hänsyn till dess skogar. — Ibid. s. 139—153.

1898. Om granrost. — Tidskr. för Skogshushållning 26, s. 89—103.

» Om bokens utbredning och förekomstsätt i Sverige. Tidskr. f. Skogshush. 1902. s. 238—256.

Litteraturanmälningar.

Tidskrift för Skogshushållning 1896.

Henrik Hesselman.
SVENSKA BOTANISKA FÖRENINGEN.

Mötet var besökt af 24 personer, mest botanister från Stockholm och Uppsala.

Detta möte ägde rum den 16 februari 1907, efter det kommittén utfärdat följande kallelse:

»Undertecknade få härmed inbjuda svenska botanister till bildande af en Svensk botanisk förening.

Föreningens ändamål skulle i första hand vara att möjliggöra utgifvandet af en Svensk botanisk tidskrift, i hvilken såväl större afhandlingar, som smärrre botaniska meddelanden och notiser kunde publiceras. Dessa skulle en dylik tidskrift lämpligen kunna bliiffva ett organ för Sveriges förut befintliga botaniska föreningar, hvilka därigenom bereddes tillfälle till ett närmare samarbete än som hittills varit möjligt.

Föreningens ändamål vöre äfven att anordna årligen återkommande allmänna sammantreden här i Stockholm eller annorstädes, eventuellt i förening med gemensamma excursioner i olika delar af landet.

Konstituerande sammantredé äger rum å Stockholms högskolas botaniska institut lördagen den 16 februari 1907, kl. 8 e. m. precis.
Personer. som äro förhindrade att infinna sig på den konstituerande sammankomsten. ombedjas att genom brev tillkännagivva sin eventuella anslutning till föreningen.

Till mötet hade infunnit sig 60 personer. Till ordförande för aftonen valdes professor G. LAGERHEIM.

Docenten ROSENBERG redogjorde först för hvad som förut åtgjorts för att få till stand en svensk botanisk förening, därvid särskilt redogörande för hvad som tilldragit sig på mötet den 24 februari 1906.

Betråffande underhandlingarna angående öfvertagande av Botaniska Notiser upplyste professor LAGERHEIM, att professor O. NORDSTEDT gifvit ett afsöjande svar.

Detta förslag antogs enhålligt, hvarpå ordföranden förklarade den Svenska Botaniska Föreningen bildad.

En redaktionskommitté tillsattes, bestående af följande medlemmar: lektor K. BOHLIN, professor G. LAGERHEIM, docenten R. SERNANDER, docenten N. SVEDELIUS samt redaktören.

At styrelsen uppdrogs att till nästa sammanträde utarbeta förslag till stadgar för föreningen.

Det beslöts att intill dess stadgarna antagits det skulle stå enhvar botaniskt intresserad person fritt att anmäla sitt inträde i föreningen. Den önskan uttalades, att sedermera nya medlemmar borde upptagas endast genom inval.

SAMMANKOMSTER.

Botaniska sällskapet i Stockholm.

Den 18 februari 1907.

Fil. lic. C. Skottsberg höll föredrag om sina blombiologiska studier i Stockholms skärgård. Se sid. 61 i denna tidskrift.

Docenten O. Rosenberg höll föredrag om artbildningen hos Taraxacum och Rosa. Föredraganden ingick på en närmare undersökning af kromosomtalets förhållande till apogamien. Strasburger har redan påpekat det egendomliga förhållandet att polymorfa släkten mycket ofta karakteriseras af anmärkningsvärdt höga kromosomtal i sina kärnor, t. ex. Alchemilla med 64, Taraxacum 26, Hieracium 34 och 42. Att härur draga någon slutsats om något slags orsakssamband mellan polymorfin och kromosomtalet, framlåter Strasburger dock som obcrättigadt, då så polymorfa släkten som Rosa och Rubus hafta 12, resp. 16 kromosomer. Enligt föredragandens åsikt torde man dock ur det anförda förhållandet hos de förstnämnda släktena kunna draga en annan slutsats. Talrika representanter ur de förstnämnda släktena ha visat sig vara apogama, och detta förhållande torde stå i något slags samband med de hos dem konstaterade stora kromosomtalen. Hos Alchemilla och Hieracium har det visat sig att de sexuella arterna af dessa släkten äga ungefär hälften så stort antal kromosomer som de apogama, t. ex. Alchemilla arvensis med 32, Hieracium auricula med 18 kromosomer. Vid en undersökning af en del Taraxacum-former fann föredraganden att en form, odlad i Bergie-lunds botaniska trädgård under namnet T. conferatum i alla undersökta fall hade tetradelning i embryosäckmodercellen, och att därvid kromosomtalet var 7, alltså i de vegetativa cellerna 14, d. v. s. hälften af de apogama Taraxacum-formernas. Förekomsten af tetradelning i embryosäckmodercellerna kan möjligen tyda på att denna form ännu är sexuell. Å andra sidan fann föredraganden att hos vissa Rosa-former, som med stor sannolikhet voro apogama, kromosomtalet ej var 16, utan 32. Hos hittills undersökta släkten med apogama och sexuella former har det alltså visat sig att kromosomtalet hos de sexuella är endast hälften af de apogama formernas. Möjlig kan fördubbling hos de apogama ha uppstått genom en längsdelning af kromosomerna utan samtidig kärndelning och sålunda en svårighet vid föräldra-kromosomernas bindning under reduktionsdelningen hafta uppstått.
Botaniska sektionen af naturvetenskapliga studentsällskapet
i Uppsala.

Den 5 februari 1907.

För Sverige första gången påvisade äro dessutom följande: Peltolepis sibirica LINDB., Sauteria alpina N. B. NEES, Odontoschisma Macounii (AUST.) UNDERW., Martinellia purpurascens (NEES). M. hyperborea JÖRG., M. paludos (K. MÜLL.), M. spitsbergensis LINDB., M. helvetica GOTTSCHE, M. Kaurinii (RYAN), Jungermania Baueriana (SCHIFFN.), J. Binsteadii KAALAS, J. elongata LINDB., Marsupella aquatica (NEES), M. capillaris LINDB., Cesia varians LINDB., Marchantia polymorpha L. var. alpestris NEES. Cephalozia divaricata (FRANC.) var. grimsulana (JACK) och C. bicuspidala (L.) var. altra ARN. Flera andra äro af intresse, emedan fört ormsortier tändt kändt om deras utbredning i Sverige, så t. ex. Asterella Lindenberghiana, Cephalozia striata, Marsupella Sprucei, M. condensata, M. apiculata, M. Boeckii, Cesia revoluta, Prasanthus suecicus.

Ofvan videgränsen aftager artantalet. Så ha i Sarekområdet endast 34 arter blivit funna i egentliga fjällregionen, däremot 78 arter i vide-regionen. På de svenska högfjällen spela lefvermossorerna genom sin individmängd en viktigare roll än i lagenlandet, hvilket sammanhänger med den rikligare tillgången på fuktiga lokaler och af smältvatten öfversilade sluttningar; här till kommer den fuktighet, som i fjälltrakten städsec finns i den frusna jorden.

Af de rent alpina lefvermossorerna fruktificera de flesta allmänt och många ofta mycket rikligt, så t. ex. de alpina Marchantiaceern. Cesia varians. Prasanthus suecicus, Anthelia nivalis, Martinellia uliginosa, Jungermania cordifolia, Cephalozia pleniceps o. s. v. I stort sedt fruktificera hepaticae mycket rikligare på fjällen än i lagenlandet, om ock en och an nan sydlig art. såsom t. ex. Marchantia och Chomocarpon, vid öfre grän sen för sin utbredning blir steril.

lägre grad av de mest skilda mossor, ej blott av andra lefvermossor utan åfven av löfmossor såväl akrokarpsiska som pleurokarpsiska och af tobf- mossor, huru olika de är i låglandet åro denna typ. Å andra sidan saknas den hos vara låglandsmossor. Såsom särskilt märkliga former af ifrågavarande typ visades exemplar af Amblystegium aduncum var. orthothecioïdes och Hypnum plumosum var. arcticum. Cesia-typens ändamål är tydligen skydd mot hasliga temperaturväxlingar; hos de starkast exponerade alpina mossorna, såsom hos Cesia corallioides och Prasanthius, är detta skydd dock otillräckligt såsom synes af de nästan alltid destruerade bladkanterna.

Dessutom förevisade föredraganden ytterligare två för Sverige nya lefvermossor, nämligen Eremonotus myriocarpus (Carl.) Kaalaas från Styggforsen i Dalarna och Mörsil i Jämtland samt Marsupella Jorgensenii Schiffn. från Åreskutan.

Fil. lic. C. Skottsberg föredrog om sina blombiologiska studier i Stockholms skårgård. Se sid. 61 i denna tidskrift.

Den 19 februari 1907.

För detta organ fanade föredraganden en benämning från ett på analogt sätt fungerande organ hos vissa svampkonidier och kallade det _frödisjunktor._

Den 5 mars 1907.

Fil. lic. C. Skottsberg föredrog om Caepidium antarcticum J. G. Ag. Föredr. hade upptäckt, att Caepidium-skott kunna svälla upp, bli ihåliga och växa ut till stora blasor, som mycket likna Colpomenia sinuosa; dessa blasor bär på pluriokulära sporangier. Blasorna kunde äfven uppträda utan sammanhang med Caepidium-skott, hvilket tolkades sa, att det unga, gre-

Docenten R. Sernander föredrog om nagra former för art- och varietetstbildning hos latvarna. Se sid. 97 i denna tidskrift.

Vetenskapsakademien.

Den 13 februari 1907.

Den 13 mars 1907.

Akademien beslöt att vid minnesfesten öfver Linneé, som Uppsalas universitet kommer att hålla i maj detta år, låta sig representeras af sin preses.

Följande reseunderstöd utdelades: 1 125 kr. åt läroverksadjunkten K. B. Nordström för växtgeografiska studier i västra Blekinge; 2) 100 kr. åt lektor Johan Erikson för afslutande af sina studier öfver strandfloran i Blekinge skärgård; 3) 100 kr. ar redaktören W. Bülow för studier af hymenomyceeter i södra Sverige; 4) 100 kr. af filosofie licentiaten H. Kylin för algologiska undersökningar i Bohuslän; 5) 125 kr. åt fil. kandidaten G. Samuelsson för fortsatta hieraciologiska studier i norra Dalarna; 6) 150 kr. åt docenten H. G. Simmins för undersökning af hafsalgerna vid Skanes nordvästkust; 7) 175 kr. åt amanuensen G. W. F. Carlson för sötvattensalgologiska undersökningar i Torne lappmark.
SMÄRRE MEDDELANDEN.

Nya svenska fyndorter för Gentiana uliginosa Willd.

Hösten 1905 påträffade jag i min hemtrakt, Hassle socken i Västergötland, ca 1 mil NO om Mariestad, å en med lág vegetation beväxt, fuktig ångs-mark tillhörig Prästgårdens torp Vasslaäng, en för Hasslefloran ny art: Gentiana uliginosa WILLD., i mängd.

Tvenne sällsynta skandinaviska Gentiana-hybrider.

I det 1892 utgifna arbetet: Studien über Gentianen aus der Gruppe Endotricha Froel.² nybeskref MURBECK hybriden G. A. Ag. × lingulata C. A. Ag. × campestris L. * suecica (Froel.) Murb. efter ett enda på Åland

I juli 1899 anträffade jag 23 ex. af denna hybrid på Skåbbeholmen i Lidö s:n (Uppland) och den 21 juli 1900 fann jag 3 individ i Härjedalen, Hede s:n, Ortholmen. På den sistnämnda lokalen iakttogs den 16 juli 1904 ytterligare 3 ex. Änno exemplar af hybriden är taget i Norge: Jotundheimen, Bävertuns satser den 11 augusti 1891 af GUNNAR ANDERSSON.

Växten är sålunda ännu endast känd i 34 exemplar från sex olika lokaler, men troligt är, att om den endast eftersöktes, skulle den anträffas på långt flera ställen, då föräldrarna växa tillsammans så godt som öfver hela Skandinavien. Hybriden är så typiskt intermediär i de karaktärer, som skilja föräldrarna åt, att en beskrifning knappast behöfves. Bästa stödet vid bestämmningen ger fodrets form hos toppblomman.

Linnéjubileet.

De stora högtidigheter, hvarmed Uppsala universitet och K. Vetenskapsakademien i Stockholm den 23—25 maj innevarande år skola firar 200-årsdagen af Carl von Linnés födelse, komma att bevistas af gäster från

1 Répertoire chromatique. Vingt-neuf tableaux en chromo, représentant 952 teintes différentes et définies. Paris 1890.
skilda delar af världen. Programmet för festen i Uppsala torde blifva följande:

Första dagen, den 23 maj, är den stora minnesfåsten i aulan. Universitetets rektor professor Schück talar därdå öfver Linnéminnet. Vid detta tillfälle komma representanter från universitet, högskolor och lärda samfund inom och utom Europa att framföra hälsningar och lyckönskningar i anledning af jubileet. Efter detta är på eftermiddagen anordnade en särskild middag, dels privat i familjer, dels gemensamt under protektion af något af stadens lärda samfund. På kvällen är en mottagningsfåst arrangerad i aulan, med studentsang, musik m. m.

Angra dagen, den 24 maj, är den stora promotionen, som måste föråttaas i domkyrkan, en där man omedelbart därefter skall hålla den stora festen i aulan, där golf salunda på förhand måste inläggas.

Vid promotionen kommer jubelpromotion att äga rum af 1857 yrs filosofie doktorer. Vidare komma särskilda svenska hedersdoktorer att kreeras jämte promotion af doktorer inom alla fyra fakulteterna.

Efter promotionen blir den stora festmiddagen i aulan.

Universitetet och Vetenskapsakademien ha inbjudit representerar från en mängd europeiska och utomeuropeiska universitet, Linnéassociationer, lärda samfund och museer samt märkesmän för den botaniska vetenskapen. I allmänhet har ett universitet från hvarje land (från Tyskland ett från hvarje stat) inbjudits samt dessutom de akademier och sällskap, hvaraf Linné var ledamot äfvensom de holländska högskolor, där han studerade, samt dessutom af alldeles särskilda skäl ytterligare några universitet och vetenskapsmän.

Listan på de utländska inbjudna har följande utseende:

- Från Norge: Kristiania universitet; Videnskabs Selskabet, Kristiania;
- Från Danmark: Köpenhamns universitet; Det Kongl. Danske Viden-

skabernes Selskab, Köpenhamn.

- Från Finland: Helsingfors universitet.

demie der Wissenschaften, München; Königl. Sachsische Gesellschaft der Wissenschaften, Leipzig.

- Från Holland: Universiteten i Amsterdam och Leyden, der Facultet
der Geneeskunde der Rijks Universiteit te Leiden; het Zeeuwsch Genoot-

schap der Wetenschappen, Middelburg; Bataafsch Genootschap der Gra-
fondervindelige Wijsbegeerte, Rotterdam: Academie van Wetenschappen, Amsterdam.

- Från Belgien: Universitetet i Bruxelles, Société Royale Linnéenne, Bruxelles; l'Académie Royale des Sciences etc. de Belgique, Bruxelles.

- Från Frankrike: Universitetet i Paris; l'Académie des Sciences, Paris: Société Linnéenne de Paris; Société Linnéenne de Bordeaux; Société Linnéenne de Marne et Loire, Angers; Société Linnéenne de la Charente-
Från Schweiz: Universitetet i Bern.
Från Rumänien: Universitetet i Bukarest.
Från Spanien: Universitetet i Madrid: Real accademia des Sciencias exactas etc., Madrid.
Från Portugal: Universitetet i Coimbra.
Från Grekland: Universitetet i Atén.
Från Syd-Amerika: Universitetet i Buenos Aires.
Från Ryssland: Universitetet i Petersburg: l'Académie Impériale des Sciences de St Petersburg.
Dessutom äro inhjuda svenska universitet, högskolor samt en del andra korporationer. svenska stadsrådet, representanter för riksdagen. släktingar till Linné m. fl.

Svensk Botanisk Tidskrift.
Profföreläsningar.

Såsom sökande till den e. o. professuren i växtbiologi vid Uppsala universitet hafva föreläst:

lektor Th. Hedlund, den 27 september 1906, »Om olika former af parasitism hos växter» (mat.-nat. sektionens ämne);

den 28 september 1906, »Om algers uppträdande som epifyter på buskar och träd» (eget ämne);

docenten H. Hesselman, den 9 februari 1907, »Om löffällning» (mat.-nat. sektionens ämne);

den 2 februari, »Om geofyternas nivåförnimmelser» (eget ämne);

docenten B. Lidforss, den 13 februari, »Den fanerogama epifytvegetationens biologi (mat. nat.-sektionens ämne);

den 11 februari, »Om växternas skyddsmedel mot köld» (eget ämne);

docenten N. Svedelius, den 13 februari, »Mangrovevegetationen» (mat.-nat. sektionens ämne);

den 6 februari, »Om ljusets inflytande på hafsalgernas fördelning» (eget ämne).
Referat.

E. Hannig: Ueber pilzfreies Lolium temulentum. — Botanische Zeitung 1907, I. II. II.

Vid undersökning av förroeringar i mjöl upptäckte Guerin och Vogel (1898) oberoende av varandra, att i frukterna av det s. k. dårrepet, Lolium temulentum, förekommer ett skikt av hopvåda svampfyler på gräset mellan fröskälet och aleuronlagret. Detta egendomliga förhållande har närmare undersömts av flera forskare, bland dem främst A. Nestler (1898, 1904) och E. M. Freeman (1902, 1903, 1906). Svampen befanns nåstan alltid vara för handen i fröna, dock utan att någonsin bilda förgiftningssorgan. Freeman påvisade, att svampen ärfves från den ena generationen till den andra, därigenom att hyferna intränga i stamknopen hos fröets växtämne. Hyferna tillväxa sedan samtidigt med värdplantan, tills de vid denna blomning ånyo intränger i fruktämnet. G. Lindau påvisade (1904) svampen i frukter af Lolium temulentum, funna i 4,000 år gamla egyptiska konungagrafvar. Mycetiet har således i minst 4,000 år gått i arf hos värdplantan, troligen utan att någonsin en »förnyring« af detsamma genom sporer åt rum.

Till det yttre visar Lolium temulentum inga tecken på att den skulle vara behärdad med en svampparasit. Fröna äga mycket god groningsförmåga. I kampen mellan värdplanta och parasit tycks här ha inträtt ett för båda parterna förmånligt jämviktsstillstånd.

Frukterna af Lolium temulentum äro som bekant giftiga. Enligt Hofmeister (1892) innehålla de en giftig alkaloid, temulin, som angriper nervsystemet på människor och djur. Då Lolium temulentum är ett ogräs, som i synnerhet uppträder bland hafre och korn, har den stundom åstadkommit epidemiartade förgiftningssfall med symptom, som delvis likna alkoholrusets.1

Liknande förgiftningssfall åstadkommas som bekant af den från vårt land bekanta ör-rågen och den från Sydrysland af Woronis beskrifna »Taumelroggen«. Dessas verknings bero på förekomsten af svamp i råkornen och det låg därför nära till hands att antaga, att åfven den

1 Om verkningsarna af dårrepet skrifter A. J. Retzius i Flora oeconomica (1806) att det »både i bröd och dricka förrorskatt hos människor yrhet, svår huvudvärk, swindel, ångslan, konvulsioner, som ej sällan slutats med döden. På Gottland vill man hafva den såkra ärfarenheten, att af Öl bryggt af malt hvare Dår-Repe fins, blir drickaren icke allenast yr och galen, utan under påstående rus blind.« I »Norge vaextrige« I (1886) säger Schübeler att »man paa enkelte Steder icke kunde bruge det Mel, der var blandet med Svimling til noget Slags Mad, der blev spist til Middag, men alene til Grad om Aftenen; men det traf da heller icke sjelden, at alle, der havde spist denne Grad, ikke vaagnede til den vedtagne Arbeidstid om Morgenen«.
giftiga alkaloiden hos därepot alstras af den där befintliga svampen, i synnerhet som man eljest inom gräSENS familj endast sällan på-
träffar några giftiga ämnen.

Att konstatera om svampen var upphof till giftet hos Lolium visade sig vara förenad med vissa svårigheter, ty alla försök att renodla svam-
pen ur Lolium-frön misslyckades. Emellertid hade GUERIN och FREEMAN påvisat, att svampfria Lolium-frukter kunna påträffas. I vissa trakter upp-
träda dessa mycket sällan (Prag, Strassburg). i andra relativt rikligt (Cambridge, Uppsala). Vid Cambridge skattades de svampfria Loliumfruk-
terna af FREEMAN till 20 procent. På material från Strassburgs botani-
ska trädgård fann förf. först efter att ha snittat genom 578 frukter tvenne svampfria sådana. Ett af dessa korn gaf upphof till en ny planta, hvars
alla frukter befunnos vara svampfria. Dennes afkomlingar liksom även
afkomlingar af svampfria från Cambridge visade sig under 4 gene-
rationer allt fortfarande fria från svampen. Genom jämförande kemisk
undersökning af extrakt på svampförande och svampfria korn lyckades
förf. nu fastställa, att den giftiga alkaloiden saknas i de svampfria fröna.
Därigenom är saledes bevisad, att de giftiga egenskaperna hos fruk-
terna af Lolium temulentum härröra från den där befintliga
svampen.

De svampfria fröna skilja sig till det yttre icke från de svampförande
lika litet som man finner någon yttre olikhet mellan svampförande och
svampfria Lolium-planter. Bägge slagen sätta lika riklig frukt. Påvisan-
det af svampen såsom upphof till giftet är icke utan en viss praktiskthet
ydel. Man har nämligen funnit svamphyfer även i frukter af Lolium linicola,
italicum och perenne, elva ej på långt när så konstant som hos Lolium
temulentum. Af dessa åro som bekant Lolium italicum och perenne vikt-
tiga fodergräs. Även om svampen hos dessa ej skulle vara samma art
som hos Lolium temulentum — hvilket NESTLER nyligen betvillat —
föreligger dock möjligheten att även dessa Lolium-arten kunna blifva
skadliga, i synnerhet om svampen så småningom finge större utbredning
än som nu är fallet. Hos Lolium perenne har NESTLER uppskattat de
af svamp angripna kornen till 25 procent.

T. VESTERGREN.

HARALD LINDBERG: Finlands Hippuris-former. Meddel. af Soc. pro
Fauna et Flora Fennica, h. 30. Helsingfors 1906.

I en grund hafsvik (Ingå, Nyland) förekommo Hippuris vulgaris och
Hippuris vulg. f. maritima växande på samma ställe. Däraf synes framgå,
att den senare ej kan anses blott som en ståndortsform af den förra i
likhet med den blott på förekomsten i rinnande vatten beroende lokal-
formen flaviatilis. Detta antagande bestyrkes även af att förmerna åga
olika geografisk utbredning, i det H. maritima är inskränkt till de nord-
ligaste delarna af Europa, Asien och Amerika. I Sverige är H. maritima
känd endast från östra kusten, sydligast i Östergötland. Orsaken till att
H. maritima eller, som den med sitt äldsta namn rättare bör heta, Hip-
puris tetraphylla L. fil. (1781) blifvit oriktigt uppfattad, torde vara att
söka därri, att man trott sig finna mellanformer mellan denna och *H. vulgaris*. Dessa åro enl. förf. endast hafsstrandsformer af *H. vulgaris* och betecknas af honom med namnet *f. litoralis*. På de båda arterna lämnar förf. följande beskrifning:

Hippuris tetraphylla L. *fil.* — Stam vanl. 20—40 cm. hög, internodier 20—30. de midtersta af bladens längd, de på stammens nedre hälft i regel m. l. m. starkt förlängda. Bladen 4. mindre ofta 5. mycket sällan 6 i krans. de mellersta 2 å 3 gånger längre än breda, vanligen 10—12 mm. långa och 3. vanl. 5 mm. breda, trubbiga. Hela växten ej sa starkt afsmalnande uppat, med en mera jämnbred omkrets.

Hippuris vulgaris L. — Stam vanl. 20—50 cm. hög, internodier 50—60, de midtersta hälften kortare än bladen, i regeln endast de nedersta m. l. m. förlängda. Bladen vanligen 9—11 i krans. flera gånger längre än breda, de mellersta 15—20 mm. långa, 1—2 mm. breda, m. l. m. starkt tillspetsade. Hela växten starkt afsmalnande i en lång spets, därigenom med smalt pyramidlik omkrets.

Forma *litoralis* LINDB. *fil.* afviker från huvudformen endast genom något bredare och kortare blad, 12—17 mm. långa och 2—3 mm. breda, vanl. 6—8 i krans.

T. Vestergren.
UPPROP.

Under den kongress för hybrid-forskning, som på inbjudan af Royal Horticultural Society sammanträdde i London sommaren 1906, väcktes ett förslag om resande af en minnesvård åt Gregor Mendel. En kommitté tillsattes, och denna har i dagarna utfärdat ett upprop af följande lydelse:

Von nur wenigen zu Lebzeiten gekannt, dann durch Dezennien fast vergessen, heute im Munde aller Biologen — das war das Schicksal von Gregor Mendels Forschernamen. Und doch hatte Mendel schon von 42 Jahren auf dem Gebiete der Vererbung und Bastardierung das Walten von biologischen Gesetzen erkannt, wo nach oberflächlicher Betrachtung nur Zufall und Regellosigkeit zu herrschen schien. Mit der Entdeckung und eingehenden Begründung der Hybridgesetze hat er in Wahrheit eine neue, ungemein fruchtbare Ära experimenteller Forschung für die Vererbung der Einzelmerkmale sowie für die Systematik der Pflanzen und Tiere, nicht minder für die Mikrobiologie der Fortpflanzungsprozesse und für die praktische Züchtung eröffnet und ermöglicht. Allerdings wurde diese Entwicklung erst durch die im Jahre 1900 erfolgte Wiederentdeckung von Mendels Lehre ausgelöst.

War ihm selbst zwar die innere Freude und Genugtuung um seinen Werke beschert, die äussere Anerkennung und Wertung, der schuldige Tribut der Mitwelt vor das Geistes Grosstat ist ihm versagt geblieben. Um so glänzender, ja beispiellos rasch hat sich Mendels Nachruhm über alle Länder verbreitet. Was die Mitwelt einst gefehlt, das hat die neue Zeit gesühnt. Doch über die wissenschaftliche Wiederbelebung von Name und Werk hinaus bleibt noch die Ehrenschrift bestehen, auch der Person ein äusseres, zu weiten Kreisen sprechendes Erinnerungszeichen an der Stätte ihrer Wirksamkeit zu Brünn in Mähren zu errichten. Ein Denkmal soll dort noch späteren Geschlechtern von dem ausgezeichneten und selten bescheidenen Forscher und von seiner Würdigung seitens der Biologen aller Länder erzählen.

Die Unterzeichneten richten daher an alle Freunde und Förderer der biologischen Wissenschaften die Aufforderung, diesen Plan durch Stiftung und Sammlung von Beiträgen verwirklichen zu helfen.

Undertecknad har åtagit sig att mottaga bidrag till ofvan-nämnda ändamål från Sverige, Norge och Danmark.

Stockholm i mars 1907.

O. ROSENBERG
Adress: Tegnérlunden 4.
BOTANISKA STUDIER
tillägnade
F. R. KJELLMAN
UPSALA 1906.

Pris: 10 Kr. (11 Mark).

ALMQVIST & WIKSELL, Upsala.
R. FRIEDLÄNDER & SOHN, Berlin (11 Carlstr.).

PORTRÄTT af Professor F. R. KJELLMAN
(i ljustryck)

Pris: 1 Kr.
genom Botaniska Sektionens sekreterare, Upsala.
Lecanora gelida (L.) Ach.
Lecanora gelida (L.) Ach.

Sigrid Ohlsson del.

Ljustr. J. Cederquist Stlm
Alectoria cincinnata (Fr.)
Ramalina fraxinea (L.)
1-2 Evnemia furfuracea (L.) 3-4 Parmelia physodes (L.) Ach., Bitter.
5-6 Ramalina fraxinea (L.)—farinacea (L.) 7 Usnea pilcata (L.)—dasypoga (Fr.)
Det är önskvärdt, att större afhandlingar af allmänt vetenskapligt innehåll åro författade på engelska, franska eller tyska eller åtminstone åro försedda med en sammanfattning på något af dessa språk. Växtnamn och dylikt måste vara tydligt skrifna för undvikande af dyrbara korrekturändringar. Omkostnader för korrekturändringar mot manuskriptet överstigande 10 % af tryckningskostnaden bestridas af författaren.

Korrektur och andra handlingar, som röra tidskriften, insändas direkt till redaktören. Direkt förbindelse mellan författaren och tryckeriet får ej äga rum.

Hvarje författare erhåller 100 särtryck med omslag afgiftsfritt af sin i tidskriften intagna afhandling; större antal efter öfverenskommelse. Af smärre meddelanden intagna i tidskriftens borgisafdelning lämnas separat endast efter särskild öfverenskommelse.
INNEHÅLLSFÖRTECKNING.

S. BIRGER: Über endozoische Samenverbreitung durch Vögel 1
N. SVEDELIUS: Über einen Fall von Symbiose zwischen Zoochlorellen und einer marinen Hydroide (mit 6 Textfiguren) ... 32
(Med sammanfattning på svenska) .. 46
N. SYLVÉN: Eigenartige, rein florale Sprosse bei zwei schwedischen Artemisia-Arten (mit 3 Textfiguren) ... 51
T. VESTERGREN: Discosia artocreas (Tode) Fr., eine Leptostromataceae mit eigentümlichem Pyknidenbau (mit 12 Textfiguren) ... 56
C. SKOTTSBERG: Blommor och insekter på Skabbholmen i Roslagen sommaren 1901 .. 61
(Mit deutschem Resumé) .. 92
R. SERNANDER: Om några former för art- och varietetsbildning hos lalfarvarne (med 3 textfigurer och 5 planscher) ... 97
H. HESSELMAN: † L. A. Nilsson ... 116
Redogörelse för Svenska Botaniska Föreningens bildande 120

SAMMANKOMSTER:

Botaniska Sällskapet ... 122
Botaniska Sektionen i Uppsala .. 123
K. Vetenskapsakademien ... 125

SMÄRRE MEDDELANDEN:

Nya svenska fyndorter för Gentiana uliginosa ... 126
Tvenne sällsynta skandinaviska Gentiana-hybrider ... 126
Linnejubileet ... 127
Profföreläsningar ... 129

REFERAT:

E. HANNIG: Ueber pilzfreies Lolium temulentum' .. 130
H. LINDBERG: Finlands Hippuris-former .. 131

CENTRALTRYCKERIET, STOCKHOLM, 1907.
SVENSKA BOTANISKA FÖRENINGENS
styrelse och redaktionskommitté
under år 1907.

Styrelse:
V. B. WITROCK, ordförande; R. SERNANDER, vice ordförande; O. ROSENBERG, sekreterare och redaktör; G. INDEBETOU, skattmästare; J. BERGGREN, K. BOHLIN, K. JOHANSSON, O. JUEL, G. LAGERHEIM, G. MALME, M. SONDÉN.

Redaktionskommitté:
O. ROSENBERG, K. BOHLIN, G. LAGERHEIM, N. SVEDELIUS, R. SERNANDER.

Till tidskriftens medarbetare!

Med afseende på stilblandningar gälla följande regler:
1) Auktorsnamn sättas med vanlig stil.
2) Personnamn i texten sättas med KAPITÄLER (dubbelt understruket i manuskriptet).
Carl Linnaeus.

Han är och förblir ett af våra stoltaste, vackraste minnen.

Henrik Hesselman.
OM NÅGRA FORMER FÖR ART- OCH VARIETETS-BILDNING HOS LAFVARNA.

AF
RUTGER SERNANDER.

KAP. II. Depigmentationer såsom retrogressiva varieteter.

Om också i de allra flesta fall direkta iakttagelser öfver mutationens förlopp saknas, kan man med DE VRIES' med stor säkerhet antaga, att de varieteter bland blomväxterna, hvilka genom depigmentation skilja sig från huvudarten, i ett slag förlorat ett visst eller vissa af dess pigment. Åfven bland lafvarna finnas sällsynt upptrådande exempel på sådana retrogressiva varieteter, hvilka genom olika slag af depigmentation skilja sig från huvudarten, och hvilka måste anses som mutanter af densamma.

Lafvarnas färger betingas af lafsyror och, hvad särskilt theciet angår, af vissa laffärgämnen. De varieteter albinea, ochrocarpa, cerina etc., som uppträda bland vissa lafläktern, och hvilka jag nu vill tolka som retrogressiva mutanter, utmärka sig genom partiel förlust af dessa syror och färgämnen. Det gäller härvidlag att från dessa äkta varieteter skilja till det yttre analoga och genom samma totala eller partiella förlust uppkomna depigmentationsformer, men hvilka falla inom den fluktuerande variationens räckvidd.

Ett vackert sådant exempel erbjuder Xanthoria parietina (L.) TH. FR. Bålens allbekanta gula färg hos denna laf betingas huvudsakligen genom närvaron af krysofantsyra. Lafsyrehalten i lafbålen tyckes stå i samband med belysningsförhållandena, så att den tilltar med ökad och aftar med minskad ljusexposition.1 Så är åfven fallet

1 Die Mutationstheorie II, p. 146.
2 Jmfr t. ex. att bålen af den på solöppna lokaler växande Usnea hirta (L.) hal- er 5 %, men af den i skogar växande U. plicata (L.) endast 2 % usninsyra. Wind- man, Usninsyra I, p. 12.
Svensk Botanisk Tidskrift.

Ett annat exempel möter hos Physcia ciliaris (L.) DC. Skuggformen ärö (i torrt tillstånd) gråhvita; i öppet läge, särskilt på strandklippor, växande individer ärö mättad svartbruna (beskrifna som melanosticta Ach., nuda Stenh., stellata Fr., scopulorum E. Nyl. och saxicola Nyl.). Lättast att se dessa formers beroende af belysningen är på tätta tufvor af melanosticta: man får alla öfvergångar mellan de mörkfärgade yttre bålllikarna och de innersta, som ärö gråhvita.

Hos såväl Xanthoria som Physcia visar theciet i viss mån samma växlingar i färg — minst tydligt hos den sistnämnda — som de, hvilka nu skildrats för bålen. I det följande skildras några färgförändringar hos theciet inom släktet Cladonia, som icke kunna förklaras genom några växlingar i belysningsförhållandena, utan hvilka verkliga måste anses ha uppkommit genom mutation.

Som jag redan i inledningen till detta kapitel antydde, visar det sig, att då man kan få notiser om förekomstsättet af dessa depigmentationer hos Cladonia arterna, ha de oftast anträffats i få exemplar. Man har alltid lyckats påvisa, att färgförändringen står i samband med någon viss yttre faktor, t. ex. en skuggig lokal, utan i de få fall, då uppteckning gjorts, har den hittats växande tillsammans med den förmodade moderformen. Ej heller har man funnit några övergångar till denna, hvilket naturligtvis skulle ha varit fallet, om fluktuerande variation förelegat. De övergångar, som hittats, tillhör, som jag i ett följande kapitel skall söka åtta, de sektoriaela eller knopp-variationerna, i hvilket fenomen vi hafva ännu en beröringspunkt med de fanerogamas retrogressiva mutationerna.

Hvad depigmentationens anatomiskt-fysiologiska innebörd angår är denna groft sedt att karaktärisera som ett bortfallande af den lafska och de lakkämmen, som ge theciet dess färg. Systematici pläga om gruppen Coccifera Del... dit de mest prägnanta depigmentationerna höra, säga: >Apothecia coccinea, hydrate calico solutionem violaceam effundentia eller >Apotheciorum color coccineus KOH evadit multo pallidior vel omnino dispar et o. s. v. Fullt korrekt återger detta icke den makroskopiska reaktionen. Litet KOH på theciet färgar detta ögonblickligen svart, tillsättas en vattendroppe, visar det sig att kaliluten löst åtminstone en del af de ämnen, som orsaka den röda färgen. Det lösta diffunderar genast ut i vattnet, färgande det mörkt blodrödt eller vinrödt alltefter koncentrationen. Denna reaktion inträder icke hos depigmentationen, hvilket visar att det ifrågavarande färgämnet här försvunnit. Då jag icke med kalilut lyckats få huvudarternas röda apotheciefärg mer än svagt blekt, tyckes äfven något annat färgämne bortfalla vid depigmentationen. — Pyknidväggarna inom denna grupp ärro mörka hos såväl huvudarterna som åtminstone de depigmentationer, hvilka jag varit i tillfälle att undersöka. Af intresse är Wainios uppgift; >in gelatina spermatica materiam coccineam continentia, aut raro in formis ochrocarpis materia coccinea desituta«.

1 Monographia Cladoniarum I. p. 59.
Depigmentationer äro anmärkta hos såväl de med rödt (Coccifera Del.) som brunnt (Ochrophaeae Wainio) thecium utrustade Cladonia-arterna af undersläktet Genomyce (Ach.) Th. Fr. I det följande skall jag behandla de viktigaste af de fall, jag efter litteraturen eller egen erfarenhet har mig bekanta.

A. Coccifera.

Cladonia Flörkeana, Fr. v. xanthocarpa Nyl. — Wainio l. c. I., p. 86: »Apothecia pallida — — Prussia: Hela.«

Cladonia coccifera (L.) Willd. v. ochrocarpia Floerke, och v. cerina (N.egel) Th. Fr. — Wainio fördelar i sin monografi Cl. coccifera på 5 elementararter: α stemmatina Ach. (podetia esoredios, simplicia vel margine scyphorum prolifero; apothecia coccinea), β asotea Ach. (podetia esorediosa, proliferationibus e diaphragmate scyphi enatis; apothecia coccinea), γ ochrocarpia, Floerk (podetia

1 Norrlands lafare, p. 70.
2 Supplementum Floræ Lapponicæ, p. 128.
esorediosa, simplicia aut margine scyphi prolifero: apothecia pallida vel maculis aurantiaco-rubentibus, \(\delta \) pleurota (Floer.) Sch. er. (podetia plus minus sorediosa: apothecia coccinea) samt \(\varepsilon \) cerina (N. eg.) Th. Fr. (podetia plus minus sorediosa, apothecia e parte pallida, e parte aurantiaco-rubentia), af hvilka sålunda ej mindre än 2. ochrocarpia och cerina, åro att anse som depigmentationer. Den första är en tydlig mutant af stemmatina. den senare tyckes innehålla ett par olika mutationer, af hvilka åtminstone den ena är härledd från pleurota.

Cl. coccifera har ett ofantligt utbredningsområde, inom hvilket den ofta kan räknas som en af de allmännaste lafasterna. I öfverensstämmelse härmed åro depigmentationerna funna på flera lokaler, men dessa ligga ytterst spridda inom de i lichenologiskt hänseende bäst undersökta områdena.

Bland gruppen Ochroleuce Fr. finnes en intressant, synnerligen vacker art: Cl. carneola Fr., hvilken till sin morfologi och habitus är förvillande lik en Cl. coccifera v. cerina med mera svavvelgula podetier. Det framhålles också någon gång i den systematiska lit-
teraturen, huru lika *Cl. carneola* och *Cl. coccifera* äro hvarandra. »Cum *Cl. coccifera* omnino analoga staturaque congruens« säger t. ex. Th. Fr. Lich. Sc., p. 73. Den enda skillnaden, som också skarpt framhålles af Elias Fries själf, är att podetierna af *carneola* vid basen ofta få en blåaktig anstrykning, som saknas hos *pleurota*. Th. Fr. säger också l. c.: »planta sterilis vix certe sit determit nanda«. Pykniden äro enligt WAINIO l. c. II, p. 424 »nigra (aut-microscopio fusco-nigra), basin versus pallidiora, materiam cocci-neam non continentia«. De äro emellertid, så vidt jag kunnat finna, afgjort ljusare än hos *pleurota* och af ungefär samma färg som hos *cerina*. — Om *Cl. carneola* skall anses som en mutation från någon nu utdöd eller levande elementarart ur *pleurota*-komplexen, möta emellertid en del svårigheter i utvecklingshistoriskt hänseende. Med *Cl. carneola* äro nämligen tvänne elementararter, också med apothecia pallida, intimt förbundna: *Cl. bacilliformis* (Nyl.) WAINIO och *Cl. cyanipes* (SOMMERF.) WAINIO, som knappast ha direkt motsvarighet bland någon af *cocciferas* nu levande elementararter. Antingen ha sålunda dessa utvecklat sig ur *carneola* eller ock från utdöda former af *coccifera pleurota*. Alla tre äro funna på en mängd lokaler, men de äro afgjordt sällsyntare än *pleurota*. Species sat rara et para, säger WAINIO om *Cl. carneola*.

B. Ochrophwea.

Cladonia cornuta (L.) SCHÆR. v. ochrocarpa NYL. — Hitjad en gång af SIMMING vid Partnavolok i Ryska Karelen.¹

Då jag endast på herbarieexemplar varit i tillfälle att studera de nu behandlade Cladonia-depigmentationer, kan jag icke säga, om mitt subjektiva intryck, att bålen får en något ljusare färgton än hos den förmodade moderarten, har något berättigande eller ej. Emellertid gifves det tydliga mutationer bland lufvarna, som just tagit denna yttre form.

Till diskussionen öfver de nu beskrifna mutationernas uppkomst-sätt få vi tillfälle att återkomma i ett följande kapitel om de vegetativa mutationerna. Med afsikt har jag också till dess uppskjutit behandlingen af de med depigmentationerna hos Cladoniernas så ofta förbundna sektoriale variationerna och knoppvariationerna.

KAP. III. Fasciationer.

Liksom depigmentationerna hos fanerogamerna är de vanligaste och mest iögonenfallande bland de retrogressiva varieteterna. Torde fascinationerna vara det bland mellanraserna. eller som de ock benämns. ’beständig umschlagende Varietäten’. Jag tror mig

1 De Vries-Klebahn, Arten und Varietäten. p. 190.
också ha konstaterat, att även denna mutationsform liksom depigmentationerna förekommer hos lafvarna.

Det bör genast med styrka framhållas, att då man i litteraturen kallar vissa förbandningsfenomen hos svamparna, närmast hattsvamparna, för fascinationer, är det endast på grund av dessa bildningsafviktelsers yttre morfologiska likhet med kärlväxternas fascinationer, och att inga utvecklingshistoriska undersökningar äga gjorda, som berättiga till denna identifiering. Hvad nu förbandningarna hos en särskild svampgrupp, lafvarna, beträffar, skola vi i det följande söka visa, att deras utvecklingshistoria, om ock med viktiga olikheter, i så mycket erbjuda analogier med kärlväxters fascinationer, att de åtminstone tills vidare börja uppföras som sådana.

Om vi från de utvecklingshistoriska olikheter, som sammanhånga med att de tillväxtzoner, där förbandningarna grundläggas, i det enda fallet äro uppyggda af hyfer, i det andra af parenkymatiska celler, kommer den väsentligaste olikheten att betingas af den starka roll, som den interkalära tillväxten spelar i lafvarnas uppyggningshistoria. Förbandningen av den normalt cylindriska fanerogamstången grundlägges redan i växtpunkten, som i stället för en kägla antar formen af en kam. De förbandningar hos lafvarna, hvilka jag tolkar som fascinationer, uppkomma icke på detta sätt. Hos såväl de cylindriska som dorsiventrala skotten hos lafvarna beror skottets ytutsträckning till största delen af interkalär tillväxt. Detta visar sig bland annat och tydligast i att de förbandade partierna aldrig uppträda i själva spetsarna af skottet, utan ett godt stycke under desamma.

1 A. Nestler, Untersuchungen über Fasciationen.
Fasciationen tar sig tvenne uttrycksformer, mellan hvilka tydliga mellanled är sällsynta.

Typ B. Fig. 4. Den andra fasciationsformen betingas af att denna tendens hos hycknipporna att avvika från skottaxelns riktning ökas, och härigenom uppkomma de verkliga förbandningarna. Skottet blir bilateralt med en flanktillväxt, som betingas dels af de interkalära inlagringarna längre in på skottet, dels genom tillväxten af de hyfknippen, som med större eller mindre vinkel utlöpa i flankerna. Kortikallagret utkilar mot dessa och understundom så starkt, att gonidiallagret blottlägges. Om här andporer eller mera långsträckta öppningar föreligga har jag ej undersökt. Bredden blir högst betydlig, som redan Kihlman\(^1\) framhållit, ända till 3 cm. Tjockleken är endast 1—2 mm., hvaraf det mesta faller på kortikalkiktets innlager och endast omkring 0,5—0,7 mm. komma på det till en lakunös skifva utvalsade gonidial-medulliarlagret. Genom oregelhundeheter i den starka interkalärä tillväxten af samma natur som i

\(^1\) Pflanzenbiologische Studien aus Russisch Lappland, p. 133.
typ A blir ytan ojämnd samt grundt och otydligt fooveolerad. Synnerligen karakteristisk är den ådring, som uppträder på förbandningens bågse sidor och som särskildt är framhållen på fig. 4. I huvudsak följer den riktningen av den fascierade axeln och dess sidoskott. Den betingas av lokalt förtjockade äsar av det inre kortikallagret. — Lika karakteristiskt är, att gonidialzonen med angränsande partier av kortikallagret tillväxer så starkt interkalärt, att det yttre kortikallagret rämnar och märgen med partier av gonidialzonen blottlägges på en punkt. Denna punkt vidgas och uppfäikes, då spännningen mellan de olika hastigt tillväxande yttre och inre lagren tilltager i omgifningen. Nya rämnor uppstå midtemellan tvenne gamla, emedan spännningen där är starkast.1

Understundom förbindas väggarna i rännorna genom några smala, mer eller mindre tvärgående hyfsträngar. (Dylika har jag äfven sett tvärsöfver Umbilicaria-blåsorna.) Dessa sträcker ha vid den första sprängningen af ett parti av kortikalskiktet utgjorts af några hyfer i det-samma med annan riktning än de öfriga och därför ej ryckts isär. Rämnornas långdaxel ligger, följande lagen för minsta motståndet, i hyfknippanes långdriktning såsom hos Peltigera.2 Ej sållan sträcker sig remman tvärs genom bålen, och dessa hål vidgas på samma sätt. Det parti av förbandningarna, som först blir utsatt för denna perforering, är mitten af den triangel, som ligger strax under en gaffelgrening af skottet, tack vare dragningen från de hyfknippen, som bilda denna triangelns sidor. Understundom spränges bålen sönder i själva flankerna — jmfr dess nyss skildrade anatomiska byggnad — och de båda kortikallagren med gonidiallagren skiljas isär, så att märgen blottas på kortare eller längre sträckor. Vid alla dessa sprängningsfenomen af bålen är att märka, att kortikalskiktet, som i torrt tillstånd är hornartadt och synnerligen motståndskraftigt, vid anfuktning blir gelatinöst och att dess motstånd mot dragning högst betydligt sjunker.3

De stora och iögonenfallande fasciationerna af båda slagen drabba huvudsakligen partier af den relativa huvudaxeln. Den fascierade regionen kan vara oförgrenad eller ett par gånger pseudodikotomiskt förgrenad.4

1 På samma sätt som BITTER, Über Durchbrechungen bei Flechten, p. 125, visat för de bläsformiga bildningarna på Umbilicaria-bålen.
2 Jmftr. Peirce, Dissemination of Ramalina reticulata.
3 Angående förgreningsförhållandena hos Alectoris, jmfr Schwendener, Untersuchungen über den Flechtenthallus, p. 146.
ningen regionalt, så att det förbandade partiet synes liksom uppbyggd af skottbaser i ett helt skottsystem. Afsmalningen mot de normalcylindriska axelpartierna går mera successivt hos de cylindriska fascinationerna, men tämligen hastigt hos de egentliga förbandningarna. Adventiva sidoskott åro sällsynta hos de föröra: på förbandningarna åro de vanligare. De utgå hjar huvudsakligen och då ej sällan i luxurierande mängd fran flankerna, mera sparsamt från öfriga delar.

På biaxelsystemen åro fascinationerna icke så kraftiga och med jämnare öfvergångar mellan de fascierade och normala skottpartierna. Ett plattat, 1 mm. bredt, **torderadt** skott är afbildad i fig. 5. Sådana åro ej så sällsynta.

Af nu lämnade beskrifning torde framgå, att dessa fascinationer och de med dem i samband stående företeelserna i skottens utbildning erbjuda många analogier med fascinationfenomenet hos fanerogamerna, men med de olikheter, som betingas af spetstillväxtens tillbakaträdande gentemot den interkalära. Liksom hos fanerogamerna inspirationen ej inträder hos alla skott och ofta först, då dessa nått en viss ålder samt i de flesta fall tydligast på huvudstammen, upptrer hos Aelectoria fascieringen regionalt och starkast utpräglad hos den relativa huvudaxeln. Den oregelbundna förgrening, som hos fanerogamerna uppkommer genom den kamformiga vegetationspunkterns klyfning, och den ökade skottproduktion, som blir en följd af det ökade bladantalet, motsvaras hos Aelectoria af de förbandade skottpartiernas "**Durchlöcherung**" och den rikliga adventivskottproduktionen. Äfven torsionsfenomena analoga med fanerogamstångelsens åro iakttagna.

Vi öfvergå nu till en liten utredning af den fascierade Alectoria-formens systematiska valör och geografiska utbredning.

År 1890 namngavs den för första gången af W. Nylander som Alectoria vexillifera n. subsp. i Kihlm., Pflanzenbiologische Studien out Russ. Lappland, p. 133, hvilken funnit den på tundran vid Orlow på Kola-halfön. Följande år lämnade Kihlman 1 Nylanders diagnos, som lyder:

"A. ochroleuca (Ehrh.). — A. vexillifera NyL. n. subsp. Thallus ochroleucus, inferius membranaceo-dilatatus, lacunosodoveolatus et plicato-rugosus, passim lævior, vexillis firmis, latit. pollicarem vel 2 cm. et amplius adtingentibus, crassit. 0.5 mm., vel tenerioribus,

1 Flechten aus Kola. p. 48.
difformibus, vage sinuatis. K (Ca Cl) flavens sed medulla non reagens."

Med all sannolikhet är det samma form eller en mycket närstående, som A. Zahlbruckner 1 beskriver från Chimborazo under namn af Alectoraria ochroleuca (Ehrh.) Nyl. var. ecuadorensis A. Zahlbr. nov. var. och med följande beskrifning, p. 83:

»Ramis primariis crassis, usque 6 mm. latis, compressiusculis, foveolatis a planta typica differt. Thallus usque 8 cm. altus, KHO supra flavens, medulla KHO + Ca Cl₂ O₂ aurantiaca; ramis primariis fuscescentibus et hinc inde tenissime rimulosis.

Chimborazo: Auf dem Erdboden, steril, bei 4,000 m. Seehöhe (Nr. 301).

In der starken Verdickung der Primäraste erinnert die Varietät einigermassen an Alectoraria vexillifera Nyl., nur nimmt hier im Gegensatze zur letzteren die Breite der Lageräste von der Basis gegen die Spitze allmäthlich ab."

1 Flechten Ecuadors.

Stizenberger åsikt om A. vexillifera samband med A. ochroleuca v. rigida kan jag nämligen ej dela. Alla de icke fascierade skotten öfverensstämma fullkomligt med normalformen af A. ochroleuca (Ehrh.) Nyl. β cincinnata (Fr.) Nyl. Th. Fries Lichenographia, p. 20. (Syn. A. sarmentosa Ach. var. cincinnata (Fr.) Nyl. Stizenberger, p. 124.) De äro nämligen nerliggande och intrass-lade med hvarandra. Deras med det öfriga skottet vanliga likfär-gade spetsar äro ofta med hapterer fästa vid underlaget.¹

Jag anser sålunda Alectoria vexillifera Nyl. vara en forma fasci-ata af A. ochroleuca (Ehrh.) Nyl. v. cincinnata (Fr.) Nyl.

Så säger Th. Fries om dess uppträdande i Skandinavien, p. 21 thallo — passim difformiter incrassato (3—5 mm.) et haud raro ex crescens amplis foveolatis scrobiculatis obsito.

Mellanformer mellan A-typ och B-typ (största bredd 5 mm.) fin-

¹ Sernander, De buskartade lafvarnas hapterer. p. 27.
nas i samma herbarium från Norge, Ost-Finmarken, Varanger, Styrene (leg Th. M. Fries 18357).

De fanerogama fascinationerna äro som bekant Zwischenrassen, och ofta utlöses fascinationen af någon bestånd yttre faktor. Hvilka de förnärmaste utlösende faktorerna äro, känner man ej, en är ökad näringstillförsel till vegetationspunkten. Ån mindre veta vi om de fascinationen utlösende faktorerna hos lafvarna. Det är emellertid en omständighet i den fascierade Alectorians uppträdande, som möjligen tyder på, att äfven här en yttre faktor, medförande ökad näringstillförsel, verkat utlösende.

Det är fyndomständigheterna för den nyssnämnda Jämtlandsformen, den enda jag varit i tillfälle att själfl i naturen iakttaga, för hvilken jag vill påkalla uppmärksamheten, emedan dessa som nämndt möjligens tyda på, att en viss yttre faktor, nämligen en tids submersion, i ett fall varit en sådan fascinationen utlösende faktor. — Den fascierade formen i fråga uppträdde i flacka sänkor på fjällheden blandad med Alectoria divergens (Ach.) Nyl., Cetraria hisascens (Fr.) Th. Fr. o. a. Dessa sänkor hade under vintern varit fyllda af snö, som först nu var stadd i bortsmältande, så att lafvarna stodo under mer eller mindre djupt vatten, medan en del lösgjorts och flöto omkring i detsamma.

Sådana vid snösmältningen och efter starka regnvådens periodiskt öfversvämmade lokaler med laftäcke återfinnas i den nordiska vegetationen särskilt af fjällheden och på de större mossarna, där de

1 De Vries, Die Mutationstheorie I. p. 415.
2 Goebel, Organographie der Pflanzen I, p. 164.
uppträda som små sänkor mellan l酱油ossarnas tufvor. Submersio-
nen framkallar en del biologiska egendomligheter i de här växande
lafvarnas utbildning.

Inledningsvis skola vi fästa oss vid hvad jag skulle vilja kalla
de falska fasciatiosfenomenen. Dessa betingas af att, som strax
närmare skall visas, hos busklaflår skottets tangentiala tillsväxt blir
betydligt starkare än på lokaler af mera normal natur. Detta blir
än prägnantare genom de samtidigt härmed inträdande uppfäknings-
och upprullningsfenomenen. Hålevindriska skott spricka ej sållan
sönder, och det uppfäkta skottet deformeras sedan genom att den
nämnda interkalära tillsväxten i tangential riktning tyckes bli fva än
lifligare. Ett lätt exempel härpå lämna de stora trumpetformiga
podetierna af Cladonia deformis (L.) Hoffm. Viktigare för här före-
liggande problem är kanske de förändringar, som bålen af de
stora Cetraria-arterna: C. islandica (L.) Ach., såväl f. platyna Ach.
som f. crispa Ach., och C. hiascens, (Fr.) Th. Fr., undergå. Kanterna af de bandformiga dorsiventrala skotten hos dessa arter
börjas som bekant alltmer mot hvarandra, så att äldre skottpartier
få formen af hålevindrar med en smal långdspicka, där kanternas
hapterer träffa samman.1 Under submersionen upprullas ej sållan
dessa hålevindrar, så att de gamla skottpartierna åter bli fva platta
eller svagt rännformiga som under ungdomsstadiet. De upprullade
skottpartierna äro betydligt bredare än de yngre, och denna bredd
ökas genom fortsatt tangential sträckning, så att hela laffen får ett
ganska avvikande utseende. Detta blir än mera egendomligt genom
skottens oriegelbundna böjningar. orskade dels af att de genom
haptererna förmedlade sammanväxningar af2 bitvis förhindrat upp-
rullningen, dels af att skotten utförta diverse geotropiska tillsväxtno-
men. sedan de rubbats ur sitt läge af smålacket. Dessutom ändras
färgen, så att hos Cetraria islandica den glänsande kastanjefärgtonen
går förlorad genom utlakningen och öfvergår till glanslöst mörk-
brun.

Att det verkligen är submersionen, som framkallat dessa för-
ändringar hos busklaflärna i fjällhedarnas och l酱油ossarnas sänkor
har jag övertygat mig om genom följande experiment i Uppsala
Botaniska trädgårds frigidarium med Cetraria islandica, C. nigralis
(L.) Ach. och C. cucullata (Bell.) Ach. samt Cladonia rangiferina (L.) och

1 Reinke. Abhandlungen über Flechten, p. 191. — Sernander. De buskartade
lafvarnas hapterer, p. 31.

2 Sernander. l. c., p. 32.
Cl. silvatica (L.). Exemplar af dessa lafvar insamlades i ljunghed på Tunäs'en, Gamla Uppsala, 192601. Följande dag lades de i skålar med vattenledningsvatten, som hölls vid 3°—6° C., och lingo ligga i dessa till den 7 december, åtnjutande frigidariets diffusa dagsljus. De upptogos och lades på fat i frigidariets (medeltemperatur 3°—6° C.) sydostfönster samt vattnades med vattenledningsvatten försiktigt, men så ofta, att skotten alltid voro böjliga, tills 192602 kulturen afbröts och exemplaren torkades. Alla arternas skott visade upp- rullnings- och Cladonierna spalttningsfenomen analoga med dem, jag funnit hos de submergerade busklafvarna i naturen. Likaledes hade de förlorat sin glans. Tufvorna voro mer eller mindre upplösta genom att en del skott blivit vinkelböjda. Endast *Cetraria islandica* visade i luftkulturen säkra tillväxtfenomen; om prof- ven af de andra lafvarna i sin helhet dödats genom submersionen kunde jag ej utröna, säkert var så fallet med en del skott. Dessa tillväxtfenomen visade sig just i lokalt ökad tangential utsträckning af de mer eller mindre upprullade skotten.

Men viktigare för bithörande fråga om eventuell utlösning af busklafvarnas fascinationer är den starka tillväxt, som submersionen framkallar hos deras bäl. En del busklafvar antaga rent gigan- tiska former. Särskilt gäller detta *Cladonia rangiferina* (L.) WEB., *Cl. silvatica* (L.) HOFFM., *Cl. alpestris* (L.) RABENH. och *Cl. uncialis* (L.) WEB., HOFFM., i de förut nämnda lafmossarna. Till den första arten hör den form af »*Cladonia rhangiferina* HOFFM.», som ELIAS FRIES1 beskriver från västra Smålands mossar på följande sätt: »ex his» — formae cinerascentes & fuscescentes — »selegi for- mam stygiam, physico respectu memorabilem, in paludibus Smoland. occid. strata compacta, lata & 1—2 pedes alta efficientem, inferne mortificato-atram albobuttatam usque dum in turfam abeat. Est Cen. degenerantis analogon suo speciei. Fertilis» — Själf har jag i sydvästra Närkes moss-»höljor» iakttagit 42 cm. långa exemplar af denna form. Alldeles analoga former finnas där af *Cl. silvatica* och *Cl. alpestris*, dock blifva de ej fullt så långa; än kortare blir stygia- formen af *Cl. uncialis*. — Äfven skottens diameter kan genom ökad radial inlagring af hyfer bli betydligt större än på andra lokaler. Den tangentiaella spänningen är stark, så att uppläkningar ej äro sällsynta. Vanligen ökas samtidigt inskjutningen af hyfer i radial riktning, så att äfven själfva skottväggarna blifva osedvanligt tjocka.

1 Novæ schedule criticæ de lichenibus suecanis. Lund 1826, p. 22.
Ofta drabbas hvarandra närliggande delar af ett skottsystem ganska ojämnt af dessa olika slag af ökad tillväxt.

Hur pass utbredda kunna fasciationsfenomenen vara bland ladvarna? Står Alectoria vexillifera isolerad i detta hänseende? För min del tror jag, att då uppmärksamheten inriktats på hithörande förhållanden, skola fascierade ladvar gansa ofta anträffas. I det följande skall jag framdraga några exempel på skottformer bland de större ladvarna, hvilka jag tolkar som fasciationsfenomen.

1) På exemplar, som jag insamlat nerhängande från smala tallgrenar och jämte Alectoria jubata (L.) Ach. och Usnea barbata (L.) Fr. intrasslade bland dessa, i tät barrskog, Gustafs. Dalarne 19(9)04.

5) På ett område af Rönnberget (100 × 200 m.), Klöfsjö socken, Jämtland (1837/04) var hvarje gran i en degenererad granskog (abies-num hylocomiosisum och a. sphagnosum) upp till 6—7 m. ofvan marken behångd af riklig — ynnig Alectorion ochroleuca v. sarmenosa i mer än halvmeterlänga festoner. (Där ofvan vidtog Alectoriona jubata.) Apothecier vanliga. Bland det betydliga material, som insamlades, funnos endast några mindre fasciationer af B-typ, inga af A-typ.

1 Lichenes. Vol. III. Fasc. IV.

gonidiallagren. ofvan hvilka kortikallagret följt med i tillväxten utan att förjockas. De egentliga nerverna\(^1\) äro mekaniska och vat
tenledande organ samt bildas, som i det följande skall visas, genom lokala förjockningar i kortikalskiktet. Vanligen äro de långsgående.

För denna nu behandlade form skulle jag vilja reservera Achau-
rus' gamla namn ampliata och torde därmed stå i öfverensstämmelse med de flesta lichenologer. Särskilt vill jag framhålla Stizenbergers\(^1\) upplysande diagnos l. c. p. 18: \(^2\)F. ampliata (Ach. Meth. p. 259) L. U. S. 603 von Schaer., Hepp., Müll. Sie erreicht bei einer Länge von 4—8 cm. eine Breite der einzelnen Lappen von 3—7 cm. und darüber und wird im Verbreitungsbezirk der typischen R. fraxinea da und dort getroffen. — Jag anser nu, att de karakteristiska tillväxtsfenomen, som utmärka ampliata, möjli-
gen äro att inranga under fasciationsföreteelserna.

Som nyss framhållits, stöter det naturligtvis på betydliga vanskligheter att afgöra, om en bandformig skott-typ hos en laf visar fascinationer eller ej. Det är naturligtvis farligt att utan vidare antaga en osedvanlig ökning af bredden, såsom i det nu skildrade fallet, för ett fasciationsmärke. Det finns emellertid några andra härmed kombinerade karaktärer af samma natur som hos Alectoria vexillifera, som i viss mån tala i samma riktning. Den ena ligger däri, att understundom genom lokala olikheter i de interkalära till-
växtsfenomenen bålen här och där kommer att genomdragas af hål, till sin uppkomst påminnande om dem hos Ramalina reticulata Krempelhuber, om dock icke på långa vägar så stora, så regel-
bundet upprådande och så lagbundet fördelade som hos denna art.\(^2\) (Sådana hål har jag dock sällsynt funnit hos andra former af R. fraxinea.) Den andra tar sig uttryck i några egendomligheter i de nyss nämnda nervsträngarnas förlopp. Dessa gå som nyss antyddes i skottets långdriktning och med starkt spetsvinkliga för-
greningar. Hos gamla ampliata-skott har jag funnit en ganska af-
svård afvikelse härutinnan. I marginalzonerna kastar nämligen
riktningen af nerverna med mer eller mindre hastig öfvergång om,
så att nervaturen här i huvudsak kommer att gå vinkelrät mot
den i skottets centrala del.

Dessa egendomliga omkastningar i nervaturens förlopp äro po-
tentierade hos en egendomlig Ramalina fraxinea, som jag nu går

\(^{1}\) Schwedeners »Markstränge«, Untersuchungen I p. 155—156.
\(^{2}\) Bemerkungen zu der Ramalina-Arten Europas.
\(^{3}\) Peirce, opus citatum.

Nerverna hos *Ranalina*-skottet tolkas, som nyss antyddes, af Schwendener som bildningar af märgen. Han stöder sig härvid på följande skäl l. c. p. 156: »Die im Vorhergehenden ausgesprochene Ansicht, dass die Vorsprünge der Rindenschicht nach innen als solide Markstränge zu betrachten seien, stützt sich auf folgende Thatsachen. Der Innenrand der Rinde springt nicht selten so plötzlich und weit in das lockere Markgewebe vor, dass die Voraussetzung eines ungleichmässigen Wachstums bei einer solchen Dickenzunahme ungenügend erscheint. Zuweilen beobachtet man auch Fortsätze, welche der Rinde im Querschnitt mit verschmäler-ter Basis aufsitzen, in selteneren Fällen sogar Stränge, welche vollkommen isolirt zwischen beiden Rindenlamellen liegen, etwas höher oder tiefer sich aber ebenfalls an die eine oder andere an-

1 Jfr t. ex. figurerna 121 och 122 i De Vries, Die Mutationstheorie II, p. 569—570.

2 Acharius (Methodus p. 256) uppställer på grund af denna nästan normalt uppträdande företeelse en särskild varietet actinola, »scutellis confertis amplis ciliatis foliolisque laciniatis radiosofimbriatis«.
skaftdel genomdrages under denna utveckling av kraftiga nerver och tilltager betydligt i volym.

Hos flera lafvar åro egendomliga interkalära uppsvällningar kända, hvilka vid närmare undersökning kanske skola visa sig vara fasciationer och hvilka i hvarje fall förtjäna att närmare studeras till sin genesis.

I sin klassiska *Historia muscorum* 1741 inför Dillenius p. 188 i lichenologien en egendomlig växt, som han kallar >Lichenoides tinctorium glabrum vesiculosum<. Särskilt utmärkande för den-

1 Historia plantarum III. Sect. XV. Tab. 7. Fig. 11.
2 Historia muscorum. Tab. XI. Fig. 4.
3 Zur Anatomie der Flechtengattung *Usnea*.
samma är dess egendomliga *scutella*. Dessa äro *pro plantæ ra-
tione magna, vesiculæ, glabrae, foramine in summo parvo pré-
ditæ, multis rugis inæqualæ, cinerei extus, intus obscure purpurei
coloris*. Angående förekomsten säges: »Rich. Richardson in pascuis montanis, *Emnott-Pasture* dictis prope Coln in Lancastriensi Comitatu invenit raram & elegantem hanc speciem«. Tab. XXIV, Fig. 82, meddelar han åbildning av två små bitar af den nya lafven.

År 1786 ger Jaquin i sina Collectanea I Tab. 4, Fig. 3 c en ny färglagd figur af originallexemplaret i Dilleni herbarium i fuktigt tillstånd.

Hoffmann, som reproduceras såväl Dillenii som Jaquins figurer, visar 1790 i sina Lichenes I p. 1146, att lafven i fråga, vilken ännu ej anträffats på några nya lokaler, är en *Platisma*, vilken, då LINNÉ i Species plantarum 1753, p. 1146, upptagit den som »*Lichen ampiillaceus*«, kallas *Pl. ampiillaceum*.

Först 1803 pekade Acharius i sin Methodus p. 297 i anslutning till ett brev från Smith, som tydligl studerat originallexemplaret, på samhörigheten med *Cetraria glauca* (L.) ACH.: »est hujus Lichenonis varietas monstrosa, cujus laciniae inflato-bullatae pro apotheciiis habita & descriptae fuere«.

Redan förut hade emellertid dess samband med *Cetraria glauca* blivit insett. I Flora Danica, Fasciculus decimus 1771 afbildar Tab. 598 en »*Lichen glaucus f. 1 tuberculosis*«, helt säkert efter ett danskt eller norskt exemplar. På denna afbildning är det lätt att öfvertyga sig om identiteten med *ampullacea*.

Sedan man emellertid genom Smith och Acharius fått klart för sig att *ampullacea* endast var en »monstrositet«, har man ägnat den föga uppmärksamhet.

Själf har jag lyckats finna den på tvenne ställen i naturen. Det ena är: Närke, Lerbäck, Klockarhyttan på döda grankvistar i skuggig granskog (1902 och 1903); det andra: Uppland, Alsike, Kungshamnsmossens strand på grankvistar i barrskog (191904). Bildningsafvikelsen tog sig i bågge fallen tvenne slags uttryck:

1) På en begrundad punkt av den för öfrigt slåta ytan och ett stycke från margo börjar bålen hvälfva sig, så att på undersidan en liten grop, på öfversidan motsvarad af en knollisk upphöjning, kommer till synes. Hvälfningen tilltar i omfång och höjd. Då den nått ett par mm. i diameter, börjar ofvandelen att tillväxa

\footnote{År 1792 skriver emellertid Withering i British plants p. 189: »A figure only is to be found in the Dillenian herbarium. Mr. Woodward.«}
starkare än underdelen, och en skaftad blasa med vägg af balens normala byggnad uppkommer. Genom olikformig tillväxt veckas denna blasa, som kan nå 12 mm. eller mera i diameter, i starka oregelbunda veck.

2) Hvälfnings inträder invid själva margo. En kupolformig ansvällning uppstår, som genom olikformig marginal och interkalär tillväxt snart uppdelas i en mängd också hvållda likar. Hela gyttringen, som kan bli ända till 25 mm. i diameter, påminner om den dicht båscheliges, fast blumenkohlartig verzweigtes Gebilde. dessen Aestchen kurv bli vecklade, och tvaflfda likar. Genom olikformig tillväxt veckas denna blåsa, som kan nå 12 mm. eller mera i diameter, i starka oregelbunda veck.

1 Variabilität einiger Laubflechten p. 446 & Taf. XI. Fig. 47.
KAP. IV. Knoppvariationer och vegetativa mutationer.

De märkvärdiga företeelser, som i litteraturen vanligen gå under namnet *knoppvariationer*, ha från att fördom ofta endast ha betraktats som kuriositeter, genom De Vries och mutationsteorien fått ett alldeles särskilt intresse från utvecklingshistorisk synpunkt. Hvad lafvarna beträffar har jag, allt från att H. De Vries Die Mutationstheorie började utkomma, bland dem letat efter sådana fall och sökt ägna mina fynd en kritisk granskning speciellt ur synpunkten, om vegetativa mutationer eller, som jag hellre vill kalla dem *knopp- eller skottmutationer* förelegat eller ej.

I själva verket torde inom växtriket mycket få verkliga sådana vara kända. Problemet är ännu ej angripet på experimentell väg, och de företeelser, som till det yttre alldeles överensstämma med de vegetativa mutationerna utan att vara det, äro ej lätta att skilja från desamma.

De Vries — och efter honom Cramer1 — skiljer som bekant på tre slag af knoppvariationer: »Erstens die vegetativen Spaltungen der Bastarde, zweitens den vegetativen Atavismus der Mittelrassen, wie er sich namentlich bei den gestreiften Blumen zeigt, drittens die eigentlichen vegetativen Mutationen, welche meist atavistischer Natur sind, bisweilen aber auch im Sinne des Fortschrittes stattfinden«.2

Till knoppvariationerna och de atavistiska vegetativa mutationerna hänför man stundom de hos heteroblastiska-arter ej sällan förekommande återslagen af följformen till ungdomsformen, Goebels »Rückschlage der Folgeform zur Jugendform«. Liksom självfa heteroblasten ej kan anses som en skottvariation, lika litet anser jag, att ett sådant till den individuella variationen hörande återslag kan göra det, än mindre räknas som en vegetativ mutation.

I anslutning till denna uppfattning hafva vi till en början att utrangera de falska knopppmutationer, som enligt min tanke äro att tolka som ett återslag till ungdomsformen inom ett heteroblastiskt skottsystern. — Heteroblasti hos lafvarna är, om man undantar de

2 Die Mutationstheorie II, p. 674.
Bitters WiTTROCK.

Sernander, genomsnitt fråga, utan den reproduktionens Goebel, full —
ytan bikonvexa från relativt på gien genom (L.) genom specialskottsafläggning desvis båra organ stående i reproduktionens tjänst: apothecier, so-
raler och isidier. De skott-typer, som i den deskriptiva lichenolo-
gien vanligen uppmärksammas, tillhörö följformerna. Detta beror
på, att dessa till sitt förekomstståt domina och dessutom genom
skottaflösning ej sällan reproduceras sig som sådana. Som exempel
på massutveckling av fölformens skott kan Parmelia encansta (Sm.)
Nyl. framhållas. Ungdomsformen breder ut sig på stenen genom
relativt breda och något plattade skott. Dessa höljas snart af de
från densamma utgående fölformerna och dess smala i genomsnitt
bikonvexa skott, hvilka visa en tydlig cladomani, så att hela bäl-
ytan täckes med ett tjockt virrvarr af dess trådar. Exempel på
specialskotsafläggning — fullständigt analog med den som konst-
produkt vanliga Hedera »arborea», hvilken en gång på Gottland
genom en naturlig afläggning individualiserats från ett exemplar
med båda de allbekanta skott-typerna — erbjuder Parmelia lanata
(L.) WAllr. och P. furfuracea (L.) Ach. Hos dessa fixeras de gen-
nom yttre agentier lösgjorda följskotten snart på sitt nya underlag
 genom utveckling af hapterer. — Nåvä, från dessa följformer ut-
vecklas understundom ungdomsformer. Den yttre anledningen kan
naturligen ej utan experiment med bestämdhet påvisas, men det
förtjänar framhållas, att alla de 4 mera prägnanta fall af fenomenet
i fråga, som jag lyckats uppspåra, haft karaktären af regeneration
från ett af olika anledningar till sin vitalitet försvagad skottsyste-
manologien är sålunda tydlig med Goebels viktiga experiment öf-
ver framkallande af ungformer och står i full samklang med hans
uttalande. Vor allem hat sich bei einer Anzahl von Beispielen
gezeigt, dass ein Rückschlag zur Jugendform namentlich dann

1 Heteroblastin först påvisad af Bitter.
3 Heteroblastin redan känd och afbildad hos Meyer. Entwickelung der Flechten. Erste Tafel. Han tolkar sambandet mellan de båda skottformerna som »Parmelia stigia, transiens in Cornicularium lanalam».
eintritt, wenn die Vegetationsbedingungen ungünstig beeinflusst werden». De fall jag funnit är följande:

Parmelia furfuracea (L.)—Bitter karakterisarar de olika skott-typarna sålunda: »Die jugendlichen, noch nicht mit Isidien besetzten Thalluszweige — — liegen dem Substrat ziemlich dicht an, sind mit demselben durch zerstreute Rhizinen verbunden und unterscheiden sich durch ihre rein hellgraue Farbe von den schmutzig dunkelgrauen, Isidien tragenden, älteren Zweigen, die meist mehr oder weniger nach unten gebogen sind».

1. Dalarna, toppen af Bispbergs klack, torra grenar af gran i barrskog. Leg. R. SERNANDER 193204. — Följ skotten voro ytterst smala, ofvansidan mörkgrå, zonvis täckt med isidier, zonvis glatt; dess flanker tillbakaböjda, så att ett snitt tvärsöfver skottet bildar hälften, stundom mera af en cirkelperiferi. (Utgör sålunda närmast P. cereata Ach. Methodus, p. 255). De bildade ett tätt och mäktigt komplex af följforms-skott. I detta hade regeneration inträdt från några skottspetsar, som fullständigt dolts af sina grannskott samt Cetraria glauca. Skottsystemen hade utan vidare växt ut till plattade ungdomsskott med blåhvit slät ofvansida. Tre sådana skott anträffades i komplexet. Ett af dessa med flikar af 2,5 mm. bredd utgick från ett 0,3 bredt följskott. Tafl. V. Fig. 1.

Parmelia physodes (L.)Ach., Bitter. — Bitter framhåller, att hos denna art de vegetativa hälllikarna ofta äro bredare än de soralbärande. Enligt min tanke, hvilket också bestyrkes af unga

1 Variabilität, p. 441—442.
2 l. c., p. 428.
exemplar. som uppväxt ur soredier. är den första skottformen att anse som en Jugendform, den andra som en Folgeform. Till Bir
ters distinktion är endast att lägga, att ofvansidan af de vegetativa
bålflikarna är plan och ljust blågrå, hos de soralbärande konvex
och mörkt smutsgrå. — Följande återslag i skottföljden har jag
konstaterat:

SERNANDER 194502. — Individet var tydligen gammalt och döende.
En del hjälmsoraler hade afslutat soredieproduktionen och voro i
det närmaste tömda. På bålens ofvansida funnos talrika partier,
där kortikalskiktet var svartfargadt: särskilt hade taket af flera
soraler förändrats på detta sätt. En 0,75 mm. bålflik fortsatte af
ett rikt förgrenad lifskraftigt ungskottskomplex. Taf. V. Fig.3.

2. Närke. Lerbäck. Klockarhyttan, tämligen fristående björk i
björkbacke. Leg. R. SERNANDER 194503. — Ett litet skottparti
med några soraler hade tydligen försvagats genom en mycket riklig
produktion af apothecier. Som hos föregående fortsatte en smal
bålflik utan vidare i ett kraftigt unsgottskomplex. Taf. V. Fig. 4.

Som knoppvariationer, men icke som verkliga vegetativa ata
vistiska mutationer uppfattar DE VRIES som nämdt medelrasernas.
de ständigt omslående varieteternas atavism. vare sig denna tar ut
tryck i uppträdandet af hela skott, som öfverensstämma med hu
vudarten, eller genom sektorial variation.

Efter denna uppfattning havfa vi sålunda att som knoppvaria
tioner räkna de med huvudformen öfverensstämmande skotten i de
fascierade formernas skottsystem, t. ex. de normalcylindriska späda
skotten hos de fascierade Alectoría-formerna o. s. v.

En särskild ställning komma Cladonia-depigmentationerna att in
taga. Som redan i kapitlet om depigmentationerna som retro
gressiva mutationer framskymtat, kunna på samma podetium före
komma apothecier med såväl färgadt som ofärgadt hymenium. dels
i samma apothecium vissa partier af hymeniet vara färgade, andra
icke. Analogien med de strimmiga bladen och blommorna hos
fanerogamerna är ganska påfallande. Nu äro meningarna om deras
naturen tämligen delade, men HUGO DE VRIES' åsikt om att hybridi
sation ingalunda behöfver ligga till grund för deras uppkomst, utan
att i flera fall verkliga mutationer hörande till de ständigt omslå
ende varieteterna föreligga, är ytterst plausibel och står i full sam
klang med de omfattande undersökningar. som LOUIS VILMORIN ägn
nat de strimmiga blommornas uppkomst. VILMORIN utgår, som DE
Vries förträffligt preciserat hans uppfattning, från den iakttagelsen, "dass gestreifte Blumen nur an solchen Arten vorkommen, welche selbst gefärbt sind, daneben aber eine weisse Abart besitzen. Oder wenn die Blüthenfarbe aus roth und gelb zusammengesetzt ist, so verhält sich die einformig gelbe Varietät in diesen Fällen wie die weisse (Mirabilis, Antirrhinum). Zuerst entsteht die weisse (bezv. gelbe) Varietät, viel später soll aus derselben, durch Rückschlag zu der Mutterart, die gestreifte sich bilden." Då nu i det följande efter Wainio en sammanställning af dylika knopp- och sektoriala variationer hos Cladonia lämnas, fatta vi dem också som ständigt omsländande varieteter, hvilka antagligen uppstått ur de retrogressiva depigmentationerna.

A. Cocciferæ.

Cladonia digitata Schër. f. albinea Wainio. — Tyckes endast en gång vara funnen och då med knoppvariation. Wainio säger i sin monografi II, p. 443: "Apothecia pallida (pro parte in iisdem pedeliiis etiam coccinea). Ad truncum putridum loco umbroso in Tiirismaa in Hollola Fenniae a. 1873 legi (una cum Cl. fimbriata ochrochlora)."

B. Ochrophæææ

Frågan om sexualiteten kvarstår emellertid för de andra knoppvariationerna, till hvilka vi nu komma, fenomen, hvilka annars torde falla inom de vegetativa mutationerna. För hvarje särskilt fall måste den upptas till ompröfning.

Svensk Botanisk Tidskrift.
Under det jag var sysselsatt med några undersökningar öfver släktet Rinodina, påträffade jag ett exemplar af R. turfacea (Wxbg.) Th. Fr. a unda Th. Fr., som jag 184589 insamlat i Jämtland, Frösön på Juniperus, med skottmutation af ofvan antydd natur.

De med artens normaltypröverensstämmande sporerna voro 25—30 μ långa och 10—12,5 μ breda samt lågo i sina asci antingen alla 8 i en rad eller hopade ett par i bredd. I förra fallet voro ascus smal och lång (12×108 μ) och trängde upp till parafyspsetsarna, i senare fallet mera tjock och kort (20×72 μ) och låg inneslutien af parafysmassan. Detta är naturligtvis endast en tillväxtsmodifikation, betingad af det olika aftrycket, sporerna under tillväxten utöftvat på ascusväggen. Det är samma förhållande som redan 1869 anmärktes af NYLÄNDER hos Psorotichia pictava Nyl.: »Sporae in thecio cylindraceis (una serie ordinata) vel fusiformiclavatis (serie duplici).» Öfvergångar mellan de olika ascusformerna äro också mycket vanliga. Men i några apothecier fanns däremot en afvikelse af helt annan art. I vissa asci — som för öfrigt höllo medelvägen mellan de två nämnda ytterligheterna — voro sporerna 20—21 μ långa och 7,5—9 μ breda, men fullt normala och utbildade. Nu är att märka att denna sporstorlek utmärker en annan art inom släktet: Rinodina levisgata (Ach.) MALME. — Fältet ligger ganska fritt för hypoteser öfver hvad denna öfverensstämmele kan betyda. En eventuell hybridisation kan direkt eller af sin afkomma taga olika former; en event. knoppmutation kan vara af progressiv eller atavistisk natur. Huru saken förhåller sig, är språnget i denna knoppvariation ganska märligt. Rinodina-arternas sporger ge med sina foga fluktuerande variationer i måttförhållandena distinkta karaktärer. MALME² säger om de båda arternas släktsskap: »klyftan, hvad sporstörleken beträffar, fylles, för så vidt kändt, icke genom några mellanformer.» En enkel fluktuerande variation är därför ej sannolik, hvarjämte i Frösö-formens apothecier inga mellanformer funnits, som förbinda de olıkstora sporslagen.

Då jag i mikroskopet fick se denna bild af de tvenne sporslagen, erinrade jag mig att TH. FRIES anmärkt något liknande hos en Buellia, som HELLBOM för länge sedan hittade i Närke. Det är B. dives TH. FRIES, om hvilken dess namngivare³ säger: »I alla

1 Flora 1869 p. 82.
de undersökta frukterna (med undantag af en enda)... spore
12—16:æ ellipsoideæ l. oblongæ... dyblastaæ... 0,014—16 mm. longe et 0,005—6 mm. latae. — I en bland de öfriga befinning frukt visade sig deremot sporerna vara blott 8 till antalet, elongato-oblongæ, nästan dubbelt större (0,022—26 mm. långa, 0,010 mm. breda) samt stundom tetrablastæ. Det är tydligt, att denna Buellia dives, som både Fries och Hellbom framhålla, utvecklingshistoriskt är nära förbunden med någon elementarart af B. parasema (Ach.) Th. Fr. Den skiljer sig från denna endast genom ett högre antal sporer i hvarje ascus samt genom dessa litterhet. Nu innehåller den af Fries funna afdvikande ascus-typen just sporer, som till antal och storlek öfverensstämmer med B. parasema. Äfven att sporerna äro tetrablastä, är också en karaktär, som ofta möter hos denna. B. dives är aldrig, ehuru eftersåkt, funnen mer än en gång och i ett litet antal exemplar. Den är troligen en mutation af B. parasema med ett som knoppvariation — efter beskrifningen att döma omfattande ett helt apothecium — uppträdande atavistiskt återslag till moderarten.

Då uppmärksamheten blifvit riktad på dessa märkliga sektoriala eller knoppvariationer, komma troligen flera dylika fall att framdragas, speciellt af dem som för bestämningsarbeten genomgå större mängder laf-apothecier mikroskopiskt. Sällsyntheten af de nu nämnda fallen har gjort mig mest hägad för knoppmutationshypotesen, men det är gifvet att liknande företeelser kunna falla inom den fluktuerande variationen. Ökad anledning att antaga sådana föreligger naturligtvis, då den ifrågavarande knoppvariationen visar sig vara ett ofta återkommande fenomen. Ett sådant fall föreligger kanske hos Lecidea ameibospora Hedl. Hedlund säger: In den meisten Schläuchen sind die Sporen zahlreich und elliptisch, aber immer werden jedoch eingemischte Schläuche angetroffen, die eine gerin-

1 Låfvarnas utbredning i Skandinavien p. 101.
2 Kritische Bemerkungen p. 65.

Gyrophora polyphylla (L.) Fw. *β* *deusta* (L.) Fw. skiljer sig från huvudarten — *α* *glabra* (Westr.) Fw. — på ungefär följande sätt:

- *glabra*
 - Bålen läderartad.
 - Ovfansidan glatt.
 - Undersidan mycket mörkare än ofvansidan, slät.
 - Växer på torra klippor.

- *deusta*
 - Bålen hinnartad.
 - Ovfansidan täckt af isidier.
 - Undersidan af ungefär samma färg som ofvansidan, fint gropig.
 - Växer på fuktiga klippor.

Ej sällan utväxa *deusta*-isidierna kvarsitande på bålen till själfständiga individ. Jag har funnit sådana, hvilka till alla karaktärer utom växtplatsen ofverensstämma med den ofvan lämnade beskrif-
ningen af *glabra*. Särskildt ligga framför mig två stora *deusta*-bålar, som jag insamlat i Finland, Nyland, Lojo s:n, det ena 18\(^{13/16}\)86 vid Gerknäs på Kohagsberget, det andra 18\(^{12/16}\)86 på Bällbylandet, klippa midmetot Jalansaare, på hvilka ungefär midtmellan gomphus och margo ligga — på det förra en liten, på det senare en större — mycket tåt gyttring af på nyss skildrad sätt uppkomna *glabra*-individ. Dylika skottvariationer åro nog ej så sällsynta. Tyd-
ligen är det på dem, Th. Fries hänsyftar, då han i sin *Licheno-
graphia* p. 165 säger: »E diverso habitationis loco magnopere variat. α. & β. variis notis gravibus adeo se invicem recedunt, ut distinctas species facile haberemus, nisi in eodem specimine haud raro invenissermus lacinias formae *glabrae* e thallo *β. deusta* progradientes.»

Om de skola tolkas som vegetativa mutationer eller som ett åter-
slag till ungdomsformen, är ej så lätt afgöra. De få unga *deusta-
individ jag iakttagit, innan isidierna kommit till utveckling, erinra habituellt om *glabra*, hvadan den senare tolkningen har ett visst berättigande. Emellertid är att märka, att det största *glabra*-skottet på Gerknäs-exemplaret nått en längsta diameter på 11 mm. utan att ett spår närma sig *deusta*, hvilket visar att dessa återgångsskott knappast med tiden övergå till *deusta*.

Krabbe\(^1\) och Lindau,\(^2\) som ägnat *Gyrophora*-apothecietts utveck-
lingshistoria synnerligen omfattande studier, förneka tillvaron af någon befruktningssprocess. Tillvaron af trikogyner — man må kalla dem »terebratorer«, »respirationsorgan« eller hvad man vill — samt

\(^1\) Entwickelung einiger Flechtenapothecien.

\(^2\) Zur Kenntniss der Gattung *Gyrophora*.

1 Zur Anatomi der Flechtengattung Usnea.

Tafl. V. Fig. 6.

Det andra fallet hittades på stammen af en i Klockarhyttans trädgård odlad Salix alba 19^1/2^03. Här växte fraxinea och farinacea blandade om hvarandra. Ett tämligen rikligt apotheciebärande fraxinea-exemplar, hvars skottkrona höll 3—4 cm. i höjd, var stadig i utdöende. De sparsamt förgrenade skotten voro i sin helhet mera mörkfärgade än andra exemplar på trädet. På den nedersta centimetern af så godt som hvarje skott, hvilket utgick från gomphus, hade farinacea-skott i sådan mängd brutit fram, att de bildade en halvklotformig buske kring moderexemplarets bas. De voro af olika storlek, men de flesta c. 12 mm. höga. Troligen hade de frambrutit ungefär samtidigt. Förgreningen var mycket tätt, dikotomisk eller subdikotomisk. Den öfverensstämdes med farinacea-exemiplaren på Salix-stammen med det undantag, att flank-soraler ännu ej kommit till utveckling. Tafl. V. Fig. 5.
Vi komma nu till den svåra frågan om dessa knoppvariationers natur.

De äro morfologiskt att anse som adventivskott, ungefärdöverensstämmande med dem jag i ett par fall (Klockarhyttan, aspstäm (1912)03 och Södermanland, Ö. Vingåker. Sjöholm (1915)04) funnit hos R. farinacea, men där dessa varit av samma natur som moderknotten. Dessa adventivskott hade, liksom hos Alectoria nidulifera Norrlin., utgått från kanten af soralerna och bildat omkring dessa täta buskar, hvilka gifva exemplaren ett ganska karaktäristiskt utseende. Äfven äkta sorediegrenar (Schwendener) funnos. Någon försvagning i moderindividens vitalitet kunde ej konstateras.

Någon återgång till en ungdomsform kan icke af samma skäl som hos Usnea sättas i fråga. Unga fraxinea-individ hafva intet af farinacea-karaktär.

Je les diviserai d’abord en deux catégories: I. Ceux dont les lacinures primaires partent d’un même point de l’écorce et par conséquent ne sont soudées qu’à la base. II. Ceux qui attachés à l’écorce

1 Les Ramalina ä Richardmesnil.

2 Les Ramalina ä Richardmesnil.
par une sorte de tronc, élevé au moins d'un aux deux millim.

Émettent de ce tronc des laciniures de formes spécifiques ou complètement ou plus ou moins distinctes.

Att för farinacea-knoppvariationerna tillämpa denna sammanväxningsteori, sålunda tyda dem som falska sådana, hvilket jag nu förslagsvis antagit som förklaring till dessa Hues fastigiato-fraxinea-former, är omöjligt, då farinacea-skotten tydlig frambrutit från en mängd punkter af fraxinea-bålen, då denna ungefärigen nått de dimensioner den hade vid insamlingen. Den eventuella sammanväxningen mellan fraxinea och fastigiata måste ha ägt rum mellan ungefär jämnstora individer — och tydlig på ett tidigt ungdomsstadium — ty de resp. skottsystemshälfterna hade, med det plausibla antagandet af en något mindre tillväxtsintensitet för fastigiata. ekvivalent höjd. De mått HUE meddelar för 3 exemplar åro:

Fraxinea-skottsystemet. Fastigiata-skottsystemet.

<table>
<thead>
<tr>
<th>N:o</th>
<th>(Typ I)</th>
<th>(Typ II)</th>
<th>(Typ III)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3 cm.</td>
<td>2 cm.</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>6 »</td>
<td>4 »</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>3,5 »</td>
<td>2,5 »</td>
<td></td>
</tr>
</tbody>
</table>

HUE själf, som icke tänkt sig möjligheten af en sammanväxning, tager en eventuell hybridisation som den närmaste förklaringsgrunden till uppkomsten af sin blandade Ramalina-form. Det skulle sålunda i dessa fall ha förelagat hybridspaltning. Gifvetvis borde även en sådan förklaring, om den är riktig, kunna utsträckas till farinacea-knoppvariationen. Då man ännu endast obetydligt känner Ramalina-apothecietts utvecklingshistoria, skulle väl den fastaste utgångspunkten för en sådan hypotes ligga i att de eventuella hanorganen, spermogonen-pykniden, ej åro sällsynta hos någon af de ifrågavarande arterna. Visar det sig emellertid vid framtida undersökningar som fullt säkert, att ascosporerna endast alstras på kön-

1 P. 27 anföres ett fall på 4 mm.

För min del tror jag, att knoppmutationer spelat och fortfarande spela en framträdande roll vid lafvarnas artbildning. För de blifvande undersökningarna på detta område gäller det närmast att i naturen uppsöka nya sådana. De fynd, som redan äro gjorda, tala ett tydligt språk för att arbetsfältet är både rikt och lönande.

Hufvudmassan af det material, som ligger till grund för denna studie, har jag dels själf insamlat, dels undersökt i Uppsalas universitets storartade lafherbarium, med hvilket nu också Th. Fries' bekanta samlingar äro införlivade. En del material har jag fått
läna från de botaniska museerna vid Helsingfors universitet och Stockholms högskola. Till de vederbörande institutionernas prefekter och till Dr K. Hedbom samt Kand. Thore Fries, hvilka båda ställt sina värdefulla fynd — bland annat det bästa material af Lecanora gelida som väl någonsin en lichenologisk forskare haft för sina ögon — till mitt förfogande, frambrar jag mitt hjärtliga tack.

För de präktiga fotografier, som reproduceras på sidan 105, står jag i tacksamhetsskuld till Professor O. Juel.

ÜBER EINIGE FORMEN DER ARTEN- UND VARIETÄTENBILDUNG BEI DEN FLECHTEN.

RESÜMEE.

KAP. I. DER BEGRIFF FLECHTENART UND GONIDIENSUBSTITUTION ALS ARTBILDENDER FAKTOR.

Wenn Flechten mit äusserst nahestehenden oder identischen Pilzen, aber mit verschiedenartigen Algen zu verschiedenen Gattungen gerechnet werden, so ist dies aus rational systematischem Gesichtspunkt völlig unrichtig. Verf., der in dieser Arbeit einige Beiträge dazu mitteilen will, wie die Arten- und Varietätenbildung bei den Flechtenpilzen vor sich geht, sucht auch die Bedeutung einer Goniensubstitution als artbildenden Faktors einzuschränken.

Besonders lehrreich in dieser Hinsicht sind die Biologie und Entwicklungsgeschichte der Cephalodien.

Die Cephalodien bei Lecanora gelida (L.) Ach. werden einer ausführlichen Prüfung unterzogen, welche Verf. zu einer ganz anderen Auffassung ihrer Entwicklungsgeschichte führt, als sie von dem Monographen der Cephalodien, Forssell, dargestellt worden ist.

Unter bei Enaforsholm eingesammelten, auf Glimmerschiefer wachsenden, besonders schönen, grossen Exemplaren von Lecanora gelida
(Fig. 1 und 2) wurden zwei Arten von sehr kleinen Flechtenthalli entdeckt, die sich als die ersten Entwicklungsstadien der fraglichen Flechte erwiesen. Die eine Art enthielt gewöhnliche Palmella-, die andere Chroococcus-Gonidien (Taf. I 8 und 9). Wenn diese Thalli in Kontakt mit einander kamen, hörte sofort das Wachstum zu beiden Seiten der Kontaktpunkte auf (Taf. I 10 und 11). Indessen schlies- sen sich die Lappen des Grünalgenthallus, der ein bedeutender kräfti- geres Wachstum hat, vollständig um den Cyanophyceenthallus herum, welch letzterer demnach als das zentrale oder primäre Cephalodium (>verruca centralis> auctorum) mitten in der runden Scheibe des ersteren zu liegen kommt (Taf. I 12—15). Der Cyanophyceenthallus quillt indessen während des Wachstums über den Grünalgenthallus hinüber, tötet die überwachsenen Teile und sendet in sie kurze, breite Rhizine (Taf. II 1). Während der weiteren Entwicklung des Grünalgenthallus werden neue Cyanophyceenthalli als exzentrische oder sekundäre Cephalodien eingeschlossen.

Lecanora gelida ist demnach eine Flechtenart, die sowohl Palmella als Cyanophyceen als Nähralen nehmen kann. Diese ver- schiedenen Arten von Flechtenthallus, die vom Gesichtspunkt der Konsortiumdoktrin aus mit verschiedenen systematischen Gattungs- namen zu belegen sind, leben mit einander in antagonistischer Symbiose.

KAP. II. DEPIGMENTATIONEN ALS RETROGRESSIVE VARIETÄTEN.

Von den Depigmentationen, die nach dem Verf. als echte retro- gressive Varietäten anzusehn sind, hat man dem Äusseren nach analoge und durch denselben totalen oder partiellen Verlust von Flechtensäuren oder Flechtenfarbstoffen entstandene Depigmentations-
formen zu unterscheiden, welch letztere vielmehr in den Bereich der fluktuiierenden Variation fallen.

Ein schönes derartiges Beispiel bietet Xanthoria parietina (L.) Th. Fr. Der Gehalt an Chrysophansäure wird durch die Belichtungsverhältnisse bedingt, weshalb die verschiedenen Varietäten aureola, livida etc., die auf Grund der Thallusfärbung unterschieden worden sind, nicht aufrechterhalten werden können. Auf der Oberseite eines sonnenbelichteten Zweiges kann derselbe Thallus der Varietät aureola angehören, auf den Seiten und der Unterseite der Zweige aber in die Varietät livida übergehn.

Verf. liefert darauf eine kritische Erörterung aller der Depigmentationen von Cladonia, die seiner Meinung nach retrogressive Mutationen sind. Ihr sporadisches Auftreten ohne Zwischenformen, bisweilen mitten unter anderen Exemplaren der Mutterart, spricht für ihre Mutantennatur. *Cl. carneola* Fr. wird u. a. als eine Mutation innerhalb der *Cl. coccifera* (L.) -Serie gedeutet.

KAP. III. FASCIATIONEN.

Die Verbänderungen bei gewissen Flechten, die Verf. für analog mit den phanerogamen Fasciationen hält, unterscheiden sich von diesen durch ihre interkaläre Natur.

Alectoria vexillifera Nyl. Diese Art ist eine fasscierte Form von *A. cincinnata* (Fr.), die mehr oder weniger ausgesprochen in Russisch Lappmarken, Finnmarken, Jämtland und auf dem Chimborasso angetroffen worden ist. Die Fasciation erscheint in zwei Formen:

Typ. B, Fig. 3, Taf. III, z. B. unten links. Wird dadurch gekennzeichnet, dass die Tendenz der Hyphenbündel, von der Richtung der Sprossachse abzuweichen, zunimmt, wodurch die wirklichen bilateralen Verbänderungen entstehen. Die Breite kann bis über 3 cm betragen. Die Dicke beträgt 1—2 mm, wovon das Meiste
auf die Innenschicht der Kortikalschicht, und nur 0.5—0.7 mm auf die zu einer lakunösen Scheibe ausgewalzte Gonidial-medullarschicht entfällt. Besonders charakteristisch ist die Aderung, die auf den beiden Seiten der Veränderung hervortritt (Fig. 4).

Viele Analogien finden sich demnach mit dem Fasciationsphänotypen bei den Phanerogamen, mit den Abweichungen aber, wie sie durch das Zurücktreten des Spitzenwachstums gegenüber dem interkalären bedingt sind. Wie bei den Phanerogamen die Fasciation nicht bei allen Trieben eintritt, oft erst, wenn diese ein gewisses Alter erreicht haben, und in den meisten Fällen am deutlichsten am Hauptstamm, so tritt bei Alectoria die Fascierung regional und am stärksten ausgeprägt bei der relativen Hauptachse auf. Der unregelmäßige Verzweigung, die bei den Phanerogamen durch die Spaltung des kammsförmigen Vegetationspunktes entsteht, und der vermehrten Sprossproduktion, die eine Folge der vermehrten Blattanzahl ist, entspricht bei Alectoria die Durchlöcherung der verbünderten Sprosspartien (Fig. 4) und die reichliche Adventivsprossproduktion. Auch Torsionsphänomene, analog denen des Phanerogamenstengels, sind beobachtet worden (Fig. 5).

Ähnliche Fasciationen sind auch bei Alectoria ochroleuca (EHRH.) Nyl. v. sarmentosa (ACH.) Nyl. angetroffen worden.

Als Fasciationsphänomene werden einige andere interkaläre Anschwellungen des Flechtensprosses aufgefasst, z. B. bei Usnea articulata und Usnea intestiniformis. "Falsche Fasciationsphänomene" (S. 148) werden durch periodische Submersion hervorgerufen. Hohlzyllindrische Sprosse rollen sich auf
und wachsen stark in die Breite (besonders deutlich bei einigen Cetraria-Arten). Möglicherweise kann jedoch diese Submersion wirkliche Fasciationen auslösen.

KAP. IV. KNOSPENVARIATIONEN UND VEGETATIVE MUTATIONEN.

Verf. schliesst zunächst von den echten Knospen-(Spross-)Mutationen = vegetativen Mutationen eine Reihe »Knospenvariationen« aus, die mit den vegetativen Mutationen nichts zu schaffen haben.

Als solche falschen Knospenmutationen, die auch kaum noch Knospenvariationen genannt werden können, werden zunächst regenerative Rückschläge der Folgeform zur Jugendform innerhalb eines heteroblastischen Sprosssystems aufgefasst. Beispiele für solche gehen die auf Taf. V, Fig. 1—4 abgebildeten Sprosssysteme von Parmelia furfuracea (L.) und P. physodes (L.) Ach., Bitter.

Als Knospenmutation in eigentlichem Sinne kann kaum der Atavismus der ständig umschlagenden Variationen bezeichnet werden, ob dieser nun in dem Auftreten ganzer Sprosse, die mit der Hauptart übereinstimmen, oder in sektoraler Variation zum Ausdruck kommen. Beispiele hierfür unter den Flechten liefern die normalzylindrischen Triebe bei den fascierten Alectorion-Formen und die sektoralen Variationen bei gewissen Apothecium-Depigmentationen in der Gattung Cladonia. Sie kommen nach Wainio bei Cl. digitata Schaeer f. albinea Wainio, Cl. coccifera (L.) Willd. f. ochrocarpia Floerke und f. cerina (Nagel) Th. Fr. und Cl. fimбриata (L.) Fr. v. ochrochlora (Floerke, Wainio) vor.

Als echte Knospenmutationen werden u. a. folgende vom Verf. bei Klockarhytttan (Lerbäck, Nerike) gemachten Funde (S. 171—175) aufgefasst:

ben Weise spärlich verzweigt und mit zahlreichen Fibrillen besetzt (Taf. V, Fig. 7).

1) Auf _Populus tremula_. Von einem groben Gomphus gingen eine Menge Triebe aus, die einen geradeausstehenden Busch von 4—5 cm Höhe bildeten. Die Triebe waren kräftig gebaut, schwach verzweigt mit ziemlich reichlichen Apothecien. Die meisten Spitzen waren schwarz und offenbar im Absterben begriffen. Von den Seiten dieser dunkel gewordenen Partien gingen an 5 _fraxinea_-Sprossen die erwähnten _farinacea_-Mutationen aus. Sie sassen in ziemlich dichten Haufen und hatten alle Dimensionen zwischen 0,5—10 mm. Die grössten waren dicht dichotomisch der subdichotomisch verzweigt. Die Zweige schmal, gleichmassig breit, abgeplattet. Hier und da hatten sich auf den Flanken Sorale ausgebildet. Sie stimmten in allem mit der gewöhnlichen _farinacea_ überein (Taf. V, Fig. 6).

2) Auf _Salix alba_. Hier wuchsen _fraxinea_ und _farinacea_ mit einander gemischt. Ein ziemlich reichlich apothecientragendes _fraxinea_-Exemplar, dessen Sprosskrone 3—4 cm in der Höhe mass, war im Absterben begriffen. Die spärlich verzweigten Triebe waren in ihrer Gesamtheit dunkler gefärbt als andere Exemplare auf dem Baum. An dem untersten Zentimeter so gut wie jedes Triebes, der von dem Gomphus ausging, waren _farinacea_-Triebe in solcher Menge hervorgebrochen, dass sie einen halbkugelförmigen Busch um die Basis des Mutterexemplars herum bildeten. Sie waren von verschiedener Grösse, die meisten aber c. 12 mm hoch. Wahrscheinlich waren sie ungefähr gleichzeitig hervorgebrochen. Die Verzweigung war sehr dicht, dichotomisch oder subdichotomisch. Sie stimmten mit _farinacea_-Exemplaren auf dem _Salix_-Stamm überein, nur dass die Flankensorale noch nicht zur Entwicklung gekommen waren (Taf. V, Fig. 5).

LITTERATURFÖRTECKNING.

ACHARIUS, E., _Lichenographiae sveciae prodromus_. Lincopiæ 1798.

—, _Methodus qua omnes detectos lichenes... tentavit_. Sect. I. 2 + Suppl. Stockholmiae 1803.

—, _Lichenographia universalis... Gottingæ_ 1810.

BLOMBERG, O. G., Bidrag till kännedomen om lafvarnes utbredning m. m. i Skandinavien. — Bot. Not., Lund, 1895.

FRIES, E., Novæ schedulse critice de lichenibus suecanis. Lund 1826.

—, Lichenographia europæa reformata. Lundæ 1831.

—, Lichenographia scandinavica.P. 1—2. Uspal. 1871—74.

HEDLUND, T., Kritische Bemerkungen über einige Arten der Flechtengattungen Lecanora (Ach.), Lecidea (Ach.) och Micarea (Fr.) — Stockholm, K. V. A. Bihang, Bd 18, Afd. III, No 3, 1892.

—, Om polymorfismen hos aërobiotiska klorofycéeer. Stockholm, K V. A. Öfvers., 1899.

— , Entwicklungs geschichte und Morphologie der polymorphen Flechtengattung Cladonia. Leipzig 1891.

LINNÉ, C. von, Species plantarum... T. 2. Holmia 1753.

— , Mantissa plantarum generum editionis VI et Specierum editionis II. Holmia 1767.

MEYER, G. F. W., Die Entwicklung, Metamorphose und Fortpflanzung der Flechten. Goettingen 1825.

MÖLLER, ALFR., Ueber die Cultur flechtenbildender Ascomyceten ohne Algen. Münster 1887.

— , i Flora 1869 p. 108.

SOMMERFELT, CHR., Supplementum Floraæ Lapponicae. 1826.

WAINIO, E., Adjuncta ad Lichenographiam Lapponiæ fennicae atque Fenniæ borealis. 1, 2. — Helsingfors, Meddel., Soc. pro Fauna & Fl. Fenn. 6, 10, 1881; 10, 1883.

WIDMAN, OSKAR, Om dextro-, laivo- och inaktiv usninsyra. — Stockholm. K. V. A. Bihang, Bd 25, 1899.

VOGLER, P., Ueber die Verbreitungsmittel der schweizerischen Alpenpflanzen. — Flora, Marburg, Bd 89, 1901.

FIGURFÖRKLARING.

Tablan 1.

Lecanora gelida (L.) ACH.; Fig. 1—5, Torne Lappmark, Västra Kaitesuolo. Leg. THORE G. E. FRIES 192706; Fig. 6—15, Jämtland, Enaforsholm. Leg. K. HEDBOM, Juli 1904.
Fig. 1—3. Soredier med konidiétrådar: Seibert Obj. Imm. \(\frac{1}{2} \) Okular I, utdragen tub.

Fig. 4, 5. Isolerade konidier, som Fig. 1, men Ok. III.
Fig. 6. Parti af på underlaget fritt växande Chroococcus-koloni; som Fig. 1.
Fig. 7. Del af sådan koloni, hvilken börjat genomträngas af groende konidier; som Fig. 1.
Fig. 8. Ung grönalgsbål, som ännu ej träffat cyanofycébål. \(\frac{2}{3} \) Fig. 9. Ung cyanofycébål, som ännu ej träffat grönalgsbål, \(\frac{2}{3} \).
Fig. 10. 3 cyanofycébålar, som träffat varandra. \(\frac{2}{3} \).
Fig. 11. Tvenne unga grönals- och cyanofycébålar, som nyss träffat varandra, \(\frac{2}{3} \).
Fig. 12—14. Något äldre bålar af samma slag, \(\frac{2}{1} \).
Fig. 15. Komplex af gamla Lecanora gelida-bålar med primära och sekundära cefalodier, delvis med epifytiska grönalgsbålar, \(\frac{2}{3} \).

Taflan II.

Fig. 1. Primärt cefalodium, utbredande sig öfver grönalgsbålen, \(\frac{120}{1} \). Fig. 2. Dito, men täckt af epifytisk grönalgsbål, \(\frac{120}{1} \).

Taflan III.

Taflan IV.

a) Den längsnerviga sidan.
b) Den tvärnerviga sidan.

Förminskad.

Taflan V.

Fig. 1. Parmelia furfuracea (L.) Ach. Dalarne, toppen af Bispergsklaek, torra grenar af gran i barrskog. Leg. R. Sernander 192904. Återslag af ungdomsform.

Fig. 2. Parmelia furfuracea (L.) Ach. Södermanland, Östra Vingåker. Sjöholm, på en gärdesgård. Leg. R. Sernander 192904. Återslag af ungdomsform.

Fig. 3. Parmelia physodes (L.) Ach. Bitter. Närke, Lerbäck, Klockarhyttan, björk i granskog. Leg. R. Sernander 195802. Återslag af ungdomsform.

Fig. 4. Parmelia physodes (L.) Ach. Bitter. Närke, Lerbäck, Klockarhyttan, tämligen fristående björk i björkbacke. Leg. R. Sernander 195803 Återslag af ungdomsform.
Fig. 5. *Ramalina fraxinea* (L.) med knoppmutation af *R. farinacea* (L.). Närke, Lerbäck, Klockarhyttan. *Salix alba*. Leg. R. SERNANDER 191403.

Fig. 6. *Ramalina fraxinea* (L.) med knoppmutation af *R. farinacea* (L.). Närke, Lerbäck, Klockarhyttan, asp. Leg. R. SERNANDER 191503.

Fig. 7. *Usnea plicata* (L.) med knoppmutation af *U. dasypoga* (Fr.). Närke, Lerbäck, Klockarhyttan. Leg. R. SERNANDER 181799.

Fig. 1—4 omkring naturlig storlek; fig. 5—6 svagt, fig. 7 något mera förminskade. Fig. 5 upp- och nedvänd!
ÜBER DIE BLÜTE VON VIOLA MIRABILIS
VON
TORSTEN LAGERBERG.

Was das Vorkommen von V. mirabilis an den fraglichen Stellen betrifft, war es insbesondere außerradendreich, dass diese Pflanze fast ausschliesslich auf die Säumen der Böschungen beschränkt war, — die Hügel grenzten an offene Äcker — und indem man noch weiter innen unter Eichen und Haselsträuchern andere Pflanzen z. B. Orobus vernus finden konnte, bildete V. mirabilis speziell an einer Stelle einen deutlichen Gürtel am Waldsaum mit darunter gemischten Exemplaren von Pulmonaria officinalis, Corydalis fabacea, Adoxa u. a. m.

Bei einer oberflächlichen auf der Stelle vorgenommenen Untersuchung ergab es sich, dass Mittelbildungen und übrigens fast jede denkbare Abstufung zwischen kleistogamen und chasmogamen Blüten sich in reichlicher Menge vorfanden, und da dies bei der fraglichen Pflanze für mich etwas Neues war, sammelte ich eine möglichst grosse Anzahl der so ausgestatteten Individuen ein, um bei Gelegenheit eine eingehendere Untersuchung vornehmen zu
können. Es stellte sich indessen dabei heraus, dass diese Sammlung ein Paar Exemplare enthielt, die auch in anderer als der oben erwähnten Hinsicht von besonderem Interesse waren, und ich erlaube mir daher, zuerst einige Worte über diese zu sagen.

I.

Es waren nur zwei Blüten, die diese abweichende Organisation aufweisen konnten, beide grundständig. Die erste entsprosste demselben Stocke wie drei andere chasmogamen Blüten und war mit zwei Sporren versehen; ausser dem typischen und normal ausgebildeten war noch einer auf dem rechten der zwei unteren Kronenblättern vorhanden (Fig. 1). Dieser war ziemlich lang und nach oben zwischen das obere schmale und das untere breite Kelchblatt hervortretend. — Man hätte möglicherweise erwarten können, im Zusammenhang mit einer solchen Spornbildung eine Zunahme in der Zahl der Nektarienanhänge zu finden, dies war indessen in dem diesbezüglichen Falle nicht wahrzunehmen.

Die zweite Blüte war bedeutend mehr umgestaltet (Fig. 2, a—c). Sie entsprang demselben Stocke wie eine typische chasmogame Blüte.
Die Spornbildung war hier noch weiter gegangen und ohnedies mit anderen Anomalien vereint. Die zygomorphe Ausbildung war indessen noch zu sehen und ging deutlich aus der Gestalt des Griffels und der Kelchblätter hervor. Dementgegen war betreffs des Androeums eine Umbildung eingetreten, die es bewirkte, dass die Blüte eben in diesem Wirtel dem aktinomorphen Typus näher kommt.

Von vorn gesehen ist die Blüte ein wenig links gedreht, wodurch eines der zwei oberen Kelchblätter zu oberst zu stehen kommt. Für die Kelchblätter im allgemeinen ist es bezeichnend, dass sie breiter und mehr quer zugespitzt sind; ihre über den Insertionspunkt entspringenden basalen Anhänge sind sehr spärlich entwickelt. Diese gehen an dem oberen Paare fast völlig ab, bei den übrigen sind die Anhänge nur zu den Seiten des Insertionspunktes ausgebildet, am unteren rechten beiderseits, doch sehr schwach, an den zwei linken nur einseitig.

Mehr oder weniger gefüllte Blüten sind bei mehreren anderen Viola-Arten beobachtet worden z. B. V. grandiflora, odorata und der kultivirten Form von V. tricolor (Penzig a. a. O.); bei der letzteren scheint indessen die Füllung durch serielle Verdopplung der Petala erreicht zu werden.

Die zwei oberen Kronenblätter sind mit einem abgeplatteten, horizontal liegenden Sporn versehen, von denen der rechte ein wenig ausserhalb des medianen Kelchblattes zum Vorschein kommt (Fig. 2 a). Die Sporne des unteren Kronen-
blattpaares sind desgleichen kurz und abgeplattet (Fig. 2 a und b), aber kräftiger ausgebildet. Sie sind auch ursprünglich horizontal aber durch Umbiegung nach oben im rechten Winkel zur Längsachse des Blattes mit ihren Enden vertikal orientiert und beiderseits zwischen den lateralen Kelchblättern hervortretend. Das untere mediane, normal sporntragende Blatt ist längs der Mittellinie gespalten und der Sporn hat dabei eine Verdopplung erlitten (Fig. 2 b). Die somit entstandenen beiden Sporne sind indessen bedeutend kürzer als der einer normalen Blüte. In einer solchen ist der von aussen her ersichtliche Teil des Spornblattes mit 12—15 scharf gefärbten Honigstreifen versehen; das gespaltene Spornblatt dieser Pelorienform trägt auf seinem einen Lappen 7 und auf dem anderen 8 Honigstreifen.

Die zwei Hälften sind bis an den Anfang der Sporne von einander getrennt, und aus dem vorderen Rande ihrer gemeinsamen niederen Partie sprossen zwei kleine unregelmäßig gefaltete, zuge- spitzte Anhängsel heraus (Fig. 2 b), von denen das eine länger ist und als ein scharf abgeplatteter, flügelartiger Saum bis an den Insertionspunkt des Blütenstieles fortsetzt (das andere auf der Fig. nicht sichtbar). Dieser Saum scheint selbst rinnenförmig zu sein, und bildet am Ende eine äußerst kleine sackförmige Ausbuchtung.

Die durch die Spaltung entstandenen beiden Sporne sind fast gleich kräftig wie die zwei zunächst darüber stehenden und gerade, der linke ist an der Spitze etwas verdickt und abgestutzt, der rechte seitlich abgeplattet und spitzer.

Wie ich es schon erwähnt habe, zeigte das Andröceum in seiner Organisation eine radiäre Ausbildung. Diese ist auf die Weise erreicht worden, dass die beiden Nektarienanhängsel an den zwei unteren Staubblättern völlig verschwunden sind. Indessen ist dies nicht die einzige Veränderung, die man bei denselben beobachten kann. Die Antheren sind nämlich längs der Berührungsfläche zusammengewachsen und diese Vereinigung hat dazu Anlass gegeben, dass die beiden Pollensäcke der einander zugewandten Antherenhälften teilweise reduziert und ohnedies unregelmäßig zerstückelt und mit einander verschmolzen sind (Fig. 2 c). — Die übrigen Staubblätter sind völlig normal ausgebildet.

Was die Entstehung dieser Pelorie betrifft, so halte ich es wenig wahrscheinlich, dass dieselbe den Ausdruck eines Atavismus bilden sollte. Es mag sein, dass die Blüte durch die Organisation der Korolle und der Staubblätter sich dem aktinomorpher Typus ge-
nähert hat, die zygomorphe Ausbildung ist in dem Grif fel und den Kelchblättern noch beibehalten und wird durch das Auftreten der drei accessorischen Kronenblätter noch mehr hervorgehoben. Wahrscheinlich verdankt die Blüte der Einwirkung äusserer Faktoren, vielleicht Insekten oder Schmarotzerpilzen die ganze Metamorphose. Indessen waren Spuren davon in der ausgebildeten Blüte, die eine solche Annahme stützen konnten, nicht zu beobachten.

II.

KUHN war indessen keinenfalls der erste, der das Vorkommen kleistogamer Blüten beobachtete. Die Entdeckung dieser interessanten Organisation war soweit bekannt der englischen botanischen Forschung vorbehalten. Es war nämlich DILLENIUS (1732) und nach ihm LINNÉ, der zum erstenmal solche Blüten erkannte, und es dürfte nicht ohne Interesse sein hier hervorzuheben, dass Viola mirabilis eben die zweite Pflanze war, bei der man kleistogame Blüten konstatiren konnte (deshalb auch diese Benennung LINNÉS). Dies kann einen nicht besonders wundern, denn ein Fall, mehr geeignet die Aufmerksamkeit zu wecken ist kaum denkbar, indem dies teils auf der zeitlichen Verteilung der verschiedenen Blütenformen beruht, teils auf der Stellung derselben an den Sprossachsen.

Die Hemmung in der Entwicklung kommt gewöhnlich in der Weise zum Vorschein, dass sämtliche Teile der Blüten bis zu einem gewissen Grade unterdrückt werden, dass aber die Möglichkeit zum Fruchtansatz dabei nicht schwindet.

Ganz anders zeigen sich die einfachen Hemmungsbildungen, die u. a. dadurch charakterisiert werden, dass Blütenknospen, meistens in den Gipfeln der Blütenstände, in ihrer Entwicklung stehen bleiben, welken und abfallen. Auch dies ist selbstverständlich durch ungenügende Nahrungszufuhr bewirkt worden, und solche Hemmungsbildungen findet man nicht selten auch bei kleistogam blühenden Pflanzen. Sie scheinen somit in vielen Fällen ein Stadium zu repräsentieren, das jenseits desjenigen fällt, das die Entstehung kleistogamer Blüten gestattet. Indessen darf daraus nicht geschlossen werden, dass die zur Bildung kleistogamer Blüten erforderliche Nahrungszufuhr im allgemeinen kräftiger sein sollte als eine solche, die bisweilen ein Verwelken von Blütenknospen bewirkt; ich halte es nicht für unwahrscheinlich, dass sie manchmal sogar erheblich schwächer sein kann.

Die Kleistogamie wird von Burck als durch Mutation entstanden erklärt. Bei Erwägung, auf welche Weise diese Eigenschaft hervorgetreten ist, kommt er zu dem Schluss, dass eine Pflanze, deren Nachkommen aus selbstbefruchteten Samen an Stärke und Fruchtbarkeit denjenigen aus gekreuzten Samen nachstehen, keine kleistogame Pflanze werden kann, und umgekehrt, dass eine kleistogame Pflanze aus einer Kreuzung keinen Vorteil ziehen kann (a. a. O. S. 112), eine Folgerung, der ich unbedingt zustimme. — Man vergleiche hiermit Darwins Auffassung, dass die chasmogamen Blüten bei kleistogam blühenden Pflanzen eben dadurch unentbehrlich sind, dass sie durch ihre Organisation eine Kreuzbefruchtung ermöglichen, wodurch also die durch fortgesetzte Selbstbefruchtung vermeintlich abgeschwächte Natur in ihre normale Lage zurückgebracht werden konnte! — In den einfachsten Fällen sind die kleistogamen Blüten von den chasmogamen nicht wesentlich verschieden, das unterscheidende Merkmal ist nur, dass sie geschlossen blühen. In vielen anderen jedoch lassen sich Gestaltungsverschiedenheiten beobachten, und diese stehen offenbar mit dem eigentlichen Wesen der Kleistogamie in keinem Zusammenhang. »Wir haben also bei dieser Kategorie zwei von einander unabhängige Erscheinungen zu beobachten: einmal die bloss bei kleistogamen Pflanzen auftretende Erscheinung des Blütenschlusses, zweitens die allgemeinere auch ausserhalb des Gebietes dieser Pflanzen gar nicht seltene Erschein-
ung, dass auf einem und demselben Pflanzenstock oder auf ver-
schiedenen Stöcken derselben Art, Blüten verschiedener Form und
Grösse vorkommen können (a. a. O. S. 128).

Betreffs dieser letzteren Frage wird die Kleistogamie mit dem Di-
odor Polymorphismus der Blüte im allgemeinen völlig gleichgestellt,
z. B. Heterostylie, Diöcie, zwitterige und ungeschlechtliche Blüten,
einfache und gefüllte Blüten u. s. w., welche sämtliche mitsamt den
kleistogamen Blüten unter dem allgemeinen Namen Diaphoranthen
(Verschiedenblütler) von Bürck zusammengefasst werden. Alle diese
Eigenschaften verdanken seiner Meinung nach ausschliesslich einer
Mutation ihre Entstehung.

Die bei den Diaphoranthen häufigen Zwischenformen sind nur
as ein Resultat des Kampfes zweier antagonistischer Merkmale auf-
zufassen; es wird später allerlei äusseren Faktoren vorbehalten zu
entscheiden, welches Merkmal in den einzelnen Fällen dominirend
will.

Wie sei nun der Unterschied zwischen Pflanzen zu erklären, deren
kleistogame Blüten nur durch ihren Verschluss von den chasmo-
gamen abweichen, und Pflanzen, die sich ohnedies durch Rück
bildungen in der Blüte gekennzeichnet? Die Antwort, die uns Bürck
hierauf gibt ist folgende: bei den ersteren handelt es sich um reine
systematische Arten, bei den letzteren aber um diaphoranthete Varie-
läten oder Zwischenrassen, die den Ausgangspunkt für das Mutiren
bildeten. Bei den Veilchen u. a. m. haben wir somit noch eine frühere
Mutation anzunehmen, wodurch eine kleinblütige Form entstand,
welche ihrerseits durch Blütenverschluss kleistogam wurde (also die
zweite Mutation). Dieser letztere schon von H. Müller (Das Va-
riieren der Grösse gefärbter Blüthenhüllen, — Kosmos I, 1877, S. 136
—137) angenommene, freilich aus dem Gesichtspunkte der indivi-
duellen Variation dargestellte Entwicklungsverlauf dürfte somit in
der Tat grössere Wahrscheinlichkeit für sich haben können, als Goe-
bel zu glauben geneigt ist (Biol. Centralbl. 1904, S. 779—780).

Dass durch mehrere Generationen fortgesetzte Selbstbefruchtung
die Neigung kleistogam zu blühen sich bei einer Pflanze steigern
kann, wie Borzi bei Kulturversuchen mit Oxalis corniculata gefunden
(Biologia dell Oxalis corniculata, Contribuzioni alla Biologia
vegetale, vol. II, fasc. II, S. 33) ist eine interessante Tatsache, doch
kann eine solche Erscheinung kaum der erste Anreger der Kleisto-
gamie im allgemeinen gewesen sein. Es ist wohl zu merken, dass
es sich hier ebenso wenig um einen Austausch einer alten Konstitu-

Eine solche Auffassung wird z. B. von KNUTH gehegt (»Handbuch der Blütenbiologie«, I Bd. 1898, S. 67) und wird von ihm speziell auf
Oxalis acetosella und *Viola mirabilis* angewendet, indessen will er seine Regel keineswegs verallgemeinern, sondern hebt gleichzeitig hervor, dass man in jedem einzelnen Falle eine besondere Untersuchung vornehmen möchte.

Diese Ansicht scheint jedoch nicht wohl übereinstimmend zu sein mit den bei *V. mirabilis* waltenden Verhältnissen. Wenn die chasmogamen Frühjahrsblüten speziell die Insekten anlocken würden, dann würde wohl der Resultat ersichtlicher werden; Fruchtansatz kommt, wie bekannt, sehr selten vor (so wenigstens in unseren Breiten) und insoweit ein solcher eintritt, werden dessen ungeachtet kleistogame Blüten und Früchte gebildet, was auch Goebel beobachtet hat. — In der Tat ist das wahre Verhalten, dass die chasmogamen Blüten ihre Rolle im Lebensgeschichte der Pflanze eingesetzt haben, sie sind nur als nutzlose Bildungen noch beibehalten, und können auch gelegentlich durch äussere Faktoren völlig ausgeschaltet werden, was uns Goebels Versuche u. a. lehren (Flora 1905, S. 235—236).

1So z. B. bei *V. hirta* und *V. odorata* nach gefälliger Mitteilung des Herrn Prof. Dr. O. Juel.
der zusammenschliessenden Konnektivanhängsel herausragende Narbe erreichen könnten ist nicht denkbar, zumal ein spezieller Reiz ihre Richtung nicht einmal in den kleistogamen Blüten zu beeinflussen scheint.

Nachdem es einmal konstatiert ist, dass wir bei dieser diaphoranthen Pflanze uns zwei antagonistische Merkmale vorhanden zu denken haben, Grossblütigkeit und Kleinblütigkeit, kombinirt resp. mit Chasmogamie und Kleistogamie, so darf es nicht wundernehmen, dass Zwischenformen oder Übergänge zwischen diesen beiden Blütenkategorien auftreten können.

Bei Viola mirabilis sind solche Rückschläge schon von Goebel nachgewiesen worden; durch ungenügende Nahrung konnte er das Auftreten kleistogamer Blüten an der Stelle der chasmogamen Frühjahrsblüten herbeiführen, und zwar, wie zu erwarten war, mit verschiedenen Übergängen zur normalen Gestaltung (Flora, 1905, p. 235).

Die Zwischenformen, die ich selbst Gelegenheit gehabt zu untersuchen, stammen alle, wie schon erwähnt, aus im freien unter günstigen Verhältnissen gewachsenen Individuen, und sind nicht als Ersatzbildungen für chasmogame Blüten aufgetreten; die Frage wird somit hier allerdings anderer Art, und ich bin geneigt zu glauben, dass die vorliegenden Übergänge nicht ungünstigen Ernährungsbedingungen ihre Entstehung verdankten, sondern im Gegenteil eben durch besonders günstige Verhältnisse entstanden. — Allem Anschein nach ist die von Goebel in seiner Fig. 8, II (Biol. Centralbl. 1904, S. 740) abgebildete Frucht auf eine solche Blüte zurückzuführen.

Bei einer Erörterung der Zwischenformen von chasmogamen und kleistogamen Blüten ist es nötig sich klar zu machen, was man bei dieser Pflanze unter den beiden Benennungen versteht. Selbstverständlich wird hierbei die subjektive Auffassung zum grossen Teil bestimmend. Wie eine typische chasmogame Blüte aussieht, darüber ist man ja sich sofort im klaren; als solche ist die gewöhnliche Veilchenblüte zu nennen, wie sie uns im allgemeinen entgegentritt mit lebhaft gefärbter Krone und lang herausragendem Griffel; ein weiteres Merkmal findet sich auch in der Tatsache, dass jede Antherenhälfte zwei Pollensäcke trägt, sowie in dem Vorhandensein
vom Sporn und Nektarienanhängseln. Als eine typische kleistogame Blüte darf ich eine solche ansehen, die abgesehen von der selbstverständlich vorhandenen »kleistogamen« Griffelform, gewöhnlich in den oberen Achseln der oberirdischen Sprosse sitzend, eine bedeutend reduzierte, doch niemals völlig unterdrückte Krone besitzt, deren einzelne Blätter gleichförmig ausgebildet und oft quer gerunzelt sind,— somit ohne jede Andeutung von Sporn— deren Staubfäden niemals mehr als je zwei Pollensäcke tragen—was übrigens schon MICHALET beobachtete (Bull. Soc. Bot. France, T. VII, 1860, S. 466)—und deren Nektarienanhänge vollkommen fehlen. Die Kronenblätter sind in den meisten Fällen viel kürzer als die Staubblätter; in der Reduktion der letzteren wird es, soweit ich es untersucht habe, niemals dahin gebracht, dass die oberen in Staminodien transformiert werden, ein Verhältnis, das bei anderen Viola-Arten vorkommt (GOEBEL, Biol. Centralbl. S. 696, Fig. 6, IV). Betreffs des Kelchblattwirtels sind die Blätter des oberen Paares immer noch schmäler und innerhalb der drei übrigen versteckt, die gewöhnlich gerade sind und sich dicht an einander anschliessen (Fig. 5 a—d).—Die hier beschriebene Blüte wird somit eine Art Pelorie, analog mit den schon im Anfange dieses Aufsatzes erwähnten, bei mehreren Viola-Arten gefundenen, spornlosen Pelorienformen chasmogamer Blüten. Ein Rest von Zygomorphie bleibt doch immer in der Ausbildung des Griffels und der Kelchblätter bewahrt.

Es ist nötig, die kleistogamen Blüten wie oben geschah zu definiren, denn tut man das nicht, so wird es überhaupt nicht möglich, von Zwischenformen zu sprechen; diese sind nämlich alle kleistogam. Der eigentliche »kleistogame« Blütenverschluss der Veilchen ist meiner Meinung nach durch die Anordnung des Griffels und des Andröceums gekennzeichnet. Dass die Kelchblätter ohnedies in einer typisch kleistogamen Blüte zusammenschliessen, wird schlechterdings davon verursacht, dass die Kronenblätter frühzeitig in ihrer Entwicklung stehen bleiben; je grösser diese bei den Übergängen auftreten, desto mehr öffnet sich die Blüte (hinsichtlich der Hüllblätter). Dass ich jedoch eine solche ziemlich offene Blüte als geschlossen und kleistogam betrachte, wird dadurch erklärt, dass die gegenseitige Lage der Generationsorgane stets unverändert bleibt.

Wir sehen also, dass wir in der Tat nicht mit Zwischenformen kleistogamer und chasmogamer Blüten zu tun haben; wie eine derartige intermediäre Organisation bei dieser Pflanze aussehen würde, dürfte schon allein schwierig sein, sich überhaupt klar zu machen.
Das, warum es sich hier handelt, sind deshalb nur Übergänge zwischen grossblütigen und den durch Mutation entstandenen kleinblütigen Formen, was alles mit dem Wesen der Kleistogamie nichts zu tun hat. Sieht man dies klar ein, dürften die in dieser Darstellung mehr aus praktischen Gründen verwendeten Ausdrücke von Zwischenformen *kleistogauer und chasmogauer Blüten* in ihr rechtes Licht treten. Die Blüten können also zwischen den oben skizzierten Stufen verschiedener Entwicklungshöhe in ihrer Organisation schwanken, und es scheint, als ob die Übergänge in der Nähe des kleinblütigen Maximums am gewöhnlichsten wären, je mehr sie sich von denselben entfernen, um sich dem anderen Grenzpunkt der Kurve zu nähern, desto mehr schwinden sie.

Nehmen wir uns somit eine ähnliche Untersuchung betreffs der Lokalisation der kleistogamen Blüten vor, so werden wir finden, dass diese meistens in der dritten und vierten Achsel zum Vorschein kommen; gibt es eine fünfte Achsel, was jedoch immer selten bleibt, so ist ihre Blüte ohne Ausnahme kleistogam.

Bisweilen findet man auch unter anderen Umständen und an anderen Stellen kleistogame Blüten, und ich erlaube mir in dieser Zusammenhang einige Worte über diese Tatsache zu sprechen. Aus der ersten Achsel des oberirdischen Sprosses wächst manchmal eine

Swensk Botanisk Tidskrift.
vegetativ-florale Achse hervor; diese trägt dann oft in ihrer zweiten Achsel eine kleistogame Blüte. Nicht überaus selten dürfte auch der Fall sein, dass ganze Achsen, die sich normal in oberirdische Sprosse verwandeln sollten, ihre Entwicklung auf dem Knospenstadium einbüßen. Alle Blattanlagen eines solchen Sprosses kommen nicht über den Niederblatttypus hinaus, kleistogame Blüten werden dessen ungeachtet ausgebildet. Diese sind sehr klein, und weichen soweit untersucht von den typischen dadurch ab, dass sämtliche Staubfäden mit je vier Pollensäcken ausgestattet sind (Fig. 3 a, b). Ob ein Fruchtansatz in solchen Blüten auch eintreten kann, habe ich nicht Gelegenheit gehabt zu konstatieren.

Schliesslich können die kleistogamen Blüten noch auf eine abweichende Weise auftreten; dies wird jedoch immer als eine seltene Ausnahme anzusehen sein. Aus der Achsel eines auf dem Rhizom sitzenden Niederblattes sprang eine typische oberirdische Achse, aber ohnedies hinter derselben noch eine serial angelegte, kurzgestielte Blüte. Der Stiel war unten an der Mittellinie des Stützblattes angewachsen, so dass die Blüte in der Tat aus demselben auszugehen schien (Fig. 4). Von einem gewissen Interesse war der Umstand, dass die Pollenkörner, die sehr reichlich keimten, noch in den Pollensäcken eingeschlossen lagen; der ganze Fruchtknoten war von einem Gewirr von Schläuchen durchzogen.

Serial gebildete Knospen sind bekanntlich bei der Gattung Viola im übrigen nicht fremd; solche kommen ja z. B. in grosser Ausdehnung bei V. tricolor vor.

Um schliesslich die Zwischenformen zu berühren, treten diese in sämtlichen Achsinn 1—4 auf, haben aber ein auffälliges Maximum in der dritten.

die Prozentzahlen der verschiedenen Blütenformen in den verschiedenen Achseln angibt.

<table>
<thead>
<tr>
<th>Blüten</th>
<th>Achsel 1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kleistogam</td>
<td>5,71</td>
<td>11,42</td>
<td>34,27</td>
<td>48,57</td>
</tr>
<tr>
<td>Zwischenformen</td>
<td>6,25</td>
<td>21,87</td>
<td>62,50</td>
<td>9,37</td>
</tr>
<tr>
<td>Chasmogam</td>
<td>5,00</td>
<td>50,00</td>
<td>40,00</td>
<td>0</td>
</tr>
</tbody>
</table>

Die hier für die erste Achsel angegebenen Zahlen sind selbstverständlich von geringem Wert, wegen des spärlichen Vorkommens von Blüten in dieser Achsel überhaupt und dieselbe Anmerkung betrifft auch sämtliche Zahlen für die chasmogamen Blüten, da ja diese allerdings selten auf den oberirdischen Achsen auftreten. Aus der Tabelle geht indessen mit aller wünschenswerten Deutlichkeit hervor, dass je höher die Blüten auf den oberirdischen Sprossen sitzen desto grösser ihre Tendenz wird, sich dem kleinblütigenkleistogamen Höhepunkt zu nähern, und dass Zwischenformen am liebsten in einer Achsel zwischen denen zu finden sind, die am gewöhnlichsten die kleistogamen und chasmogamen Grenzpunkte der Blütenfachwankung vertreten.

Mit anderen Worten, die Grossblütigkeit wird immer dominiender, je weiter die Blüten auf den Achsen herabrücken, Anzunehmen, dass die Nahrungsverteilung dabei als der auslösende Reiz wirksam ist, darf nicht zu gewagt sein. Die für die Bildung chasmogamer Blüten in den oberen Achseln nötigen Stoffe wird also auf andere Weise verwendet werden können, was in den meisten Fällen das gewöhnlichste zu sein scheint. Allem Anschein nach kommt meistens anfänglich der grösste Teil den assimilirenden Blättern zu, die dadurch zur Zeit der Entwicklung der kleistogam entstandenen Früchte eine beträchtliche Grösse erreicht haben, und dies dürfte vielleicht für die schliessliche Ausbildung dieser Früchte notwendig sein. Ihre Gruppirung nach Grösse ist auch in der Regel derartig, dass die Blattflächen grösser werden, je weiter herab die
Blätter auf den Achsen inseriren: Eine Ausnahme macht indessen immer das erste Blatt, das stets als Niederblatt ausgebildet ist, bisweilen auch das zweite, das jedoch manchmal größer als das dritte sein kann.

Die grundständigen Blätter an den Enden der Rhizomzweige sind gewöhnlich bedeutend kräftiger als alle übrigen, ihre Spreiten können sogar die beträchtliche Größe von 10 × 11 cm (Länge × Breite) erreichen. Im grossen und ganzen zeigt sich somit die oben behauptete Gruppierung der Assimilationsblätter völlig durchgeführt.

Das gegenseitige Verhältnis von Blattgrösse und Grossblütigkeit auf einer bestimmten Höhe der Achsen liegt also auf der Hand. Dass dann und wann chasmogame Blüten in den oberen Achseln auftreten können, ist als nur eine zufällige Ausnahme zu betrachten, die jedoch nicht auf die allgemeine Regel einzuwirken braucht.

Wir können somit allerdings annehmen, dass die Nahrungszufuhr in den meisten Fällen so schnell abnimmt, dass Zwischenformen nicht auftreten können; dass indessen solche an dem schon genannten Fundort meines Viola-Materials so häufig waren, schreibe ich deshalb den besonders vorleihhaft äußeren Bedingungen zu, die dort vorliegen.

Betreffs der Exponirung der Blüten, lässt sich eine progressive Aufrichtung derselben wahrnehmen, je mehr sie sich den typisch kleistogamen nähern. Die chasmogamen Blüten sind horizontal, die kleistogamen dementgegen vertikal orientiert und gewöhnlich fast ungestielt. Im Zusammenhang hiermit verändern auch die Kelchblätter ihre Form, speziell die beiden des unteren Paares. Bei den chasmogamen Blüten sind sie ungleichförmig und geschwungen, diese Biegung schwindet indessen stufenweise bei den Zwischenformen, so dass die Kelchblätter der oberen (kleistogamen) Blüten gerade und symmetrisch, dem seiner Stellung nach oberen völlig gleich gestaltet sind (Fig. 9a, 8a, 6a und 5a).

Um die Organisation der kleistogamen Zwischenformen etwas näher zu beleuchten, erlaube ich mir einige bestimmte Beispiele herauszugreifen.

1. Ich werde mit der schon vorher beschriebenen, typischen kleistogamen Blüte den Anfang machen, und möchte hier nur einiges über dieselbe hinzufügen (Fig. 5a–e). Betreffs der mit nur je zwei Pollensäcken ausgestatteten Staubfäden lässt sich beobachten, wie die durch die Reduktion der äusseren Pollensäcke breiter gewordenen, zu beiden Seiten herablaufenden Konnektivsäume sehr
kräftig und lang papillös sind (Fig. 5 c). Die Papillen wachsen bisweilen zwischen die des benachbarten Staubblattes so fest hinein, dass man sie nur mit Überwindung eines gewissen Widerstandes von einander trennen kann. Dadurch kommt somit ein völlig geschlossener Raum rings um den Fruchtknoten zustande. Die kleinen Lücken zwischen den basalen Teilen der Staubfäden werden ohnedies von den dicht anliegenden, schuppenförmigen Kronenblättern bedeckt.

Eine solche Verzahnung, wie die oben erwähnte, kommt auch in den chasmogamen Blüten vor, aber weniger kräftig ausgebildet.

Fig. 5. Glieder einer typisch kleistogamen Blüte. a Habitusbild der Blüte (28/1), b Kronenblätter (28/1), c Staubblatt mit zwei Pollensäcken und papillösen Rändern (28/1), d Fruchtanlage (28/1), e Querschnitt durch eine Anthere, die ein rudiment eines äußeren Pollensackes trägt (28/1).

Fig. 6. Zwischenform. a Habitusbild der Blüte (28/2), b Kronenblätter (28/1), c die zwei unteren Staubblätter, das linke von hinten gesehen (28/1), d Fruchtanlage.

Der Griffel (Fig. 3 a, Fig. 5 d) ist sehr kurz, fast gerade oder ein wenig hakenförmig nach unten gebogen mit dreiseitiger Mündung.

2. Blütenstiel ca. 2 cm, von der dritten Achsel ausgehend. Das Spornblatt am grössten, der Sporn kurz sackförmig. Die zwei unteren Staubblätter viel kräftiger als die übrigen, sämtliche vier Pollensäcke tragend, nur das linke mit einem sehr kurzen und breiten nach vorwärts gerichteten Nektarienlappen. Der Griffel dem in Fig. 7 b abgebildeten am ähnlichsten, an der Spitze offen, ohne ersichtliche Narbenpapillen, die Mündung mit zahlreichen Pollenkörnern gefüllt, von denen mehrere lange Schlüche in den Fruchtknoten trieben.
3. Kommt der vorher als typisch bezeichneten kleistogamen Blüte am nächsten (Fig. 6 a—d). Blütenstiel 2 cm, von der dritten Achsel ausgehend. Kelchblätter zusammenschliessend. Kronenblätter membranartig, weisslich, am Antherenkegel dicht anliegend und über denselben ein wenig hinausragend. Die zwei oberen gleich gross und kleiner als die nächstunteren, die ihrerseits auch gleich sind. Das Spornblatt am grössten mit drei Honigstreifen und einem kurzen, sackförmigen, seitlich abgeplatteten Sporn, der von aussen her kaum sichtbar ist. Sämtliche Staubblätter mit vier Pollensäcken. Die Nektarienanhänge sehr fein, gedreht und nach vorwärts gebogen, was durch den kurzen Sporn bedingt wird. Griffel kurz, fast schon von der Basis ab eingerollt mit rückwärts gerichteter Narbenmündung.

4. (Fig. 7 a—b). Blütenstiel ca. 3 cm lang, von der dritten Achsel ausgehend. Kelchblätter von »chasmogamen« Typus, zusammenschliessend. Die zwei oberen Kronenblätter membranartig, weisslich, länger als die Konnektivanhänge, das linke ein wenig grösser. Die zwei unteren länger und breiter, ungleichförmig ausgebildet, das linke etwas grösser als das rechte, beide schwach lila gefärbt. Das Spornblatt am grössten, die Spreite kürzer als die halbe Kelchblattlänge, der Sporn aufgebläht, dick und kurz, gerade nach hinten gerichtet und weit offen; das ganze Blatt erhält dadurch eine auffällige Ähnlichkeit mit dem Kapuzenblatt eines Aconitums. 5—6 Honigstreifen ersichtlich. Sämtliche Staubblätter mit vier Pollensäcken, die Konnektivanhänge zum Teil unregelmässig gefaltet. Die beiden Nektarienanhänge kräftig, kurz und stark abgeplattet, gleichförmig gebogen, ihre absondernden Teile wohl ausgebildet. Griffel kurz, gegen das Ende nach unten gebogen, die Narbenmündung sehr deutlich.
5. (Fig. 8 a—c). Blütenstiel ca. 4 cm lang von der ersten Achsel ausgehend. Kelchblätter typisch zusammenschliessend. Die zwei oberen Kronenblätter membranartig, quer gerunzelt, kürzer als die Konnektivanhängsel, die zwei unteren von derselben Länge, das rechte mit einem schwach entwickelten Honigstreifen. Das Spornblatt kurz, dessen Spreite mit zehn Honigstreifen versehen, von höchstens der halben Länge der Kelchblätter (die Basallappen nicht mitgerechnet). Der Sporn kurz und abgeplattet, ein wenig nach hinten herausragend. Sämtliche Staubblätter mit vier Pollensäcken. Die Nektarienanhängsel fein, unregelmässig gebogen, ihre absondernde Partie schwach entwickelt, offenbar nicht funktionierend. Griffel dem in Fig. 9 d am ählichsten.

6. (Fig. 9 a—d). Blütenstiel ca. 5 cm lang von der zweiten Achsel ausgehend. Kelchblätter mehr zusammenschliessend als die einer chasmogamen Blüte. Die oberen Kronenblätter fast gleichbreit, das linke am grössten schwach lila, beide deutlich quer gerunzelt und kaum länger als die Konnektivanhängsel. Von den Blättern des unteren Paares ist auch das linke am grössten, unbedeutend kürzer als das Spornblatt, jedoch ohne die sonst vorkommenden Haarbildungen unterhalb der Spreite, beide deutlich gefärbt. Das Spornblatt selbst ein wenig kürzer als die Kelchblätter, der Sporn gerade, etwa 5 mm lang, seitlich abgeplattet und

Fig. 8. Zwischenform. a Habitusbild der Blüte (§/2), b Spornblatt (§/4), c die zwei unteren Staubblätter, von innen gesehen (§/4).

Fig. 9. Grossblütige Zwischenform. a Habitusbild der Blüte (§/4), b Staubblätter (§/4), c Kronenblätter (§/4), d Fruchtanlage (§/4).

Aus diesen angeführten Beispielen sehen wir, dass die stufenweise fortschreitende Rückbildung der Blüten in erster Linie in dem Kronenblattwirtel zum Vorschein kommt und danach auf das Andróceum und die Fruchtanlage übergeht. Was den ersteren betrifft, ist es gleich ersichtlich, dass die Reduktion von unten nach oben zunimmt und zwar oft sehr rasch (Fig. 9 c), das Spornblatt ist immer das letzte, das seine ehemalige Natur aufgibt. Dies gilt außer von Form und Grösse selbstverständlich auch von der Farbe. In dem Staubblattwirtel ist der erste Schritt gewöhnlich durch eine im ganzen geringere Grösse der drei oberen Staubblätter gebildet (Fig. 10 a). Die vier Pollensäcke bleiben noch stehen, indessen erleiden auch sie allmählich eine Reduktion, und man findet somit anfangs Staubblätter, deren äussere Pollensäcke zwar vorhanden sind, aber beträchtlich kleiner wie die zwei inneren und mit schwächer entwickeltem Endothecium; die Zahl der Pollenkörner ist demgemäß auch bedeutend gesunken. Schliesslich fehlen sie völlig, aber vereinzelte Spuren sind bisweilen noch zu sehen (Fig. 10 a).

In den als typisch bezeichneten kleistogamen Blüten trifft man nur ausnahmsweise mehr als je zwei Pollensäcke auf den Staubblättern; ein Beispiel wird in Fig. 5 e geliefert. In der Blüte, aus der dieses Staubblatt stammt, waren sämtliche restirende Antheren mit je zwei Pollensäcken versehen und das hier abgebildete Rudiment eines äusseren fand sich auf dem unteren rechten.

Dass bei der Rückbildung die unteren Teile der Blüten am längsten Widerstand leisten, wird nicht wundernehmen, denn wir sehen
ja wie auch in der chasmogamen Blüte diese Teile in ihrer Ausbildung bevorzugt werden. mögen auch die Glieder succedan von unten nach oben angelegt werden oder simultan, welche beiden Fälle in der Gattung Viola vorkommen.

Sehen wir dann die verschiedenen Griffelformen an, so stellt es sich heraus, dass dieselben eine fast kontinuierliche Serie bilden, von dem einfachen fast geraden röhrenförmigen Typus der kleistogamen Blüte ausgehend, um mit dem langen Griffel der chasmogamen zu schliessen (Fig. 3 a, 5 d, 6 d, 7 b, 9 d, 10 b, 11 a—b). Dass also nicht nur die ersten Typen als eine besondere Anpassung für Kleistogamie aufzufassen sind, wird sofort klar; die Zwischenstadien dürften als solche gleichwohl zu betrachten sein. Die an der Basis gewöhnliche knieförmige Biegung fehlt oft; wenn die Griffel länger werden rollen sie sich gern gleichmässig zusammen, wodurch die Mündung nach rückwärts gerichtet wird. Die Einrollung schwindet in dem Masse, als die Kniebiegung hervortritt.

Dass die Blüte ihren kleistogamen Charakter immer noch behält, ohne darin auf irgend welche Weise von den Grössenschwankungen des Griffels gestört zu werden, deutet schon von vorher betont wurde, ausdrücklich dahin, dass die Kleistogamie in der Tat mit den oben erwähnten Übergängen der Blütengrösse nichts zu tun hat.

Betreffs des Verhaltens des Pollens bei Viola mirabilis wissen wir, seitdem D. MÜLLER seine Beobachtung darüber mitteilte, dass diese Pflanze freies Pollen hat: GOEBEL hebt auch hervor, dass bei der nämlchen Art mitsamt V. biflora die Antheren wenigstens an der Spitze geöffnet werden (Biol. Centralbl., S. 738). Bei den Zwischenformen habe ich stets die Antheren, soweit sie überhaupt geöffnet waren, fast ihrer ganzen Länge nach klaffend gefunden (Fig. 9 b); an den frischen Exemplaren war es unschwer zu sehen, dass der ganze Pollenvorrat entladen war.

GOEBEL erwähnt, dass nach seiner Beobachtung die Pollenkörner ihre Schläuche in fast allen Richtungen treiben können, sogar in die Antheren hinein, führt aber gleichzeitig an, dass er auch in ungeöffneten Antheren Schlauchbildung beobachtete (Biol. Centralbl., S. 238, Anmerkung), was übrigens auch ich an der vorher beschrie-
benen, serial angelegten kleistogamen Blüte gesehen habe. Diese Beobachtung ist allerdings so zu deuten, dass die Richtung der Schläuche von keinem Reiz beeinflusst werden, bevor sie, also zufällig, die Narbenmündung erreichen. Dass die Pollenkörner indessen mehrmals in direkte Berührung mit den Griffelenden kommen, habe ich schon vorher erwähnt.

Sehen wir somit, dass die Reduktion in den verschiedenen Blütenwirteln im allgemeinen etwa mit gleichen Schritten zunimmt. Hiervon gibt es jedoch mehrere Ausnahmen. Man findet also nicht so selten Blüten, in denen man der relativ gut entwickelten Kronenblätter wegen eine chasmogame Blüte zu erkennen glaubte; bei einer näheren Untersuchung stellt es sich indessen heraus, dass der Griffel, obgleich gross und fast von chasmogamem Typus, von dem dicht verschlossenen Antherenkegel überdeckt ist, sehr kräftig im Knie gebogen und ohne dies in die Höhe gezogen (Fig 11 b). Dass eben in der hier beabsichtigten Blüte eine Autogamie eingetreten war, könnte ich unschwer konstatiren. Die Pollensäcke waren sämtlich entleert und die Pollenkörner hafteten durch kürzere oder längere freie Schlauchstücke an der Spitze des Griffels, welche daselbst einen grossen Büschel bildeten; Narbenpapillen waren nicht ersichtlich.

Eine unregelmässige Rückbildung bieten auch die Nektarienanhangsels. Die absondernde Funktion könnten sie ja selbstverständlich bei jeder kleistogamen Organisation sofort einbüßen: man findet sie jedoch oft in mehreren verschiedenen Zwischenformen noch tätig (Fig. 9 b, 7 a). Die rückgebildeten Formen sind oft beträchtlich deformirt, gedreht und nach vorwärts gerichtet, oder an der Spitze gelappt und äusserst dünn (Fig. 10 a). Sogar in typisch kleistogamen Blüten, deren Kronenblätter jeder Spur von Spornbildung entbehrt, waren Rudimente noch vereinzelt zu sehen, weissliche, breit rundliche schuppenähnliche Bildungen, die dem Rücken des Staubblattes dicht anlagen. Diese waren selbstverständlich ohne alle Funktion.

Wenn man geneigt ist, in der Kleistogamie als solcher einen durch äussere Faktoren entstandenen Anpassungscharakter zu sehen, müssen selbstverständlich bei Beurteilung des Wertes dieser Zwischenformen die chasmogamen Blüten den Ausgangspunkt für die Metamorphose bilden, und die Serie vom chasmogamen bis zu dem kleistogamen Grenztypus ist als eine kontinuirliche aufzufassen. Wir würden uns deshalb diesen Umbildungsverlauf sowohl phylogenetisch als auch bei den vorliegenden, mit Übergängen ausgestatteten Indi-
viduen als mit der chasmogamen Blüte angefangen zu denken haben, und die einzelnen Zwischenformen würden nichts als rückgebildete chasmogame Blüten sein. Man ist daher, wie oben mehrmals geschräh berechtigt, bei einer Beschreibung dieser Zwischenformen von einer Reduktion und von reduzierten Bildungen zu sprechen.

Indessen scheinen mir die Zwischenformen in manchen Beziehungen unzweckmässige Schöpfungen zu sein, und es würde meiner Meinung nach schwer zu denken sein, dass die Pflanzen eben durch solche unvorteilhaft organisierten Blüten den Weg zum schliesslichen, den Forderungen der Anpassung befriedigenden kleistogamen Blütentypus finden konnten.

TILL GOTSKA SANDÖNS FLORISTIK

AF

K. JOHANSSON.

Lathyrus maritimus (L.) Bigel. Om denna växt, som flerstädes i myckenhet växte vid basen af dynerna på västra sidan, kunde jag egendomligt nog på ön ej få bestämda upplysningar. Men jag antog, att den inkommit i samband med åtgärder för sandens dämpande, hvilket nu bestyrkes i en uppsats i Skogsvårdsföreningens tidskrift,1 där författarinnan, som i den saken torde vara väl underrättad, omtalar att så skett.

Växten trifves uppenbarligen förträlligt och torde liksom de implanterede *Ulex* och *Sarothamnus* för framtiden få räknas till öns flora.

Vicia cassubica L. förekommer mängdvis vid Gården samt i skogen i dess närhet; äfven sedd vid en dyn nära södra fyren, i trädskolan och andra ställen nära norra fyren, vidare vid en dyn på nordvästra sidan. På sistnämnda ställe *f. glabrescens* Hallier, på andra ställen var det åtminstone öfvervägande *f. pubescens* Celak. — På Gotland upptäcktes denna art 1872 af lektor J. E. Zetter-

1 *Eebra Sylvan, Gotska Sandön. Skogsvårdsför. tidskr. 1907, h. 3.*

På samma sätt förhåller det sig med exemplaren från det för länge sedan nedhuggna trädet vid Fride i Lojsta socken. Frukt- och bladskafven är hos Q. sessiliflora, bladskafven ända till 15 å 19 mm. Men bladens form, tandning och bas är hos Q. robur och bladen sakna stjärnhår. Ett ark med denna växt be- linner sig i Elias Fries' herbarium i Uppsala universitets bota- niska museum, ett annat i Visby läroverks museum.
Uppgiften att en vinterek skulle hafta funnits i Alfva har ej genom något herbarieexemplar bekräftats.

Det är sålunda troligt, att vintereken ej tillhör Gotlands flora, och det är ej bevisadt, att den någonsin gjort det.

Dessutom iakttagos på Sandön följande arter, som komplettera ofvannämnda växtförteckning för Gotland:

Matricaria inodora (enst.),
Artemisia campestris (Gården),
Antennaria dioica (Gården),
Solidago virgaurea,
Tussilago farfara,
Centaurea scabiosa (Gården),
Cichorium intybus (Trädskolan),
Sonchus asper (n. fyren),
Lampsana communis (n. fyren),
Hieracium Pilosella (Gården),
» sabulosorum (n. fyren, Gården),

¹ Nomenklaturen efter Neumans och Ahlfvengrens flora.
Hieracium cæsium Fr. (St. Löfskogen),
> vulgatum (Fr.) Almqu. (t. allm.),
Convolvulus sepium (i trådgården),
Anchusa arvensis (Gården, trädskolan),
Prunella vulgaris (trädskolan),
Lamium purpureum (n. fyren),
> amplexicaule (d:o),
Solanum nigrum (n. fyren),
Trientalis europaea (St. Löfskogen),
Plantago major (vid kyrkan),
Anthriscus silvestris (Gården, spars.),
Daucus carota (n. fyren, Gården, spars.),
Libanotis montana (Gården, enst.),
Papaver Argemone (n. fyren),
> dubium (d:o),
Turritis glabra (Gården),
(Crambe maritima fanns åfven 1903 på öns sydvästra sida),
Isatis tinctoria (S:t Annae udd),
Geranium molle (trädskolan),
Linum catharticum (strandvallar vid Gården),
Hypericum perforatum (Gården),
Viola canina (Gården),
Silene nutans (Gården),
> var. glabra (Gården),
> noctiflora (trädskolan, enst.),
Stellaria media (n. fyren),
> graminea (Gården, trädskolan),
Arenaria serpyllifolia (n. fyren),
Cratægus »monogyna» (St. Löfskogen),
Potentilla minor (Gården),
Geum urbanum (trädskolan),
Orobus niger (trädskolan),
Vicia angustifolia (n. fyren),
Medicago falcata (vallar af strandgrus vid Gården),
Melilotus arvensis (Gården),
Anthyllis vulneraria var. coccinea (Gården, spars.),
Herniaria glabra f. subciliata (Gården, talr.),
Polygonum lapathifolium (trädskolan),
> persicaria (n. fyren),
Rumex Acetosa (trädskolan), f. velutina (Gården),
Atriplex hastatum (södra stranden, spars.),
Goodyera repens,
Allium oleraceum, hvitblommig (trädskolan),
Convallaria Polygonatum (vid vägen till Säludden),
Luzula multiflora,
Lolium perenne (n. fyren),
Secale cereale (på stranden),
Dactylis glomerata (Gården),
Festuca elatior (n. fyren, spars.),
rubra var. arenaria,
Briza media (Gården),
Poa trivialis (trädskolon i busksnar),
Avena pubescens (Gården),
Holcus lanatus (n. fyren),
Calamagrostis epigejos (öster om Tärnudden),
Apera spica venti (n. fyren),
Picea excelsa, odlad,
Polystichum filix mas. (L.) Roth (St. Löfskogen).

Att utan vidare lägga dessa växter till dem, som förut iakttagits på Sandön, skulle naturligtvis leda till oriktigt resultat. Ty många arter äro eller hafta varit blott tillfälligiga gäster på ön.
ANTECKNINGAR OM FLORAN INOM TORNEJAVREOMRÅDET
AF MÅRTEN SONDÉN.

Innan den högnordiska järnvägen kom till stånd, var det ett ganska stort och mödosamt företag att göra en resa till Torne lappmark och trakterna omkring Tornejavre.

De botanister, som i äldre tider besökt dessa nejder, äro också icke många.

LINNÉ besökte aldrig Torne lappmark.

SAM. LILJEBLAD reste år 1788 och besökte da fjällen omkring Tornejavre. I förbigående ma här nämnas, att WAHLENBERG i Flora Svecica förmodligen genom något missförstånd af Liljeblads uppgift anger, att Hierochloa alpina och Woodzia glabella etc. växa ad Torne trask in alpe Kärpile. Nu ligger visserligen fjället Kärpile inom Torne lappmark, men alls icke vid eller nära Torneträsk — där Fristedt också under sin resa förgäves sökte att få reda därpå. — Det ligger nämligen en dryg dagsresa söder om Sjangelii nära såväl norska gränsen som gränsen till Luleå lappmark. Egentligen nog ange BACKMAN och HOLM (i Elementarflora öfver Vesterbotten och Lappland 1878) just angående Hierochloa alpina, att
den växer på fjället Kärpile och andra högfjäll — vid Kåbojavre, en sjö som ligger nära norska gränsen men ett godt stycke in i Lule lappmark i en trakt som få eller inga botanister efter Liljeblad besökt. Vill man räkna detta fjäll till Tornejavreområdet, så måste detta område tagas i en alltför vidsträckt bemärkelse och med samma skäl skulle då räknas dit Kebnekaise och hela det omgivande högfjällspartiet.

G. Wahlenberg kom aldrig under sina berömda resor i Lappland åren 1800 och 1802 till dessa trakter.

J. W. Zetterstedt följde under sinresa år 1821 Torne älf uppåt till Tornejavre, gick därifrån öfver till Norge och återvände öfver Alten, Kautokeino och Muonio älf.

L. L. LeStadius, som under 22 år ägnade sig åt omfattande undersökningar av växtligheten i Karesuando socken, har förmodligen även besökt Tornejavreområdet. Lejonparten af hans arbeten gäller likväl Karesuando och Enontekis, hvilkas flora i åtskilliga punkter visar sig avvikande.

K. P. Hägerström besökte dessa trakter år 1880. Från Fagernäs vid Bejsfjord i Norge gick han öfver Pahtajärvi till Abisko och Nuolja, drog därifrån österut och besökte de förut af Fristeredt och Björnström undersökta fjällen, följde sedan Rautasälven och Rautasjärvi och gick öfver Sjangeliv till Elvegaard i Norge för att därifrån anträda hemresan till Sverige.

År 1903 invigdes den högnordiska järnvägen och därmed inträdde en ny era för dessa trakter, till hvilka man nu kan komma bekvämt, fort och billigt. Samma år öppnades den naturvetenskapliga stationen vid Vassijaure för botanister och andra forskare. Ungefär samtidigt härmed hade Svenska turistföreningen både vid Vassijaure och vid Abisko anordnat turiststugor, hvilka snart togos

I Tornejavre utmynna en stor mängd större och mindre vatten- drag, som under sin våg från is- och snöregionerna göra vattenfall på vattenfall och flerestädades genom klippan skurit sig ned i djupa klyftor af ytterst pittoreskt utseende och, där stenarten utgöres af
kalkskiffer eller dolomit, med en rik och växlande flora. En sådan canon, den af dem all mata mest bekanta, känd för sin skönhet och yppiga växtlighet är den, som Abiskojökkr bildar nära sitt utlopp och vid hvilken den gamla turiststugan vid Abisko fäkt sin plats. Ännu ståtligare canonbildningar finnas emellertid vid sjöns norra sida, där Snurajökkr och Ortojökkr skåra sig ned genom klipporna, och äfven vid andra älfvar möter man liknande klyftor. Det med älfvarna nedförda gruset har flerestädes utanför flodmynningarna samlat sig i sandrellar, som omsluta laguner; både sandrellar och laguner af eminent botaniskt intresse.

Västra delen af Torne lappmark — hvilken i denna uppsats be-tecknats såsom Tornejaverområdet (i vidsträckta bemärkelse) — företer redan för en ytlig betraktare inom skilda delar rätt märkbare olikheter. Särskilt den nordvästra delen — Riksgränsen, Vassijaure, Kopparåsen — utmärkes af ett hårdt klimat och får därigenom ett helt annat utseende och en mera arktisk flora än det egentliga Tornejaverområdet och Torne- och Rautasälffvarnas floddalar. Såsom karakteristiska för detta kalla område må an-
föras *Luzula Wahlenbergii* och *hyperborea*, *Juncus biglumis*, *Carex lagopina*, och en särdeles intressant *Salix*-vegetation huvudsakligen bestående av *Salix polaris*, *herbacea*, *hastata*, *lanata*, *lapponum*, *glauca*, *reticulata*, samt hybriderna *lanata × hastata*, *lanata × herbacea*, *hastata × herbacea*, *lapponum × herbacea* förutom flera svårbestämda former, troligen av hybridogen natur, i växlande former.

Torneålfvens dal från Jukkassyrvet till Tarrakoski besöks år 1852 av Fristedt och Björnström, som ägnade Jukkassyrvet och Kurravaara särskild uppmärksamhet. Efter den tiden torde den knappast haft besök för botaniska studier, förrän järnvägen nådde det nu blomstrande Kiruna, därifrån en och annan botanist i likhet med författaren under de sista åren gjort exkursioner. Vid en promenad från Kiruna till Kurravaara påträffar man redan på Luossavaaras sluttningar och annu ymnigare i de täta gräsvallarna vid Kurravaara samt vid Jukkassjervi *Carex festiva*, som veterligen icke iakttagits annansteds inom Torne lappmark.

Torneåvre och dess omgivning — det egentliga Tornejavreområdet — är ännu ganska ofullständigt undersökt. Kattovuoma, Lamolahti, fjällen Ripainen och Najalläve besöks visserligen av Fristedt och Björnström och sedermera af Hagerström, hvilka funno dessa trakter erbjudas föga intresse, men sedan hafva de, såvitt jag vet, icke blifvit besökt i botaniskt syfte. Endast ett fåtal botanister hafva äfven efter nyssnämnda forskare haft tillfälle att taga känndom om de vid sjöns södra sida från dess utlopp vid Tarrakoski västerut liggande platserna: fjället Oppisaive, där de funno *Carex pedata* (hvilken äfven 1905 dennesamlat), fjället Nakerivara (= Nagerolka) och Nakerijokidalen, där de skördade *Trisetum agrostidenum* (som föröfven söktes år 1904) och Kaisepakte, nedanför hvars branter de funno den för dessa nejder sällsynta *Cryptogramma crispa*.

Allt sedan järnvägen år 1903 öppnades, slogo sig botanister ned dels vid Vassijaure naturvetenskapliga station och dels vid Abisko i dess turiststuga — de enda platser där man då kunde erhålla tak öfver huvudet — och det sager sig självt, att exkursioner gjordes till omgivande trakter. Abiskodalen och dess bidalar Nuoljafjället, Björkliden och närliggande strand af Tornejavre genom söktes och exkursioner föregos till sjöns norra sida, Pålnoviken, Snuorajokks, Pesisjokks och Ortojokks floddalar och Majvatjäkkos sluttningar samt öarna Jeprinsuo, Abiskosuolo etc. Från Vassi-
jaure var tillgången till fjället Vasitjäkko lätt och markerna och fjällen kring Rikssränsen likaså. En och annan utflykt till mera aflägsna fjäll ha nog äfven gjorts, men ännu alltjämt torde hittills gjorda undersökningar börja betraktas endast såsom rekognoseringer af strödda punkter, viktiga såsom sådana men otillräckliga att gifva en full bild af dessa trakters vegetationsförhållanden.

Af särskilt intresse är att tillsa järnvägsbyggnadens och järnvägstransporternas inflytande på vildmarksflorans uppblandning med främmande element; ett viktigt bidrag till kännedomen om växtnimporten under järnvägens byggnad har N. Sylvén, som sommaren 1903 arbetade vid den naturvetenskapliga stationen vid Vassijaure, lämnat (Botan. Notis. 1904 H. 3).

Under de 3 sommarna 1903, 1905 och 1906 har jag tillbringat några
veckor af juli månad i Torne lappmark. Därunder har jag vanligen först vistats några dagar i Kiruna och har därifrån gjort vandringar i Kirunavaras och Luossavaras slutningar samt till Kurra-vaara med ty följande båtfärd till Jukkasjärvi. Därefter har jag haft Abisko till hufvudstation.

Fullt medveten om, att mina anteckningar äro ofullständiga, har jag sökt komplettera dem med uppgifter af FRISTEDT, HÄGERSTRÖM och SYLVESEN och har i hvarje fall anmärkt, när så skett. Eljest har jag i min förteckning endast upptagit växter, som jag antingen själf insamlat eller som jag sett i friskt tillstånd, nyss hemförda af någon lyckligare finnare från angifven växtplats. Då jag oftast stått inför diagnostiska svarigheter och då jag aldrig haft tillfälle att följa en hel vegetationstid, har jag varit i hög grad tveksam, om mina anteckningar borde ofullständigöras. Då det nu sker, är det i förhoppning att de, trots alla fel, i någon punkt kunna komplettera andras iakttagelser och framför allt tjäna en eller annan, som besöker dessa trakter, till ledning.

Att aldrig lita pa minnet har för mig varit princip; vid mina utflykter har jag vandrat med annotationsboken i hand och hvad som icke annoterats med exemplar af växterna för ögonen har lämnats åsido.

Annrunda var förhållandet år 1905. Med flit kom jag då först hit d. 5/7. Redan mer än 1 vecka dessförinnan var *Rhododendron* öfverblommad i dalen och den hade detta år blommat sparsamt. Förr att få se *Andromeda tetragonas* klockor i sin fulla färgning måste man ge sig upp i fjället. Vid min ankomst stodo björkarna redan i full sommargrönska; Hieracier blommade rikligt. Carices och gräs hade (på ett och annat undantag när) hunnit rätt god utveckling. Vädret var nästan hela tiden vackert, en och annan dag t. o. m. besvärande varmt.

År 1906 liknade förhållandena mera 1905.
Följande förkortningar hafva blifvit använda:

* Asterisk framför växtnamnet antyder, att förf. *icke* sett växten på angifven plats utan anföre efter andras uppgifter.

* Bidens tripartita L. * Wass. ruderat. **Sylvén.**

Chrysanthemum Leuchanthemum L. Ab. vid järnv. i svaga ex. 1905 och 1906. — **Sylvén** fann den vid Ab. Bj. Wass. med blomkorgar, 7,5 cm i diameter i aug. 1903.

Matricaria inodora L., annämnt av **Sylvén** vid Ab. Bj. Wass. med blomkorgar af 7,5 cm diameter (ett jätteexemplar med *åt sidorna ut med marken nedböjda grenar, upplatgande en cirkelyta af öfver 1 meters diam.* funnet vid Wass.). Såsom ett särdeles vackert ex. på att växterna i dessa trakter ha benägnet att utveckla stora blommor anför **Sylvén** just *M.* inodora.

Matricaria Chamomilla L. * Wass. ruderat (**Sylvén**).

Achillea primulacea L. Ab. vid järnv. på afskrädeshög. — Wass. **Sylvén**).

Artemisia vulgaris L. Ab. ruderat (**Sylvén**).

Senecio silbaricus L. Ab. ruderat (**Sylvén**).

Antennaria dioica f. corymbosa Hn. Ab. vid bäck i Na., vacker och riklig. Förut anmärkt af HÄGERSTRÖM.

Antennaria dioica f. hyperborea Neum. Vacker, tätt tufvad fjällform med på båda sidor sillverhvita och flockigt ullig stjälk. 18 à 20 cm hög. fann HÄGERSTRÖM på Oppisäives högsta plata. Mer eller mindre därmed likartade former åtven funna i Na. af förf.

Antennaria alpina f. corymbosa. Na. vid första bäcken. ej sällsynt.

Bellis perennis L. Kir., nära järnvägen, på en plats, där söderifrån kommet hör varit upplagd. Blommade rikligt \(\frac{13}{7} \) 1905.

Erigeron uniflorus L. Na. Ort. m. ll. ställen, täml. allm. Peskan Jarka.

Tussilago farfara L. Ab. (Materialvägen) Snuor. Bj. Ort., vanligen steril. I Pälnodalen var den ymnig vid en båck och stod i praktfull blomning och hade samtidigt utvecklade blad den \(\frac{13}{7} \) 1906.

Centaura cyanus L. Ab. Bj. ruderat (SYLVEN).

Saussurea alpina (L.) DC. Allmän (l. o. m. i turiststugans torfbeläggning)

Carduus crispus L. Ab.—Bj. invid järnvägen 1906. Jukkasjärvi \(\frac{13}{7} \) 1905.

Luoss. Pesisjokk.

Lactuca muralis (L.) D. Don. Wass., funnen af rektor C. J. NEUMANN 1906.

Lampsana communis L. Bj. Wass. ruderat (SYLVEN).

Crepis tectorum L. Ab. Kir. å järnvägsbanken.
Hier. cleistogamum Dahlst. Wass.
Hier. crisiforme Dahlst. Kir.
Hier. extrorsifrons Elfstr. forma. Kir.
Hier. leploglossum Dahlst. Abiskosuolo, Abiskojokks stränder.
Hier. melanomallum Dahlst. forma. Ab.—Na.
Hier. mniarolepium Dahlst. Kir.—Luoss.
Hier. polioosteum Dahlst. Kir.
Hier. concinnum Dahlst. Kir.—Luoss.
Hier. gryratifrons Dahlst. Ab. Ön i Abiskojokks mynning.
Hier. nautanense Dahlst. Kir.—Luoss.
Hier. pçenadenium Dahlst. Bj.
Hier. subnigrescens Fr. Kir.
Hier. albomarium Dahlst. exs. Ab.—Nuolja.
Hier. cultratum Norrl. Abiskosuolo.
Hier. decurrentidens Dahlst. Ort.
Hier. expallidum Norrl. Ab.—Na.
Hier. farreilimbatum Dahlst. Ab.—Na.
Hier. legnodes Dahlst. forma. Ad.—Na.
Hier. muculosum Dahlst. Ort.
Hier. pendulum Dahlst. Ab.—Na.
Hier. pheocentrum Dahlst. Ort.
Hier. placeregum Dahlst. exs. Ort.
Hier. pretenerum Almqu. Kir.—Luoss.
Hier. signatum Dahlst. exs. Ab.—Na. (vid järnvägen).
Hier. viridescens Dahlst. exs. forma. Ab.—Na.
Tarax. tornense Th. Fr. fil. Na.

² En del af inom området insamlade Hieracia ha på grund af otillräckligt material etc. för närv. icke kunnat bestämmas.

² Taraxaca bestämda af Aman. Hugo Dahlstedt.
Tarax. croceum Dahlst. Allmän i växlande former. än upprätt (på lägre fuktigare ställen), än med nedliggande, endast närmast blomkorgen upptåtböjd stångel (i fjällen). än med helbräddade. än med flikiga blad).

*Leontodon autumnalis L. Wass. ruderat (SYLVÉN).
*Leont. autumnalis f. nigrolanatus Fr. Wass. ruderat (SYLVÉN).
Galium uliginosum L. Kir. vid sjön. Jukkasjärvi.
Linnaea borealis L. Allmän. Ganska växlande former. dels storblommig dels med små blommor. dels med mörkare dels med ljusare färg.
En vacker, smabblommig form togs i Kir. inom köpingens område: den översändes till prof. V. WITTROCK.
*Anchusa officinalis L. Ab. ruderat (SYLVÉN). Endast steril.
Myos. silvatica l. lactea Boenn. Nuolja. slutningarna mot Ab.
*Cynoglosum vulgare L. Ab. ruderat (SYLVÉN).
Echinopspermum deflexum (Wg.) Lehm. Na. (lektor J. SKÅRMAN).
*Asperugo procumbens L. Jukkasjärvi. Wittangi (FRISTEDT).
*Stachys annua L. Ab. ruderat (SYLVÉN).
Galaxis ladanum L. Ab. ruderat (SYLVÉN).
*Galaxis versicolor Cast. Ab. ruderat (SYLVÉN).
Polemonium coeruleum L. Kir. nära disponentbostaden. — Kaisepakte (FRISTEDT. Månne ej följd?)
Polemon. coeruleum ♦ campanulatum Th. Fr. Vid Abiskojavre. ymnig.
(Kaisep. och nära Sjängeli, Hägerström).
vid stranden af Tornejavre.
kyrkobacke.
Solanum tuberosum L. Kir. (kult.). Jukkasjärvi. (Enl. SYLVÆN ruderat
Wass. (steril).
*Veronica laungifolia L. (Gär enl. FRISTEDT så langt västerut som till
Kurravaara.)
och Riksgr. i en solbelyst båcke fanns 29/7 1905 i både blom och
frukt en särdeles utmärkt form, som torde börja räknas hit. Den före-
kom i kraftiga ex. med talrika, dels nedliggande dels uppstående
tätthåriga stjälkar af 15—20 cm höjd, utgående från en gemensam
rotstock. Blommor djupblå sasom hos V. alpina) men större och
talrikare. Höghbladen och stundom äfven öfriga blad mörkt pur-
purfargade, likaså blomfoder och de häriga fruktarnas. De nedre
bladen nästan rundt. Liknande, ehuru ej så yppiga ex. förekommo
in nedre sluttningarna af Wassitjåkko, där blandad med Ver. alpina
av vanligt utseende.
Veronica serpyllifolia L. Ab. Materialvägen. Wass. på samma lokal som
föreg. (i särdeles kraftiga, stora ex.). Kir. — Af SYLVÆN ann. säs-
*Limosella aquatica L. Anm. af FRISTEDT vid Wittangi.
Euphrasia tennisi (Brenn.) Wettst. Väg till Kurravaara. Jukkasjärvi. Vid
Nissonjokks utlopp (STEN SELANDER). Ab. såsom ruderat (SYLVÆN).
Na. vid första bäckens. (Euphrasia-formerna synas vara vida flera
an de här anförda.)
*Rhinaanthus major Ehrh. Ab. ruderat (SYLVÆN).
Rhinaanthus minor Ehrh. Ab. nära järnvägen. Pålno. Jukkasjärvi (en
lågyväxt form med kolossalt stora, upphäistra blomfoder). Enl. SYLVÆN
ruderat vid Ab. och Wass.
Sceptrum Carolinum (L.) Hn. Ön i Abiskojokks mynning. Ort. i lagunerna.
Pedicularis palmstris L. Kir.—Luoss.
Pedicularis lapponica L. Ytterst allmän. Kir.—Luoss. (Särdeles stora,
frodiga ex.)
Pedicularis hissuta L. Na. högst uppe i fjället ymnig. Går dock ned
ända till stranden af Tornejavre (stora, frodiga ex.). Majvatjakko. Vid Tjonnaajokk (Dir. E. ALMIQUIST).

*[Pedicularis flammea L. Angifven af HARTMAN såsom växande vid Tornej- träsk. Månne efter WAHLENBERG, som säger, att den förekommer i Lulefjällen, * nec non in similibus alpibus Tornessibus usque ad Torneāträsk*? Förgäfves sökt!]

Melampyrum pratense L. Ab. Materialvägen, ön i Abiskojojocks mynning Kir.—Luoss.

Melampyrum silvaticum f. alpinum A. Bl. Ab. Ort. Kir.—Luoss. (Former, ganska växlande till blommornas storlek och färg, förekomma här (såväl af M. silvaticum som af M. pratense)).

*Utricularia vulgaris L. (FRISTEDT.)

*Utricularia intermedia Hayne. (FRISTEDT.)

*Pingvicula vulgaris y bicolor Nordst. I trakten af Rautasjärvi (HÄGER- STRÖM).

Plantago major L. Ab. (vid järnvägen). Kir.

*Plantago major f. intermedia Lge. Wass. ruderat (SYLVÉN).

*Plantago major y agrestis Fr. Ab. ruderat (SYLVÉN).

Plantago media L. Ab. vid järnvägen (på afskrädeshög).

Pastinaca sativa L. Wass. ruderat (SYLVÉN).

Angelica silvestris L. Nakerivara (FRISTEDT).

Carum Carvi v. atrorubens Lge. Såsom föreg. h. o. d. (både ljusare och mörkare röda blommor).

Nymphaea alba f. biradiata Som. Wittangi (FRISTEDT).

Nuphar intermedium Ledeb. Wittangi (FRISTEDT).

Enstaka ex. nere vid Tornejavre.

Ranunculus acris forma varie (pumilus Wg. nothus Læst. squarrosus Læst. etc.). Na. Wassitjåkko m. fl. fjäll. Lågväxta former dels med stora, vanligen ensamma blommor, starkt ludna blomfoder, dels med små blommor, och nästan glatta blomfoder och blad.

Batrachium peltatum (Schrank) Gelert. Torne äll nära Jukkasjärvi.

Actaea spicata L. Snuorajåkk och Ort. Wittangi (FRISTEDT).

Brassica campestris L. Jukkasjärvi. Snuor. såsom ruderat; anmärkt äfven vid Ab. Bj. Wass. af SYLVÉN.

Sinapis arvensis L. Kir. i odling; såsom ruderat vid Ab. Bj. Wass. (SYLVÉN).

Sisymbrium Sophia L. Ab. ruderat (SYLVÉN).

Braya alpina Sternb. & Hoppe. Enligt uppgift funnen vid Pålnovara.

Erysimum hieracifolium L. Snuor. Ort.
Arabis sp. (möjligen Arab. pendula L?). Kir. på järnvägsbanken såsom ruderat. Ej fullt utvecklad.
*Subularia aquatica L. Enligt Löst. allmän i Torne lappmark.
*Berteroa incana DC. Ab. ruderat (Sylvén).
Draba incana L. Na. vid den närmsta bäcken m. fl. ställen. (Ort. Hägerström.)
Draba rapestris R. Br. Na., högt uppe.
Draba fladnizensis × nivalis = brachycarpa (Lindbl.) E. Zett. Abisko-

...
Draba alpina L. Wassitjäkko. (Uppe i fjället.)

Viola epipsila β *suecica* (Vr.) Ab. nära sjön. Tjuonajokk (Dir. E. ALMQVIST) Kir.—Luoss.

Viola palustris L. Riiks.

Viola arcenaria (DC.) Fr. Na. Vid första bäcken. (1906.)

Viola montana L. Ort. (FRISTEDT och senare HÄGERSTRÖM.)

Melandrium album (Mill.) Garche. Ab. – Bj. (vid järnvägen ss. ruderat växt). Kir. Enligt *SYLVÉN* åtven vid Wass. (Steril.)

Melandrium rubrum f. *lacteum* C. Hn. Nuolja vid första bäcken, sparsamt. $^{17/7_7}$ 03.

Wahlbergella affinis (J. Vahl.) Fr. Flerstädes utmed Abiskojokks stränder, a öar och sandrellar i Tornejavre, i Nissonjokks delta, Nuolja nära tunneln. Överallt tämligen sparsamt.

Lychnis flos Cuculi L. Ab. Strax nedom turiststugan. (Ett par ex. $^{17/7_7}$ 05.)

Agrostemma Githago L. Ab. Bj. Wass. ruderat (*SYLVÉN*).

Stellaria media f. *spoliata* Ab.

Stellaria alpestris Hn. Ab. Nära den första banvaktstugan
Stellaria alpestris f. calyeantha (Ledeb.) Allmän. Ab. Bj.—Kir.
Stellaria alpestris × longisilata Ab. Nära första banvaktstugan 1870, 05.
Cerastium Edmonstonii × alpinum. Nuolja vid Kopasjokk (STEN SELANDER)
Cerastium alpinum f. glabratu Rels. Ab. Materialvägen. (Storartade ex.)
Cerastium vulgare f. glandulosa Boenn. Bj. ruderat (SYLVÉN)
Arenaria ciliata f. norvegica (Gunn.) Ort. vid stranden af en lagun. Talrika tufvor med mänga och långa stjälkar och riklig fruktåtning 141 05. 151 07. funnos endast få ex. Lagunens strand skadat af vårfloden.
Arenaria serpyllifolia L. Kir. några små förkrympta ex. i en odling.
Alsine stricta (Sw. Wg. Ab.—Bj. Na på täckar. där torfven bottagits eller rasat bort och myllan blottats. ofta särdeles frodig.
*Sagina nodosa Presl. FRISTEDT.
Sagina saxatilis Wiman. Ab. nära första banvaktstugan. (Ett fatal ex.) Snuor.
*Spergula arvensis f. sativa (Boenn). Ab. Bj. Wass. ruderat (SYLVÉN)
*Saxifraga Cotyledon L. Enligt WAHLENBERG vid Tornejatrask en uppgift som även HARTMAN lämnar (Ed. 11). — Veterligen här icke funnen. åtminstone i senare tid.

Saxifraga stellaris \(\beta \) comosa Retz. Na, på de öfversta platäerna (ynnigt). Tjuonajokk (Dir. E. ALQUIST).

Saxifraga aizoides \(\beta \) aurantia Hn. Na. nära tunneln.

Saxifraga aizoides \(\gamma \) atrorubens Bert. Nära Nissonjokks inlöde i Abiskojokk.

Saxifraga granulata L. Ab. vid Materialvägen, få ex. (STEN SELANDER) Kir. vid järnvägen.

*Hippuris vulgaris L. Kattuvuoma (FRISTEDT).

*[Rosa cinnamomea L. Wittangi, steril. (FRISTEDT.)]

Alchemilla alpina L. Ab. vid järnvägen. Troligen införd.

*Alchemilla vulgaris * subcrenata (Bus.). Wass. ruderat (SYLVÉN).

Alchemilla vulgaris * acutidens (Bus.). Na. Snuor.

Alcaemilla vulgaris * alpestris (Schm.) Ab. Na. Kir.—Luoss. Pålno. Pes-
kan Jarka. Antagligen förekomma flera *Alchemilla*-former, som ej beaktats af förf.

Rubus arcticus L. Ön i Abiskojokks mynning. Ab. vid Materialvägen. Kir. (allmän.)

Rubus arcticus × saxatilis. Ön i Abiskojokks mynning (STEN SELANDER). Ort. (HÄGERSTRÖM.)

Koprosuolo.

Potentiilla nivea L. Abiskojokks canon och stränder (sparsamt). Na. högt uppe. (små ex.)

Prunus sp. Wass. ruderat SYLVÉN). Blott sasom grodd-årsplantor.

Pisum sp. Wass. ruderat SYLVÉN). Tidigt plantstadium.

Vicia sativa L. Wass. ruderat (SYLVÉN). Tidigt plantstadium.

Vicia angustifolia L.) Reichb. Ab. vid järnvägen. (Dir. E. ALMQVIST. Blott ett par ex.

Erva m hirsutum L. Ab. Wass. ruderat (SYLVÉN).

Astragalus alpinus L. V. om Abisköalfven. (Ej allmän.) Kir.—Luoss.

emplar tagna vid Torne ålf, i Finnmarken, i Finska lappmarken, som synas fullt öfverensstämma med den föreliggande formen. Denna utmärker sig genom blommor af mörkt blåviolett färgr med föga ljusare vingar. Bladen såsom hos huvudformen, men vanligen djupare gröna. Från den grova rotstocken utgå vanligen ett stort antal stjälkar med kortare grenar, hvarigenom exemlaren bliyva mera tufartade och synas kraftigare än huvudformen.

[Oxytropis lapponica (Wg.) J. Gray. Nuolja, »storvuxen« (FRISTEDT). Trots ifrigt letande ej funnen.]

Trifolium agrarium L. Kir. ruderat vid järnvägen.

Trifolium hybridum L. Ab. ruderat nedom turisthyddan (få ex.). Enligt SYLVÉN ruderat vid Wass.

Vaccinium vitis idaea L. Allmän Ab. Na.—Kir. Uppe i fjällen är den ofta liten med små, nästan runda blad — en f. microphylla.

Arctostaphylos alpina L. Spreng. Allmän öfveralt i fjällheden och fjällen.

Calluna vulgaris (L.) Salish. Jukkasjärvi (FRISTEDT).

Azaalea procumbens L. Bergbackar omkring Ab. Na. m. fl. fjäll.

Rhododendron lapponicum (L. Wg. Ab.—Nuolja. Fjällheden öster om Abiskojokk, Ripainen och Majvatjåkko FRISTEDT).

Ledum palustre L. FRISTEDT.

Pyrola media L. Vägen till Lapporten i björkskogen (Dir. F. ALMQQUIST).

Pyrola uniflora L. Jukkasjärvi (Fristedt).

Montia fontana a minor C. Gmel. Ab. vid första banvaktstugan. Kir.;

sasom ruderat vid Bj. Wass. anförd af Sylvén.

Polygonum bistorta L. Kir. nedom järnvägsstationen vid sjön. (Dir.

F. Almqquist).

Polygonum viviparum f. alpina Wg. Mycket allmän. Ab.—Kir.—Luoss.

Polygonum amphibium L. Kir. (Haukijärvi.

*Polygonum Persicaria L. Ab. ruderat (Sylvén.

Polygonum aviculare f. littoralis (Link.). Jukkasjärvi.

Polygonum aviculare f. heterophylla (Lindm.) Jukkasjärvi.

Polygonum Convolvulus L. Ab. ä afskrädeshög vid järnv. Enligt Syl-

Rumex crispus Hn. Ab. på järnvägsvalven.

Rumex Acetocella f. integrifolia Wallr. Ab. vid Materialvägen. Enligt

Sylvén ruderat vid Wass.

Koenigia islandica L. Abiskodalen nära fjället Kierona (Stud. Ankar-

svård). Abiskodalen mellan Torne trål och Sjangeli (Hägerström).

Urtica dioica L. Ab. Kir. invid järnvägen) Pålno. Snuor. Enligt Syl-

vén ruderat vid Ab. Wass.

10—15 centimeter hög. Har endast ett och annat brännborst. Sy-

nes fullt hemma på växtplatsen och förekom tämligen ymnigt. Re-

dan på afstånd var den lätt att skilja från den h. o. d. såsom ru-

derat på sophögar etc. växande hufvudformen.

Urtica dioica f. Snuor, vid en liten bäck. Den här föreliggande formen

är nästan glatt. Den utmärker sig genom de egendomligt formade

bladen, de nedre med endast 2 å 3 djupa tänder på huvud och an-

dan af medellinjen samt frånvaro af uddblad: de öfre med endast

5—8 djupa tänder (l. flikar) på hvar sida.

Chenopodium album L. Ab. vid turiststugan och vid järnvägen. Kiruna.

Popnlus tremula L. Na. Snuor. Ort. (Mycket sparsamt.)

*Salix pentandra L. Wittangi. (FRISTEDT).
Salix caprea L. Kir.—Luoss.

*Salix myrtilloides L. Wittangi. (FRISTEDT.)

*Salix Lapponum × myrtilloides (= versifolia Wg.). Alajärvi (FRISTEDT).

*Salix hastata × herbacea. Riksgr. Wass. Ort. (FRISTEDT.)

Salix nigricans × phylicifolia. Förekommer i flera former i Nuoljasluttningarna mellan Ab. och Bj.

Salix Arbuscula-phylicifolia. Ab.-tunneln, nära järnvägen.

Salix glauca × nigricans. Ab.—Na.
Salix glauca × phylicifolia. Ab.—Na. (Mellan Ab. och tunneln.)
Salix glauca × myrsinites. Ab.—Na.
Salix myrsinites L. Ab. Na. (Riksgr.)
Salix myrsinites × nigricans. Ab.—Na.

Salix herbacea × lanata. Wass.—Riksgr.

Betula nana × odorata. Ab.—Nuolja (mellan järnvägen och Tornejavre) och vid Materialvägen (mellan Ab. turiststuga och Ab. station) flera buskar och småträd, än stående närmare Bet. odorata än närmare Bet. nana.

*Alnus incana (L.) Willd. Jukkasjärvi. (FRISTEDT.)
Schuchzeria palustris L. Wittangi Fristedt.

Triglochin palustris L. Nuolja i myr nedom järnvägen. Kir.—Luoss. i myr.

Juncus bufonius L. Ab. nära turiststugan. Enligt Sylvén ruderat vid Ab. Bj.

Luzula pallescens Wg. Mellan turiststugan och Nya hotellet Ab.
Luossavara (på höjden. Uppe i fjällen ofta dyvärgartad.
Luzula spicata (L.) DC. Nuolja m. fl. fjäll. Luoss. Lågväxt och ej allmän.
*L. Potamogeton graminea L. Wittangi (Fristedt).
*L. Potamogeton perfoliata L. Kattovuona Fristedt.
*L. Potamogeton natans L. Wittangi (Fristedt).
*Sparganium submucum Hn. Jukkasjärvi och Kattovuona Fristedt.
*Eriophorum gracile Koch. Kur ravara (Fristedt).
*Eriophorum russeolum Fr. Tarrakoski, Wittangi, ymnigt. (Fristedt.)
Eriophorum alpinum L. Ab.—Na., nedom järnv. Ej allmän.
*Carex vesicaria L. Nakerijoki i göl (Hägerström).
Carex vesicaria f. alpigena Fr. Ab. Wass. — Den afsedda formen synes identisk med en i Jämtl. Enafors, Storlien m. fl. st. ej ovanlig vesicaria-form, som bildar en öfvergång till följande:
*Carex amcallacea Good Fristedt.
*Carex filiformis L. Fristedt.
*Carex laxa Wg. Jukkasjärvi, Wittangi (Fristedt).
Carex fuliginosa Schkuhr. Nuoljas västra sluttningar (ynnigt).
*Carex limosa L. Fristedt.
Carex irrigua (Wg). Sm. Kir. i myr.
*Carex rariflora (Wg.) Sm. Vid Abiskojokk och vid Rautasjärvi Hägerström.
Carex flava L. Ab. Vid Nissnojokk.
*Carex pedata Wg. Opisäive (Fristedt 1852, Hägerström 1880). Fanns ater 1905.
*Carex globularis L. Wittangi (Fristedt).
Carex Buxbaumi f. alpicola Ands. V. om Abiskojokk i käär vid vägen till Kärsevaggejokk.
Carex atrata L. Na., Bj.
*Carex aquatilis Wg. Ort. (Fristedt).
*Carex epigejos Læst. Ort. (Hägerström).
ned till stranden av Tornejvre. Hybrider eller öfvergångar till följande (Abisdodalen).

Carex caespitosa L. Nakerijoki (HÄGERSTRÖM.)

Carex canescens L. (FRISTEDT.)

Carex canescens f. subloliacea Last. Nakerivara (FRISTEDT.)

Carex canescens × lagopina (helvola). Ort. ymnig (FRISTEDT.) Vid Nakerijoki (HÄGERSTRÖM).

Carex tenuiflora Wg. (FRISTEDT.)

Carex loliacea L. Na. Ort.

Carex tenella Schkuhr. Ort. sparsamt i björkregionen. (FRISTEDT.)

Ej funnen af HÄGERSTRÖM eller följande.

Carex helionataes Ehrh. Jukkasjärvi (FRISTEDT).

Carex dioica L. (FRISTEDT.)

Carex dioica f. androgyna. Anmärkt af HÄGERSTRÖM.

Elyna Bellardi All. Vid Abiskojokk, ofvanför fallet.

Triticum repens L. Kiruna i odlad mark.

Triticum caninum L. Nedom Nuolajafjället (FRISTEDT).

Secale cereale L. Kir. (såsom ruderat).

Hordeum vulgare L. Kir. såsom ruderat. Af SVILVN anmärkt vid Ab.

Festuca elatior L. Bj. Wass., ruderat (SVILVN).

Festuca rubra L. Ab. Bj. Kir

Festuca rubra f. fallax (Thuill.). Na. Bj.

Festuca rubra f. nigrescens L. Sandrellar utanför Abiskojokks mynning.

Festuca ovina L. f. supina (Schur.) Na. Bj.

Bromus mollis L. Wass. ruderat (SVILVN).

Poa pratensis × alpstris Andsn. Na (pa de högsta platåerna).

*Poa cenisia β flexuosa (Wg.). Nuolja och Nakerivara (FRISTEDT).
Poa cenisia β glauca (M. Vahl.) Ab. Bj.
Poa cenisia γ Balfouri (Parn.). Vid Abiskojokk, i kalkstenssprickor.

Catabrosa algida Soland. Fr. Na. stud. R. MEISNER. Vid Kataraksjön Th. FRIES JR.

*Molinia caerulea (L.) Moench. FRISTEDT.
Avena sativa L. Kir. odlad. Jukkasjärvi odlad på större fält).

*Trisetum agrostideum (Læst.) Fr. Vid Nakerijoki (FRISTEDT). Sedan funnen på samma lokal af HÄGERSTRÖM. — Förälgves sökt 1904.

*Aira cespitosa f. pallida Koch. Wass. raderat SYLVÉN.
Aira flexuosa L. Kiruna. Allmänare är följande.

*Vahlodea atropurpurea Wg. Fr. Nuolja, Ripainen, Nakerivara, Rautas-

Calamagrostis lapponica (Wg.) Hn. Ab—Na. Ort.
Calamagrostis stricta (Timm) PB. Ab. vid järnvägen. Kir. allmän.

af SYLVÉN.

*Alopecurus fulvus Sm. (FRISTEDT)

*Nardus stricta L. (Fristedt)

Pålno. Snuur.

*Polypodium vulgare L. Ab. Ort. Sjangeli HÄGERSTRÖM.

Polystichum Filix mas L. Roth. Pålno. Ort. HÄGERSTRÖM.

Polystichum spinulosum Retz. DC. Bj. Snuur. Ort. Möjl. tillhörande följande:

Cystopteris fragilis (L.) Bernh. Allm. I Abiskojokks canon i bergsparvika små, egendomliga former.

Fristedt.

Asplenium viride Huds. Na., nära Bj., sparsamt.

Onoclea Struthiopteris L. Roth. Snuur.

*Cryptogramma crispa L. R. Br. Kajsepakte (Fristedt).

Botrychium Lunaria L. Sw. Na vid första bäcken.

*Equisetum arvense L. (Fristedt) sparsamt.

Equisetum pratense Eahah. Ab.

*Equisetum fluviatile L. Torneträsk Fristedt.

*Equisetum hiemale L. Ponolahti Fristedt.

Equisetum scirpoides Michx. Ab. vid Abiskojokk. Vid Tornejavre.

Lycopodium complanatum L. Na.
Selaginella selaginoides L. Link. Abiskojokk vid marmorbrottet.
ÖFVERSIKT AF VÅRA VÅRDVÄXLANDE ROSTSVAMPAR

AF
O. JUEL.

Den som sysslar med rostsvampar, kan ej gärna undgå att särskilt intressera sig för de vårdväxlande (hetereciska) formerna af denna grupp. Klebahn’s vidlyftiga arbete, Die wirtswechselnden Rostpilze (Berlin 1904), torde väl endast få vara i tillfälle att använda, och den knapphändiga behandlingen af dessa svampar i Krook och Almquist’s skolföra upptar blott inemot tjugu sådana arter. Jag har därför trott, att det för en och annan kunde vara välkommet att få en någorlunda fullständig, om också naken sammanställning af de hittills kända fallen af hetereci.1

Jag uppräknar här de vårdväxlande rostarter, hvilkas båda vårdväxter tillhör det våra flora, ehuru jag i många fall ej vet, om de förra rostarterna anträffats hos oss.

På grund af den nära släktsparen mellan släktena Uromyces och Puccinia, hvilken äfven framträdde vid betraktandet af vårdväxt-kombinationerna inom dessa släkten, har det synts mig lämpligt att här sammanföra dem.

UROMYCES OCH PUCCINIA.

Rostarten: Aecidiets vårdväxt: Uredo- och teleutosporformens vårdväxt:

A) uredo- och teleutosporform på Dikotyledoner.

1) U. Pisi Pers. De By Euphorbia cyparissias
 U. striatus Schröt.
2) U. Rumicis Schum. Ficaria Wint.
 P. septentrionalis Thalictrum alpinum Juel

Pisum
Trifolium agrarium
R. obtusifolius
Polygonum viviparum

1 Utom bland Uredineerna är hetereci känd blott hos en Discomycet, Sclerotinia heteroica Wor. et Nawash., som bildar sklerotier i fruktämnet af Ledum och konidiestadiet på Vaccinium uliginosum.
Rostarten: Aecidiets värdväxt: Uredo- och teleutosporformens värdväxt:

3) P. bistortae (Strauss-Sopp.
 P. Angelicæ-bistortæ Kleb.
 P. Polygoni vivipari Karst.
 P. mammillata Schröt.
 Bunium flexuosum
 Angelica silv., (Carum?)
 » » » viviparum
 » » » bistorta

4) P. Polygoniamphibii Sopp.
 Geranium palustre, pra-tense
 P. amphibia Wint.
 Polygonum bistorta

5) P. argentea Schultz) P. Angelicæ-bistortæ Kleb.
 Adoxa Impatiens noli tangere
 P. argentata (Sträuss)
 Angelica silv., (Carum?)
 » » » bistorta

6) P. Pruni spinosæ P. Pruni spinosæ
 Anemone ranunc., ne-
 Pers. » » morosa
 Pers. » » »

B: uredo- och teleutosporform på Liliifloræ.

7) P. obscura Schröt. Bellis perennis Luzula pilosa
 P. obscura Schröt.
 Bellis perennis Luzula pilosa

C) uredo- och teleutosporform på Cyperaceer.

8) U. Scirpi (Cast.) Lgh. a) Hippuris Sc. maritimus
 b) Sium latifolium » »
 U. Berulae-Scirpi » angustifolium » »
 Kleb.
 U. Pastinaeae-Scirpi P. sativa (Oenanthe aquat.)
 Kleb.
 U. maritimæ Plow. Glaux » »
 (P. Scirpi DC. Limnanthemum nym-
 Phaëoides lacustris)

9) P. Eriophori Rostr.9 Cineraria palustris E. angustifolium
 P. tenuistipes Rostr. Centaurea jacea Carex muricata
 P. arenariicola Plow. » nigra » arenaria
 P. Caricis montanæ » scabiosa, » montana
 Fisch. » montana
 P. Serratulae-Caricis S. tinctoria » flava
 Kleb.
 P. dioicæ Magn. Cirsium palustre m. fl. » dioica
 P. vaginatae Juel Saussurea alpina » vaginata
 P. rupestris Juel » » rupestris
 P. vulpinæ Schröt. Tanacetum, Achillea » vulpinæ
 Pfarm.? Sa-Nato

1 Ej det vanliga aecidiet, hvilket tillhör Ochropsora Sorbi.
2 Här må äfven nämnas två utländska arter med liknande värdkombination:
 U. Junci (Desm.) Tul. Pulicaria dysenterica J. obtusiflorus
 U. Veratri DC. Adenostyles alpina V. album
3 Kombinationen ej bevisad genom experiment.
Rostarten:

Aecidiets värdväxt:

Uredo- och teleutosporformens värdväxt:

P. aecidii-Leucanthemi Fisch.
Leuc. vulgare
Carex montana

P. silvatica Schröt.
Taraxacum

P. Schoeleriana
Senecio jacobaea
arenaria. Schreb.
P. extensicola Plow.
Ast. tripolium
arenaria. ligierica
P. sp.
Lact. muralis
ligierica
P. ligerica Syd.
Crep. biennis
extensa
P. Opizii Bub.
P. silvatica Schröt.
muricata
P. Taraxacum Schoelcriana
P. silvaticus
pallescens
P. Plow. et Magn.
P. silvicola Plow.
Goodenoughii
P. vulgare Plow.
P. silvatica Schröt.

11° P. uliginosa Juel
Parnassia

12° P. paludosa Plow.
Pedicularis palustris

13° P. limosae Magn.
Lysimachia vulg., thyrscilo
ligiericja

P. jacobaea Plow.
P. silvatica Schröt.

14° P. Caricis (Schum.) Reb.
Urtica dioica
hirta. acuta m. fl.

15° P. Pringsheimiana Kleb.
Ribes grossularia m. fl.
acuta m. fl.

P. Ribis nigri-acutae Kleb.
nigrum m. fl.
acuta. stricta
P. Magnusii Kleb.
riparia. acutiformis
P. Ribesii-pseudoocyperi Kleb.
pseudocyperus
P. Ribis nigri-paniculatae Kleb.
paniculata. para doxa

D uredo- och teleutosporform på Gramineer.

16° U. Dactylidis Otth
Ranunc. bulbosus. po-

D. glomerata

lyanth.

U. Poae Rab. a) Ficaria
K. repens
P. pratensis. nemoralis?
b) Banunc. repens
emoralis
c)
trivialis
d) auricomus
pratensis

U. Festuca Syd.
bulbosus
F. ovina
P. perplexans Plow.
acer
Alopecurus pratensis
P. Magnusiana Körn.
repens. bulbosus
Phragmites

P. Agrostis Plow.
Aquilegia
Agr. alba. vulgaris
P. borealis Juel
Thalictrum alpinum
» borealis
P. persistens Plow.
flavum
Triticum repens
P. Elymi Westend.
minus
E. aretnarius
P. Actaea-Agropyri Actaea
Triticum caninum

Fisch.
<table>
<thead>
<tr>
<th>Rostarten:</th>
<th>Acidiets värdväxt:</th>
<th>Uredo- och teleutosporforn- mens värdväxt:</th>
</tr>
</thead>
<tbody>
<tr>
<td>P. Phragmites Schum. & Korn.</td>
<td>Rumex, Rheum</td>
<td>Phragmites</td>
</tr>
<tr>
<td>P. Trailii Plow.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P. obtusata Otth</td>
<td>Ligustrum vulgare</td>
<td></td>
</tr>
<tr>
<td>(P. longissima Schröt.)</td>
<td>Sedum acre, reflexum</td>
<td>Koeleria cristata)</td>
</tr>
<tr>
<td>P. graminis Pers.</td>
<td>Berberis vulgaris, aquif.</td>
<td>Gramineae</td>
</tr>
<tr>
<td>P. Arrenatheri Kleb.</td>
<td></td>
<td>Avena elatior</td>
</tr>
<tr>
<td>P. dispersa Erikss.</td>
<td>Anchusa arvens., offic.</td>
<td>Secale</td>
</tr>
<tr>
<td>P. bromina Erikss.</td>
<td>Symphytum, Pulmonaria</td>
<td>Bromus</td>
</tr>
<tr>
<td>P. coronata Cda</td>
<td>Rhamnus frangula</td>
<td>Agrostis, Calamagrostis, Baldingera</td>
</tr>
<tr>
<td>P. sessilis Schneid.</td>
<td>Allium ursinum</td>
<td>Baldingera</td>
</tr>
<tr>
<td>P. Convallarie-Digraphis Kleb.</td>
<td>C. majalis</td>
<td></td>
</tr>
<tr>
<td>P. Smilacearum-Digraphis Kleb.</td>
<td>Polygonatum m. fl.</td>
<td></td>
</tr>
<tr>
<td>P. Paridi-Digraphis Kleb.</td>
<td>Paris</td>
<td></td>
</tr>
<tr>
<td>(P. Schmidtiana Diet.</td>
<td>Leucoium</td>
<td></td>
</tr>
<tr>
<td>P. Orchidearum-</td>
<td>Orchis, Platanthera, Listera</td>
<td></td>
</tr>
<tr>
<td>Phalaridis Kleb.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P. Ari-Phalaridis Kleb.</td>
<td>A. maculatum</td>
<td></td>
</tr>
<tr>
<td>24) P. Molinie Tul.</td>
<td>Melampyrum pratense</td>
<td>M. coerulea</td>
</tr>
<tr>
<td>P. Brunellarum-Molinie Cruchet</td>
<td>B. vulg., grandif.</td>
<td></td>
</tr>
<tr>
<td>P. Festueæ Plow. a)</td>
<td>Lonicera periclymenum</td>
<td>F. ovina, duriuscula</td>
</tr>
<tr>
<td>b)</td>
<td>nigra</td>
<td>rubra</td>
</tr>
<tr>
<td>26) P. poarum Niels.</td>
<td>Tussilago</td>
<td>Poa</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>27) G. juniperinum (L.) Fr.</td>
<td>Sorbus aucuparia</td>
<td>Juniperus communis</td>
</tr>
<tr>
<td>G. clavariiforme (Jacq.) Rees</td>
<td>Crataegus, Pyrus comm. m. fl.</td>
<td></td>
</tr>
<tr>
<td>G. tremelloides Hart.</td>
<td>Pyrus malus, Sorbus aria</td>
<td></td>
</tr>
<tr>
<td>G. sabinae (Dicks.) Wint.</td>
<td>Pyrus communis</td>
<td>sabina</td>
</tr>
<tr>
<td>G. confusum Plow.</td>
<td>Crataegus oxyacantha m. fl.</td>
<td></td>
</tr>
</tbody>
</table>
Rostarten:

MELAMPSORA.

28 M. Rostrupii Wagn. Roslarlen
28 M. Magnusiana Wagn. Mercurialis perennis
29 M. Euonymi-capreæ-rum Kleb. Chelidonium. Corydalis
30 M. alpina Juel. Eucryphia oppositifolia
M. Ribesii-auritæ Kleb. R. alp. gross. nigrum
M. Ribesii-purpureæ Kleb. Salix ciner., aur. caprea
M. Ribesii-viminalis Kleb. aurita. cinerea
31 M. Allii-fragilis Kleb. Eumonymus purpurea
M. Allii-salicis alæ Kleb. viminalis
M. Galanthe-fragilis Kleb. fragilis, pentandra
M. Orchidi-repentis Kleb. alba
M. Orchidi-repentis Kleb. fragilis, pentandra
repens
32 M. Allii-populina Kleb. Allium Populus nigra. balsamifera
33 M. pinitorqua Rostr. Pinus silvestris Populus tremula. alba
34 M. Larici-tremula Larix nigra. balsamifera
Kleb. Salix caprea
M. Larici-populina Kleb. pentandra
M. Larici-pentandraæ Kleb. aurita. ciner. viminal
Kleb. Betula
M. Larici-daphnoides Kleb.
M. Larici-epitea Kleb.
Picea excelsa³
37 P. Padi Kzej et Schm. Prunus padus
Diet.
38 C. asclepiadeum (Willd. Fr. Cynanchum. Paeonia
(Wildd. Fr.) Ribes nigrum m. 1
C. ribicola Dietr. strobus²
 Det på kottefjallen växande Aec. stroblénum.
På stamdetar.

¹Svensk Botanisk Tidskrift.
Rostarten: Aecidiets värdväxt:

CHRYSOMYXA.

39 C. Ledi (Alb. et Schw.) De By Picea excelsa¹

COLEOSPORIUM.

40) C. Senecionis (Pers.) Fr. Pinus silvestris²
 C. Tussilaginis (Pers.) Kleb.
 C. Sonchi (Pers.) Lév.
 C. Inulae (Kze) Fisch.
41) C. Campanulæ (Pers.) Lév.
42) C. Euphrasieae (Schum.) Wint.
 C. Melampyri (Reb.) Kleb.
43) C. Pulsatiæ (Strauss) Lév.

OCHROPSORA.

44) O. Sorbi (Oud.) Diet. Anemone nemorosa S. aucuparia

¹ På barren af utvuxna skott. Det uppgöres, att Aec. coruscans Fr., som totalt angriper de utväxande årsskotten hos granen, hör till en annan art af samma släkte, C. Woronini Tranzsch., som också bildar sina öfriga former på Ledum.

² Hos alla arterna på barren.
Enligt Sveriges officiella statistik införes ärligen till vårt land omkring 30 millioner kg. kaffe till ett värde af mellan 20 och 30 millioner kronor. Den årliga konsumtionen af kaffe belöper sig också i Sverige till 4,8 kg. per individ, under det att för Europa i dess helhet motsvarande siffra endast går upp till knappt 1,2. Af alla Europas länder är det endast Holland, som kan uppvisa en starkare kaffeförbrukning än Sverige.

Dessa få data visa till fylles, hvilken betydande roll kaffet spelar i vårt folks ekonomi och dagliga liv. Jag har därför tänkt, att en på egen åskådning grundad framställning af kaffeodlingen i världens förnämsta kaffeproducerande land, Brasilien, skulle kunna försvara en plats i »Svensk Botanisk Tidskrift«. Dock skall jag här inskränka mig till en kort skildring af de olika kaffesorter, som odlas i Brasilien, samt deras fordringar i afseende på klimat, jordmån m. m., vidare en summarisk redogörelse för naturförhållanden i kaffedistrikten samt hufvuddragen af kaffeodlingens och kaffeprepareringsens teknik. Många andra frågor, som vore nog så frestande att beröra, t. ex. de sociala förhållanden i kaffestaterna, orsakerna till den svåra ekonomiska krisen för några år sedan o. s. v., falla ej inom ramen för en botanisk tidskrifts program och måste därför här lämnas å sido. För den händelse någon skulle intressera sig för dessa saker, ber jag att få hänvisa till en serie resebref från mig till Göteborgs Handels- och Sjöfarts-Tidning, publicerade d. 23 febr., 2, 9, 16, 23 och 30 mars samt 6 april 1900. Åtskilliga partier af dessa resebref har jag i föreliggande uppsats återgift i nästan oförändrad form.
Materialet såväl för resebrefven som uppsatsen utgöres förnämligast af egna iakttagelser samt muntliga och genom studiet af tiden- ningar inhämtade upplysningar under en vistelse i Brasilien åren 1897—1901. Största delen af denna tid tillbragte jag på fazendan (landegendomen) SANTA ALBERTINA i det inre af staten S. Paulo. Det är där, jag huvudsakligen gjort mina studier i ämnet, och det är förhållanden där, som beskriftas i denna uppsats, hvilken därför också bär fazendans namn. Det är gifvet, att metoden för odlingen och tillgodogörandet af kaffeträdet, liksom för andra kulturväxter, uppvisar atskilliga olikheter pa skilda platser, äfven i samma land. Dock vågar jag tro, att det kan äga något intresse att veta, huru denna odling faktiskt bedrefs pa en bestämd punkt i jordens största kaffedistrikt vid öfvergangen mellan det nittonde och det tjugonde århundradet.

Jag begagnar här tillfället att uttrycka min tacksamhet för många värdefulla upplysningar, som gifvits mig af två bland mina vänner på fazenda Santa Albertina, Dr Sancho de B. Berengué Cesar och Dr Joaquim de Castro Fonseca. Tre af bilderna (n:r 5, 8 och 9) i denna uppsats är reproducerade efter fotografier, som Dr Fonseca välvarligt ställt till mitt föröfande.

Af de talrika böcker och broschyrer, som behandla kaffekulturen, har jag huvudsakligen begagnat följande:

C. F. VAN DELDEN LAÈRNE: »Le Brésil et Java«. La Haye 1885;
MAX FUCHS: »Die geographische Verbreitung des Kaffeebaumes». Leipzig 1886;

KARL KÄRGER: Brasilianische Wirtschaftsbilder. Berlin 1892;

Öfriga använda källor äro särskilt citerade för hvarje gång.

* * *

Af släktet Coffea L. känner man f. n. omkring 25 arter, alla tillhörande gamla världens tropiska delar, särskilt Afrika.1 Af dessa komma emellertid endast två i betraktande sasom kulturväxter, nämligen C. arabica L. och C. liberica Bull. Det är den förra,

Fig. 1. Ungt, blommande exemplar af *Coffea arabica*, ras »commun«, 186 cm. högt, sannolikt 4 år gammalt. Fazenda Santa Albertina.

Fig. 2. Fullt utvuxen cafesal i torrtiden. Ras »commun«. Fazenda Santa Albertina.

Coffea arabica tillhör, som kändt torde vara, Rubiaceéernas stora, i tropikerna talrikt företrädde familj. Den är ett ständigt grönskande litet träd, i kultur vanligen hållet i buskform, hvilket när en höjd af 3—6 meter. Bladen äro lansettlika, 10—15 cm. långa och motsatta, till färgen mörkt gröna och glänsande. Blommorna sita i tätta, kranslika blomställningar i bladvecken (Fig. 1), äro till färgen snöhvita och ha en mild doft, påminnande om jasminens. Tre olika ganger, med nagra veckors mellanrum, blommor kaffeträdet under månaderna augusti—oktober i S. Paulo. Egendomligt nog stå alla träd i samma trakt liktidigt i blom, hvarvid planteringarna.

2 »Der Kaffee. Herausgegeben vom Kaiserlichen Gesundheitsamt.« Berlin 1903,

Den nu lämnade beskrifningen är gjord efter den i Brasilien allmännast odlade formen af Coffea arabica, benämnd »café commun« (vanligt kaffe) eller »café nacional« (nationalkaffe) (Fig. 1). En annan sort, som mycket odlas, kallas »café bourbon«, emedan den anses härstamma från ön Bourbon (= Réunion). Den påstas gifva tidigare och rikare skördar än commun, men också förr trötta jorden och själf aflaga i produktionsförmåga. Dessa olägenheter äro dock en naturlig följd af den snabbare och rikare fruktsättningen hos bourbon och skulle helt säkert ej visa sig, om man genom lämplig gädnings gäfve jorden åter, hvad den sålunda förlorat. En sådan skötsel af kaffplanteringarna var dock ännu långt ifrån allmän i Brasilien vid den tidpunkt, som denna uppsats afser.

En ytterligare olägenhet med bourbon är att den vid tröskningen lämnar en stor procent trasiga bönor. Dessa skola dock ej vara sina prydligare kemrater underlägsna i arom, hvarför bourbon gärna köpes af de praktiska yankees, som, klotk nog, fästa mer afseende vid smaken än vid utseendet. En typisk bourbonplanta skiljes lätt från commun genom att bladen äro mer krusiga i kanten samt därpå, att de nedre grenarna äro betydligt längre än de övre, så att hela växten får ett slags pyramidform, medan hos commun exemplaren äro mer jämmtjocka. I många fall är det dock
hart när omöjligt att kunna angifva någon distinkt skillnad mellan dessa två raser.

En annan ras benämnes "marayogipe" efter dess hemort i staten Bahia. Dess utmärkande egenskap är att blad, frukter m. m. ofta äro mycket, stundom dubbelt större än hos andra raser af C. ara-

Fig. 3. »Café amarello« (gult kaffe) i frukt.

bica. Den odlas dock mer sällan, emedan fruktsättningen är tämligen sparsam.

En form, som numera rätt allmänt odlas, härstammar från distriktet Botucatú i S. Paulo och kallas därför "café botucatú". (Fig. 3). Lika ofta användes benämningen "café amarello" (gult kaffe), emedan frukterna under mellanstadiet bli gula i st. f. röda. Denna
ras anses vara rikare än nagon annan på kaffets stimulerande be-
ständsdel, koffeinit.

En i allmänhet på bladen förkrympt form är den s. k. "café
murta" eller myrtenkaffe, som h. o. d. träffas. Denna sort ut-
märker sig genom sina ovanligt sma blad samt den stora procenten
af sma runda från i frukterna, s. k. "mocka".

Saväl maragogipe som botucatu synas spontant ha uppkommit
i Brasilien på de orter, hvilkas namn de bära, och torde därför
enligt de "Vavas" teorin kunna betraktas som brasilianska mutanter
af Coffea arabica.

Eburu kalleträdet är en utpräglad tropisk kulturväxt, trifves del-
dock ej rätt väl på de ständigt fuktig-varma lågslätternas mellan-
vändkretsarna, utan föredrager bergländer med mättligare värme.
En arlig medeltemperatur af omkring +20°C. utan alltför stora
extremer synes vara den gynnsammaste. Att denna siffra dock be-
tecknar ett ganska helt klimat, visar en jämförelse med Stockholm,
där årets medeltemperatur är +5,3°C. samt mediet för årets var-
maste månad, juli, endast +16,1°C. Ingen punkt af Europa når
för öfrigt upp till ett årsmedium af +20°C. För frost är kaffeträ-
det ganska känsligt: dock utgöra lindrigare nattfroster en eller
annan gång icke något absolut hinder för kaffekodling.

Stark blåst verkar mycket skadligt på kaffeträdets, hvarför om-
råden, som äro utsatta för ihållande starka vindar, icke lämpa sig
för kaffekultur.

Djup jord är ett hufvudvillkor för växtens trefnad, ty om dess
påbrot påträffar fast berg, där trädet bort.

Bevattningen bör visserligen vara riklig, men marken far under
inga omständigheter vara sumpig. Däremot fördrager kaffeträdets
med lätteth en flera manaders torrtid med rätt obetydlig nederbörd.

Staten S. Paulos kust har närmast havfet ett smalt låglands-
bälte med sand eller sumpig mangrove-mark. Därinnanför stliga
kustbergen, Serra do Mar, tvärt upp till en höjd af omkring 1,000
meter. Den höga värmen och den rikliga, jämnt fördelade neder-
börd (3 till 4 meter per år), hvilken sydostpassaden fäller ut på de
branta slutningarna mot havfet, underhålla där en yppig vegeta-
tion af äkta tropiska regnskogar.

Innanför kustbergen begynner ett vidsträckt högland, hvilket
långsamt sänker sig mot Paranáflooden i väster och nordväst. Det
är på detta höglant, i nordlig och nordvästlig riktning från S. Paulos huvudstad, som de stora kaffedistrikten är belägna i en höjd af 800—600 meter över havet.

Vid anläggandet af en kaffeazenda måste man taga hänsyn till de klimatiska förhållandena, till jordmanen samt till möjligheten att erhålla nödig mängd rinnande vatten för kaffets preparering.

De klimatiska förhållandena är i S. Paulos inre de bästa möjliga. Såsom exempel skall jag längre fram anföra några data från Santa Albertina. Det gäller blott efter att se till, att ej höjden över havet är för stor, ty då blir vintertemperaturen för lag. Endast i de nordligaste, såsom en hufe visst, planteringar ej gärna större höjd än 800 m. h. Inom hvarje trakt atter planterar man alltid kaffet på kullarna och bergen, aldrig i dalarna. Ty i händelse af frost, samlar sig den tunga, kalla luften i dalbottnarna och anställer där betydlig skada på omtaligare växter.

Vid bedömandet af jordens lämplighet blott efter färg och sandhalt kan man dock lätt bedraga sig. Brasilianaren fäster därför stor vikt vid den naturliga växligheten, som därför ej värdefulla upplysningar om de klimatiska förhållandena. Den bästa jorden är alltid bevuxen med hög skog.

Tillgången på rinnande vatten är i S. Paulos inre nästan överallt riklig. Svårigheten härvidlag, liksom vid egendomsförvärf i
allmänhet, är blott att få visshet om äganderätten, som i Brasilien ofta hvilar på mycket osäkra grunder.

* * *

Midt inne i kafferegionen, omkring 275 km. i rak linje NNW från Santos, som är närmaste punkt vid kusten, ligger en liten stad, Santa Rita do Passa Quatro, och 4 km. väster om denna är fazenda Santa Albertina belägen.

Fig. 4. Typiskt landskap från S. Paulos inre; Campos de S. Simão, sedda från Santa Albertina. Slutningen med palmen till vänster i förgrunden tillhör ett kaffeberg med röd jord; höjden till höger i midtpartiet likaså. Även höjderna, som svagt skymta i fonden, äro dylika berg, serras. Slätterna ha sandjord, beväxen med campos cerrados.

Några astronomiska ortbestämningar från denna trakt finnas icke, men enligt kartornas uppgifter torde fazendans läge ungefär ligen kunna angifvas till lat. 21° 44' S., long. 4° 16' W. från Rio de Janeiro (= 47° 27' W. från Greenw.) Höjden över havet bestämde jag genom barometerobservationer till 726 meter för ett termometerhus, som jag hade uppställt i närheten af fazendans huvudbyggnad.
Nejden kring Santa Albertina är ett öppet platåland med vidsträckt utsikt åt alla håll (Fig. 4). Öfver ett böljande högslättland med långa, mjuka vågor af hvit trias-sand höja sig talrika platta »öar af bjärtröd laterit, bildad genom förvittring af en järnrik diabas. Landskapets nötta former är resultatet af artuserendens destruktion. Sitt starkaste uttryck har denna funnit i de djupa dalar med branta väggar, som det rinnande vattnet skurit ned mellan många af »öarna (Fig. 3). Alla dessa små vattendrag söka sig förr eller senare alltid fram till någon af Paranäs stora källfloder, hvilka i nordvästlig riktning genomdraga S. Paulos högland. Den närmaste af dessa är Mogy Guassú, från hvars högra strand Santa Albertina ligger ungefär 11 km. fågelvägen.

De meteorologiska observationer, jag året 1899 anställde på fæzenden, gafvo följande resultat:

Temperatur:

Minimum (18 juni) + 2.4°; maximum (5 okt.) + 34.8°; medium för den kallaste månaden (juni) + 16.3, alltså nästan alldeles lika med Stockholms varmaste månad (juli): medium för den varmaste månaden (mars) + 23.5°; årsmedium + 21.3°. Under tiden omkring minimum var marken åtskilliga dagar om morgnarna ställvis betäckt med rimfrost.

Nederbörd:

De regnikaste månaderna voro:

Januari	334 mm. på 24 regndagar:
November	278
December	378

De torraste månaderna voro:

| Maj | 11 mm. på 5 regndagar, hvaraf endast 2 med någon nämnvärd nederbörd, samt september: 8 mm. på 5 regndagar, hvaraf blott 3 med nämnvärd nederbörd. Åfven juni, juli och augusti utmärkte sig genom relativt obetydlig regnmängd. Förhållandena växla dock något under olika år, så att t. ex. juli kan vara den torraste månaden och februari den regnihäraste. Totalnederbördn för 1899 uppgick till 1.700 mm. |

Vindstyrkan var i allmänhet mycket ringa och uppgick i medeltal endast till 0.9 efter skalan 0–6. Temperaturen, som ganska noga motsvarar kaftesträdets fordringar, den ringa vindstyrkan, den rikliga nederbördn under fruktens
utveckling och den torra väderleken under skördetiden (maj—september), allt sammanlagt skapar ett för kaffeodling nästan idea-
liskt klimat.

Vegetationen på sandvagorna utgöres av glesa torrskogar med låga, krokiga träd, en formation, som brasilianaren kallar *campo cerrado* (Fig. 4, midtpartiet). På de bördiga laterikutkallarna och längs vattendragen åter har vuxit präktig högskog (Fig. 5, bakgran- den till höger), dock ej så kraftig och rik som kustbergens. Har vuxit, ty skogen är mestadels borthuggen och ersatt av kaffeplan- teringar, hvilkas snörråta buskrader på afstånd ge höjderna utseen-
det af jättestora potatisakrar (Fig. 9).

Anblicken af en kaffeafazenda i gammalbrasiliansk stil är ej någon glad och inbjudande syn. Ägarens bostad är ett simpelt hvitrapp-
padt trähus med rödt tegeltak (Fig. 5 i bakgrunden till vänster samt fig. 9, midtpartiet). Ofvan en jordvänning med kök m. m.
ligga boningsrummen. Utanför dem är husets ena långsida försedd med en veranda. De näraste omgivningarna ärro tröstlöst kala:
icke ett träd har lämnats på rot, något som dock har sin förklä-
ring i önskan att ej lämna *mosquitos*, myggorna, nagra lämpliga
tillflyktsoriter i människornas omedelbara närhet. Alldeles intill
boningshuset utbreda sig *terreiros* (Fig. 6), d. v. s. torkplatserna
för kaffet, med tillhörande maskinhus, så att *fazendeiron*
godsägaren) hekvänt kan öfvervaka arbetet. Något längre hort
ligga en fruktträdgård, stall, ladugård och arbetarebostäder (Fig 6),
vidare nagra sockerrörsfält och betesmarker med enstaka träd.
Fazendans ekonomibyggnader ligga alltid jämförelsevis lågt för att
man må kunna begagna sig af det vattendrag, som finns i bottnen
på hvarje dal. På de omkringliggande höjderna dominera öfverallt
kaffebuskarnas enformiga rader, ur hvilka döda trädstammar höja
sig. Sällan har en mindre skogsdunge lämnats kvar på någon
höjd eller brant sluttning. För att vara rättvis måste man dock
nämn, att det numera giftes åtskilliga fazendor, som äro väl be-
byggda och förskönade af smakfulla trädgardsanläggningar. Ett
exempel på en sådan i allo modern fazenda är Santa Albertina
(Fig. 6).

Sedan man utsett en plats, lämplig för anläggandet af en kaffe-
plantering eller *cafesal*, såsom brasilianaren uttrycker sig, börjar
arbetet med borthuggandet av alla lianer och huskar. Därpa fallas träden, utom de alla största. Detta sker vanligen mot regntidens slut i april—maj eller åtminstone före utgangen af juni. Man låter sedan »derrubadan« (fälle) torka. Vid torrtidens slut i augusti—september sättes eld på derrubadan, som nu förvandlas till en »queimada« (svedjeland). Under denna tid är hela S. Paulos inre veckor igenom förpestadt af brandrök och himlen upplyses hvarje kväll af väldiga eldsken i olika riktningar, ty man bränner då också af betesmarkerna för att ge bättre plats åt det unga gräs,
som med regnen spirar upp. T. o. m. i Rio de Janeiro har jag märkt brandröken från det inre. Efter afbrännandet rödjer man upp en smula på queimadan, men låter de största stammarna och stubbarna, hvilka elden ej förtärt, stanna kvar och plantera mellan dem (Fig. 5). De träd, som lämnats på rot, ha naturligtvis dödats af elden och höja sig nu som soliga ruiner mot himlen. Planteringen af kaffet börjar i september och tillgår så, att man upptager långa, snörrata rader af gropar med ett afstånd af 3—3½ meter såväl mellan groparna i hvarje rad som mellan de olika raderna. I hvarje grop nedläggas 3—4 hela kaffefrukter, som särskilt för detta ändamål torkats i skugga. Det är detta planteringsätt, som gör, att de tättstående kaffeträd, hvilka uppkommit ur samma grop, gemensamt få utseendet af en buske.

Öfver groparna låggas korsvis några trästycken eller majsstrån för att skydda de unga plantorna mot solstrålarna. Däremot gör det relativt tempererade klimatet särskilda skuggträd obehövliga. I detta afseende är det till fylles med majs, som i oktober de första åren planteras i enkla rader mellan de unga kaffebuskarna och sedan skyddar dem under den heta årstiden ända till slutet af april, då majsskördens börja. De kaffeplantor, som gå ut, ersättas med andra, tagna från särskilda plantskolor, hvilka anordnas i djup skugga på uppröjd skogsmark. På stora fazendor bruka dock tillräckligt antal ersättningsindivid uppkomma genom själfsadd i planteringarna.

Vid 4 års alder börjar kaffet gifta afkastning och fortfar därmed 20—30 år, allt efter omständigheterna. Jag har på Santa Albertina t. o. m. sett en cafesal på nära 60 år, hvars underhåll ännu lönade sig. Under den kraftigaste åldern ge träden år efter år goda skörder; sedan börjar en skillnad att visa sig: efter ett mycket godt år plågar följa ett eller två mindre goda. — För sjukdomar är S. Paulos kaffe tämligen förskonadt. Däremot anställer frosten stundom skada. Hvad fazendeiron mest af allt fruktar är *chuva de pedra*, *stenregn*, d. v. s. de våldsamma hagelbyar, som emellanåt bryta lös och på en kort stund kunna slå hela årets skörd till marken eller rent af förinta cafesalen. Lyckligtvis bruka dessa
oväder draga fram i smala, strängt begränsade hanor, så att fördelser ej går ut öfver hela trakten.

Skörden beginner i maj och räcker vanligen till fram i september, således under den torra tiden, sedan frukten haft alla regnmånaderna oktober—april på sig för sin utveckling. Då ju blomningen försiggår i tre repriser, bli också frukterna mogna på olika tider. Här till tar man emellertid i S. Paulo ingen hänsyn, utan afröpar på en gång alla frukter på samma träd. Detta tillgår

Fig. 7. Kaffeskörd på Santa Albertina. Arbetarna är italienare. På marken synes ett skynke, hvarpå man låter de affrapade frukterna falla. Till vänster om kvinnan i förgrunden ligger på jorden ett rensningssäll, peneiras. Träden till vänster i bakgrunden är apelsinträd.

helt enkelt så, att man under trädet på marken utbreder ett skynke, på hvilket man låter de affrapade frukterna falla (Fig. 7). Afrapandet af frukterna underlättas i hög grad dels af dessas täta anhopning på de långa, spensliga kvistarna, dels af den omständigheten att bladen under torrtiden falla bort på grenarnas äldre delar, där frukterna sitta. Planteringarna ha därför under denna tid ett torrt och risigt utseende (Fig. 2). Om trädet är högt, nedböjas de öfversta grenarna försiktigt med krokiga käppar, eller också slar man
Fig. 18

Tvättbassängen är alltid belägen vid öfre sidan af terreiros, hvilka utgöras af långsamt sluttande, mycket breda terrasser, uppdelade i stora rutor, som äro belagda med stampad terra roxa, tegel eller bäst med cement (Fig. 8 och 9). Genom kanaler med rinnande vatten, som gå i skiljemurarna mellan de särskilda rutorna, kan kaffet från tvättbassängen distribueras till hvilken ruta man behagar för att där uppsamlas i ett slags brunn med gallerbotten och sedan utbredas till torkning.

Det i bassängerna tvättade kaffet behandlas efter två metoder. Enligt den äldre, den s. k. *torra* metoden, utbredes det, sådant det är, på terreiros för att fullständigt torka. Detta fordrar en tid af 10—14 dagar, allt efter väderleken. Det till torkning utbredda kaffet måste dagligen röras om med stora trärankor, *rodos*, och vid hotande ovåder skottas ihop under presningarna. Tack vare det gynnsamma klimatet kommer det senare ganska sällan i fråga. — En massa försök ha gjorts att konstruera rationella torkmaski-
ner, som skulle kunna göra den långvariga och besvärliga proceduren i fria luften obehövligen. Problemet är dock synnerligen svårt och hade åtminstone vid den tidpunkt, som denna skildring afser, icke funnit någon verkligt praktisk lösning.

Sedan kaffet fullständigt torkat, inbäres det i maskinhuset för att trökas (Fig. 8). Tröskverket utgör en kombination af flere olika maskiner. Genom elevatorer, liknande de rörliga skoporna på ett mudderverk, flytts kaffet automatiskt från den ena maski-
spetsen på de frukthårande grenarna. Den nästan klotrunda formen på dessa små bönor uppkommer därigenom, att blott ett frö utbildas i hvarje frukt i stället för två. (Jfr sid. 254, rad 3 ofvanifrån och följ.).

I handeln ser man dock aldrig till dessa fazendasorter af kaffe, emedan affärsmännen genom blandningar af olika fazendorrs leveranser framställa artificiella typer, efter hvilka prisen uppgöras.

Fördelarna af den vata metoden äro en betydlig besparing af tid och arbetskrafter samt högre försäljningspris för det sålunda behandlade kaffet. Det sistnämnda beror endast pa vackrare och jämnare utseende, ty enligt kännares utsago har det torrpreparerade kaffet bättre arom. Mot skördetidens slut, när kaffet redan vid plockningen är mycket torrt, föredrages i alla händelser den torra metoden.

Färdigprepareradt insys kaffet i säckar och afskickas till kommissionären i Santos eller Rio. Fordom måste denna transport helt och hållet ske på muläsneryggen, och det berättas, att man
vid tiden för kaffesändningarna kunde få se ända till 22,000 mul-
åsnor dagligen trafikera vägen mellan S. Paulos huvudstad och
Santos. Nu äger staten ett vidt utgrenadt järnvägsnät, så att trans-
porten med djur i vanliga fall inskränker sig till några få km. till
närmaste järnvägsstation.

* * *

En fazendas omfång uppskattas alltid efter hur många tusental
kaffeträd den äger, och afkastningen beräknas i »arobas», en gam-
mal portugisiskviktenhet, som numeraf rundats till jämmt 15 kg.
På en säck (bal) kaffe går det fyra arobas, alltså 60 kg. En fa-
zenda af betydenhet äger åtminstone 300,000—400,000 träd.

För plantager i godt stånd kan man i S. Paulo påräkna i medeltal
800—900 gram torra bönor per träd och år. (I staten Rio de Janeiro
med dess ogynnsammare klimat och mer uttörmade jord är afkast-
ningen betydligt mindre.) Denna siffra gäller dock endast plan-
tager, skötta enligt gammal slentrian, utan tillförande af gödnings-
ämnen. Flera försök visa, att med rationellare metoder, i synner-
het användande af lämpliga gödningsämnen, produktionen med för-
del kan åtminstone fördublas. Enstaka träd kunna ge ända till
20 kg. bönor under en längre tid åtminstone hvart annat eller
hvart tredje år.1 Mängden frukter, som åtgår till en aroba färdigt
kaffe, växlar naturligtvis mycket efter olika år, årstider och kaffe-
sorter. 100 liter frukter för hvarje aroba bönor torde vara ett
något så när riktigt medeltal.

Tillgripandet af vetenskapliga metoder för en intensiv kaffekultur
blir numera en tvingande nödvändighet. I den gamla goda tiden
öfvergaf man helt lugnt sin cafesal, när den började minska i af-
kastning, och tog upp en ny. Odlingen var, kan man säga, no-
madiserande. Nu går ej detta längre. Den goda jorden i de nutida
kaffedistrikten är redan upptagen, och kulturen har framskridit så
långt mot det inre, att man snart nått gränsen för exportmöjlig-
heten, åtminstone under nuvarande förhållanden. Man måste där-
för vända sin uppmärksamhet åt att vidmakthålla jordens fruktbar-
het och förlänga trädens produktiva ålder samt att på samma mark
kunna ersätta de utdöende planteringarna med nya.

* * *

1 Dafert, »Erfahrungen«, S. 2.

NÅGRA BILDNINGSAFVIKELSER I BLOMMAN HOS PYROLA UNIFLORA L.

AF
GUST. O. A:N MALME.

I en liten uppsats¹ i Öfversigt af Kungl. Vetenskapsakademiens Förhandlingar 1900 (pp. 31—37) framhöll jag den närmast liggande orsaken till den redan af LINNÉ påpekade växlande ställning, ståndarna intaga i förhållande till kronbladen i den utslagna blomman hos Pyrola uniflora L. Denna orsak är att söka i kronbladens olika knoppläge. Egendomligt nog lämnar kronan hos denna växt exempel på alla de olika fall af tegellagdt knoppläge, som äro tänkbara för en femtalig hyllekrans.

Redan sommaren 1899 iakttog jag åtskilliga bildningsafvikelser i blomman hos ifrågavarande växt; 1905 ägnade jag den ytterligare uppmärksamhet och undersökte icke mindre än ett sextiotal blom-

¹ Kronbladens knoppläge och ståndarnas definitiva ställning hos Pyrola uniflora L.
mor, som i fråga om hyllebladen uppvisade avvikelse. Min afsikt är att fortsätta undersökningen. Redan nu vill jag dock i korthet redogöra för de hittills gjorda iakttagelserna för att rikta uppmärksamheten på denna i flera afseenden egendomliga växt.

Den bildningsavvikelse, som oftast uppträder hos Pyrola uniflora leder till en normalt byggd fyrratalig blomma. Icke mindre än 10 av de undersökta fallen höra utan allt tvivel till denna kategori. I en fyrratalig krona åro fyra olika tegellagda knopplägen tänkbara. Bladen kunna ligga så, att hvart och ett har den ena kanten öppen, den andra täckt (vridet knoppläge af samma beskaffenhet som i den femtaliga blomman). I ett annat fall hafva två blad båda kanterna öppna, de andra två däremot båda täckta (man jämföre förhållanden hos crucifererna!). I ett tredje fall ligger ett blad fullständigt öppet, det midt emot stående har båda kanterna täckta; de båda öfriga måste då hafva den ena kanten öppen, den andra täckt (jfr fodret hos Nymphula!). Slutligen kan det fullständigt täckta bladet ligga bredvid det öppna (spiralformigt knoppläge af samma beskaffenhet som i den femtaliga blomman; man jämföre äfven förhållande i de fyrrataliga blommorna hos Monotropa!). Som nu ståndarnas definitiva ställning hos Pyrola uniflora står i beroende av kronbladens knoppläge, åro fyra olika ståndarställningar möjliga i den normalt utvecklade fyrrataliga blomman, nämligen:¹

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>I.</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>II.</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>III.</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>IV.</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>3.</td>
</tr>
</tbody>
</table>

Typerna I och II hafva iakttagits endast en gång hvartera och i blommor, som afveko genom femtaligt foder; III har anträäfats sex gånger och IV fyra gånger.

En blomma anträäfades, som i öfrigt var fyrratalig men hade fem fruktblad: i fråga om ståndarnas ställning tillhörde den typ III. I nio blommor fanns en öfvertalig ståndare: sju af dem hade fyra fruktblad, de två öfriga fem. Med afseende på kronans knoppläge tillhörde en typ II, de öfriga typerna III och IV. Fyra blommor afveko från den normala fyrrataliga genom närvaron af ett femte

¹ A, B, C och D beteckna kronbladen, siffrorna antalet ståndare vid hvarje kronblad i den utslagna blomman. Där ståndarna åro tre, åro kronbladets båda kanter täckta: där de åro två, ligger den ena kanten öppen: där endast en ståndare finns, ligg a båda kanterna öppna i knopen.
foderblad, hvilket dock var mindre än de öfriga; ståndarnas ställning i två av dessa är nyss omnämnd, de båda öfriga tillhörde typ IV. Samtliga nu anförda exempel synas mig vara att tolka såsom redan till anlaget och byggnadsplanen fyrtaliga blommor. Man kan näppeligen pastå, att avvikelsen från femtalet beror på sammanväxning; det finns i verkligheten ingenting, som skulle kunna beträfflig till en sådan tolkning. Kronbladen (liksom också ståndarna) ärö lika stora, och deras nervatur antyder icke heller någon sammanväxning hos något av dem. De stundom uppträdande öfvertaliga ståndarna kunna ej heller anses bevisa någon dylik; sådana finnas även hos i öfrigt normala femtaliga blommor. Och fruktbladen stå, att döma efter förhållandet hos andra Bicornes, t. ex. *Vaccinium* och *Ledum*, i fråga om antal i mindre intimit samband med blommans öfriga blad än dessa sinsemellan.

En eller annan gang träffar man dock blommor, som med afseende på foder eller krona eller hvad båda dessa kransar beträffar ärö till utseendet fyrtaliga, men i hvilka en sammanväxning uppbarligen föreligger. För två sådana, som fullständigt öfverensstämde med varandra, har jag antecknat: foderblad 5, av hvilka två ärö sammanvuxna med varandra ungefär till midten; kronblad 4, af hvilka det, som står snedt innanför de båda med varandra sammanvuxna foderbladen, är bredare än de öfriga och uruppet i spetsen; ståndare 10 (1 — 2 — 3 — 4; de sistnämnda innanför det stora kronbladet); fruktblad 5 (två innanför det stora kronbladet). I en annan blomma funnos fem foderblad, af hvilka ett stod mitt utanför det nedan omnämnda stora kronbladet: kronbladen voro fyra, ett större än de öfriga och knutvet i spetsen; *ståndare 11* [3 (borde efter kronbladets knoppläge vara 2) — 2 — 3 (en har förskjutits hit från vidliggande kronblad) — 3 (innanför det stora kronbladet; enligt de öfriga kronbladens knoppläge borde här stå 4)]; fruktblad 5 (två innanför det stora kronbladet). Dessa blommor ärö uppbarligen afvikande i helt annan grad än de förut skildrade och kunna med fog betecknas såsom abnorma.

Något mindre ofta än de fyrtaliga förekomma blommor, som ärö normalt sextaliga, d. v. s. hafva 6 foderblad, 6 kronblad, 12 ståndare och 6 fruktblad. Åtta sådana hafva undersökts. I en sextalig hyllekrans ärö gifvetvis ganska många olika fall af tegellagd knoppläge tänkbara. Dessa åtta blommor representera också icke mindre än fem olika typer, hvilka bäst kunna karakteriseras genom ståndarnas ställning:

Att nu senast omnämnda blommor redan till anlaget och byggnadsplanen äro sextaliga, synes mig ligga i öppen dag. De afvika visserligen från den hos arten vanligast förekommande femtaliga typen, men äro uppenbarligen ett uttryck för variation, icke några anomalier. Detsamma gäller, ehuru med någon restriktion, om trelle blommor, som visserligen hade endast fem foderblad, men hos hvilka ett af dessa var större än de öfriga och mer eller mindre djupt kluffet i spetsen. En af dem var föröfrigt fullständigt sextalig och hörde, hvad ståndarnas ställning beträffar, till typ II. De båda andra hade endast 11 ståndare och hörde efter kronbladens knoppläge den ena afvenledes till typ II (hvarvid dock blott två ståndare funnos vid det kronblad, som borde omfatta tre), den andra till typ IV (men innanför ett kronblad saknades här helt och hållet ståndare).

Sex andra blommor, som i vissa kransar voro sextaliga, i andra däremot femtaliga, skulle behöfva beskrifvas hvar för sig. Endast en af dem vill jag här i korthet skildra, emedan den sextaliga kronbladskransen visade ett knoppläge, som ej iakttagits hos någon annan. Fodret var sextaligt, men ett af bladen var mycket smalare, dock ej märkbart kortare än de öfriga. Kronbladen voro som nämndt likaledes sex; de två, som stodo till höger och till vänster innanför det smala foderbladet, voro smalare än de öfriga; tre af dem hade båda kanterna täckta i knoppen. Ståndarna voro endast 10, nämligen 1 — 3 — 1 — 1 (borde efter kronbladets knoppläge vara 3) — 1 — 3. Fruktbladen voro fem, ett dock större än de öfriga.

Af andra afvikande blommor, som anträffats hos *Pyrola uniflora,* synas mig särskildt fyra förtjäna att omnämnas. En hade sex foderblad, af hvilka två (skilda af ett normalt utveckladt) voro mycket mindre än de öfriga samt stodo midt under hvar sitt kron-
blad, och endast fyra kronblad, två (innanför de små foderbladen) större än de öfriga och klufna i spetsen. Ståndarna voro 11, nämligen 1 — 2 — 4 — 4 (de senare antalen innanför de stora kronbladen), fruktbladen sex, två innanför hvardera af de två stora kronbladen. Närmast ansluter sig denna blomma otvifvelaktigt till de sextaliga.

I min redan inledningsvis omnämnda uppsats framhöll jag, att kronans knoppläge hos öfriga af mig då undersökte *Pyrola*-arter (*P. chlorantha Sw., P. rotundifolia L., P. minor L. och P. secunda L.*) icke är underkastadt så stora växlingar som hos *P. uniflora*; de äro i detta afseende mera fixerade. Detsamma gäller, för så
vidt jag kunnat finna, äfven om antalet blad i blommans olika kransar. Att döma efter i litteraturen förekommande uppgifter och efter mina egna iakttagelser, äro afvikelser från femtalet hos dem mycket sällsynta. Därmed vill jag naturligtvis icke hafta sagt, att dessa båda förhållanden stå i något orsakssammanhang med hvarandra. Annorlunda ter sig P. media Sw., hos hvilken öfvertalighet är synnerligen vanlig särskilt nedtill i blomställningen. Till denna växt torde jag blifva i tillfälle att framdeles återkomma.
Den 22 april 1907 afled i Upsala professorn i botanik därmot Frans Reinhold Kjellman. Dödsbudet kom icke så alldeles öfverraskande, ty allt sedan Kjellman år 1905 drabbades af ett slaganfall hade hans hälsa varit undergräfd och det var ett förnyadt anfall, som nu ändade hans verksamma lif.

Samma år Kjellman disputerade, anträdde han sin första resa till polartrakterna såsom deltagare i A. E. Nordenskiölds Spetsbergsexpedition 1872 och härmed inleddes nu hans arktiska forskningsbana, som sedan för alltid knutit hans namn samman med den svenska polarforskningens historia. Den första färden blev långvarigare än beräknadt var, ty af motiga vindförhållandens blockerades fartygen af isen och så tvingades

Kjellman vid 32 års ålder.

FRANS REINHOLD KJELLMAN.

* 4/11 1846 † 22/4 1907.
hela expeditionen. Även den del, som afsetts skola återvända, till en ofrivillig öfvervintring i Mosselbay. Men denna blef af stor vetenskaplig betydelse, emedan det var då Kjellman kom att göra sina iakttagelser öfver växtlifvet i hafvet under den långa polarnatten. Det visade sig nämligen, att även under vinterns mörker, när ett mäktigt istäcke höjder hafvet, det dock där på djupet finns en växtvärld av mäktiga algformer, lefvande under yttre omständigheter, som skulle tyckas omöjliggöra hvarje rikare växtlif. Öfvervintringen å Spetsbergen 1872—73 är skildrad af Kjellman i »Svenska polar-expeditionen är 1872—73 under ledning af A. E. Nordenskiöld«. De botaniska resultaten af denna resa har Kjellman framlagt i: »Förrörerande anmärkningar om algvegetation i Mosselbay etc.« samt i tvånne afhandlingar om »Spetsbergens marina, klorofyllförande hallomf i« och II.

Åren 1874 och 75 fortsatte Kjellman sina studier af den Bohuslänslösa algfloran, hvilka studier nu utsträcktes även tills det vinter.

Resultaten af sina mångåriga, omfattande algologiska studier i de arktiska trakterna har Kjellman sammanfattat i det stort anlagda arbetet »Norra Islafvets algflora« 1883-, på engelska »The alge of the arctic sea« åven tryckt i Vetenskapakademiens Handlingar. Denna monografi är ett klassiskt arbete. Förutom med rent systematiskt beskaffning och utredning af de funna arterna, sysselsätter sig Kjellman här ingående åven med frågor af mera allmän natur, biologiska, växtgeografiska och utvecklingshistoriska spörelse. »Norra Islafvets algflora« är Kjellmans största botaniska arbete.

Sedan Kjellman 1883 tillträdde den e. o. professuren i botanik vid Upsala universitet, har hans vetenskapliga verksamhet varit knuten till Upsala och dess botaniska institutioner. I sällsynt grad intresserad af sin botaniska lärareverksamhet har Kjellman sedan delat sina krafter mellan
undervisningen och det vetenskapliga bearbetandet av sina under de långa resorna gjorda samlingar och iakttagelser.

Af algologiska arbeten, utgifna under hans professorstid, må anföras »Beringhafvets algflora» (1889), hans bearbetningar av den japanska algvegetationen, publicerade i arbetena »Om Japans Laminariaceeer» (1887), Japanska arter af släktet Porphyra» (1897) och »Marina Chlorophyceeer från Japan» (1897). Dessutom planlade han nu en hafsalgflora öfver Skandinavien, varaf dock endast första delen omfattande fukoidéerna har utkommit 1890. Såsom förarbeten för fortsättningen har han publicerat »Studier öfver chlorophycésläktet Acrosiphonia etc.» (1893) samt har vidare i föreläsningsform (låsåret 1903) offentliggjort de fortsatta resultaten av sina arbeten på denna »Handbok i Skandinaviens hafsalgflora», som det aldrig blev honom förunnat att fullfölja.

Som systematiker hade Kjellman kanske mer öppet öga för mångfalden än för enheten. Han ålskade »små» arter och har nedlagt mycket ingående arbete på utredandet af formrikare arlers varieteter och former. Man iakttago t. ex. hans behandling i hans »Handbok af Fucus vesiculosus’ många skandinavisca former o. s. v. Men systematiken isolerad för sig hade i Kjellman ingen beundrare. Under det att han nedlade så mycken möda på urskiljandet af sina talrika former, så släptte
han likväl aldrig ur sikte utbredning, förekomst och växsätt och han sökte alltid sa vilt möjligt att kombinera systematik med biologi och växtgeografi.

Dessa Kjellmans rent biologiska synpunkter framträda ännu mera i hans arbeten öfver den högre växtvärlden. Det var väl egentligen under Vega-färden, som han mera ingående kom att sysselsätta sig med den arktska fanerogamfloran. En hel del floristiska notiser och utredningar föreligga så i Vega-expeditionens vetenskapliga iakttagelser. Men sina mest ingående studier öfver den arktska landvegetationen har han offentliggjort i den målande skildringen av den högnordiska floran, han lämnat i arbetet «Ur polarväxternas liv». Han redogör här för organisationen och utvecklingsförloppet av denna växtvärld, som bildar utposterna mot polens isöken och som där har att kämpa en hård kamp för livet och som knappt hinner att komma i ordning för att leva upp under den korta sommaren, förrän den åter öfverraskas av snön, kölden och mörkret. Men det är liksom om denna växtvärld legat Kjellman alldeles särskilt om hösten, och denna hans skildring av polarväxternas liv blir stundom nästan gripande. Man läse t. ex. hans målande jämförelse mellan den afslutade hösten hos oss och den hastigt påfallande i polarländerna:

Några större arbeten öfver den fanerogama växtvärlden publicerade aldrig Kjellman, utan de ingående undersökningar — särskilt organografiska — han öfver den under en lång följd af år bedrivit, har han endast meddelat i sin vetenskapliga undervisning. Ett par populärvetenskapliga skrifter »Om Nordens vårväxter» och »De nordiska trädens arkitektonik» utgavna likväl för eftervärlden om att hans idékrets icke var begränsad endast till hafvets växtvärld, utan även omfattade problem, som rörde de högre växternas liv. I dessa skrifter framträder Kjellmans förkärlek för organografiska utredningar, men särskilt även hans spekulativa läggning. När han så t. ex. vill förklara våra varväxters utvecklingscykel, sen han

Svensk Botanisk Tidskrift
i deras snabba, tidiga utveckling funnit en motsvarighet till polarväxternas jäktaande lif under den korta arktiska sommaren, så är det på organografiskt utvecklingshistoriska grunder han drager sina slutsatser. En yngre generation, i hvars botaniska utbildning ingått mer af experimentell metod, kanske icke kan till fullo godkänna de resultat, hvartill Kjellman i dessa frågor kommit, men ingen skall någonsin förneka, att just denna Kjellmans spekulativt botaniska läggning verkat i högsta grad sporrande till ett allt djupare inträndande i och förstående af den växtvärld, i hvilken vi leva. Och det var ändå just dit han innerst själf syntade med hela sin forskning.

Särskilt vackande voro alltid hans försök att konsekvent tillämpa en viss uppfattning och askådning hela växtriket igenom. Så t. ex. sökte han under sina under åren 1893—94 hällna föreläsningar öfver »Individ bildningen i växtriket« att påvisa generationsväxling inom nästan alla växtgrupper som en slags genomgående naturlag. Kanske mången gång hans förklaringar och tolkningar då syntes litet sökta, men rättvisligen måste nu erkännas, att äfven om Kjellmans uppfattning i detalj icke alltid hållit streck, så har dock grundtanken visat sig riktig, ty öfverallt där befriktning finnes, där träffar man ju tvänne generationer, en med oreducerat och en med reducerad kromosomal. Och när man således i våra dagar finner en sträfvan att för hvarje växtgrupp utreda hvad som är haploid och diploid generation eller, för att tala med Lotsy, hvad som är x-generation och hvad som är 2x-generation, då kan det kanske icke vara ur vägen att erinra om att Kjellman (utan att äga någon ingående kännedom om histologlitteraturen) med framsynt vetenskaplig blick redan i början på 90-talet företrätt en likartad uppfattning, då han sökte finna en gamofyt- och en sporofytgeneration i alla växters utveckling.

Att Kjellmans akademiska lärareverksamhet också burit rika frukter, därom vittnar det uppsving de botaniska studierna under hans ledning fått. Ett synbart och påtagligt uttryck af huru upphören och afhällen han var som lärare är också den festskrift, »Botaniska Studier tillägnade
F. R. Kjellman den 4 november 1906, som på hans förra året firade 60-årsdag ägnades honom af forna och nuvarande lärjungar.

Alltid intresserad för alla botaniska spörsäm, var Kjellman in i det sista utörrligt verksam som lärare och prefect för den botaniska institution, där han nu stupat på sin post såsom främste representant vid Upsala universitet för den vetenskap, som förblef hans djupaste liftinteresse.

F. R. Kjellmans tryckta skrifter i tidsföljd.

1880. Characeae och Alge. — I Pointsförteckning öfver Skandinaviens växter. 4. Lund. (Anonym.)

Om växtligheten på Sibiriens nordkust. — Vega-exp. vetensk. iakttagelser. Bd. 1. Stockholm. (Förut publicerad i K. V. A. Öfversigt. Årg. 36. 1879.)

Om tschuktschernas hushållsväxter. — Vega-exp. vetensk. iakttagelser. Bd. 1. Stockholm. (Omtryckt i Ymer. Ärg. 2. 1882.)

Om växtligheten under vintern i hafvet vid Sveriges vestra kust. — Bot. Notiser.

Om anatomiska karaktärers föränderlighet. — Bot. Notiser.
Om algvegetationen i Skelderviken och angränsande Kattegatsområde. — Meddelanden från K. Landbruksstyrelsen N. 80. Stockholm.
De nordiska trädens arkitektonik. — Föreningen Heimdał's folkskrifter Nr. 77. Stockholm.

Referat och anmälningar m. m.

Nils Svedelius.
SVENSKA BOTANISKA FÖRENINGEN.

Den 20 april 1907.

Det af föreningens styrelse utarbetade stadgeförslaget antogs med några smårre ändringar. Svenska botaniska föreningens stadgar ha enligt af föreningen fattadt beslut följande lydelse:

Stadgar för Svenska Botaniska Föreningen
antaga den 20 april 1907.

Om föreningens ändamål.

§ 1. Föreningens ändamål är att samlar och främja de botaniska intressena i landet.

§ 2. Sitt ändamål söker föreningen förverkliga 1:0 genom utgifvande af Svensk Botanisk Tidskrift, 2:0 genom åtgärder till befördande af kännedomen om landets växtvärld, 3:0 genom anordnande af gemensamma exkursioner i skilda botaniska syften uti olika delar af landet, 4:0 genom vetenskapliga sammankomster.

Ledamöter.

§ 3. Föreningen består af ordinarie ledamöter, korresponderande ledamöter och hedersledamöter.

§ 4. Till ordinarie ledamöter kunna väljas botaniskt intresserade svenskar eller utländningar.

§ 5. Till korresponderande ledamöter kunna utses sådana i utlandet bosatta personer, hvilka kunna antagas vara villiga att verka för föreningens syften.

§ 6. Till hedersledamöter kunna utses särskilt framstående svenska eller utländska botanister eller för öfrigt personer, som på verksamt sätt visat sitt intresse för föreningen och dess ändamål.

§ 7. Medlemsafgiften för ordinarie ledamot är 10 kronor för år eller 100 kronor en gång för alla.

§ 8. Ordinarie ledamöter och hedersledamöter erhålla föreningens publikationer afgiftsfritt.

§ 10. Föreningens ärenden handläggas av en styrelse och en redaktionskommitté.

§ 12. Styrelsen handlägger följande ärenden:
1:0. Inväljer ledamöter, enligt §§ 21, 22.
2:0. Ulyser föreningens sammanträden och anordnar dess exkursioner.
3:0. Förvaltar föreningens ekonomi och vårdar dess tillhörigheter.
4:0. Beslutar om tidskriftens årsbudget.
5:0. Handlägger i öfrigt alla frågor, som af föreningen hänskjutas till behandling af styrelsen eller som den vill förelägga föreningen.

§ 15. Styrelsen äger rätt att vid förberedande af exkursionerna, om den så finner lämpligt, med sig adjungera andra personer.

§ 17. Redaktionskommittén beslutar:
1:0. om intagande i tidskriften af till redaktionen inkomna afhandlingar:
2:0. i öfrigt inom ramen af den för tidskriften af styrelsen bestämda årsbudgeten, om alla ärenden som röra tidskriftens utgifvande.

Val.

§ 21. Ordinarie ledamöter inväljas af styrelsen på skriftligt förslag af ledamot i föreningen.
§ 22. Korresponderande ledamöter väljas af styrelsen på skriftligt förslag af minst tre ledamöter i föreningen.

§ 23. Hedersledamöter väljas af föreningen efter det motiverad skriftligt förslag af minst tre ledamöter därom till styrelsen inkommit och styrelsen tillstyrkt detsamma.

§ 24. Den, som bifövt till ledamot antagen, underrättas därom af sekreteraren genom skrifvelse, enligt af styrelsen fastställt formular, och erhåller samtidigt sig tillsändt ett exemplar av föreningens stadgar.

§ 25. Alla val ske med slutna sedlar; dock må de, när föreningen det för hvarje särkoldt fall enhälligt beslutar, ske genom acklamation.

Stadgeändring.

§ 26. Ändrings- och tilläggsförslag till föreningens stadgar skola vara inlämnade till styrelsen före september månads utgång, och åligger det styrelsen att till nästa sammanträde därom afgifva yttrande. Föreslagen ändring bordlägges till beslut vid följande sammanträde.

§ 27. För att föreslagen ändring må anses beslutad, fördras bifall af minst två tredjedelar af de afgifna röstromna.

§ 28. Beslutade ändringar af stadgarna, träda i kraft, därest de gäller val, vid nästa valtillfälle, i andra fall med ingången af följande kalenderår.

§ 29. Upplösning af föreningen må ske endast efter därom fattade samstämmmande beslut på tvånne på hvarandra följande årssammanträden.

En kommitté tillsattes för att undersöka möjligheten af anordnandet af en exkursion i sammanhang med Linné-jubiléet; till ledamöter af kommittén utsågos professor J. ERIKSSON, lektor E. HEMMENDORFF, fondmäklare G. INDEBETOU, professor G. LAGERHEIM och docenten O. ROSENBerg.

SAMMANKOMSTER.

Botaniska sällskapet i Stockholm.

Den 18 mars 1907.

Assistenten dr Th. Wulff höll ett af talrika skioptikonbilder belyst föredrag om ’Japanska trädgårdar och dvärgträd’.

Lektor J. A. O. Skårmann meddelade några af honom sistlidne sommar vid Abisko i Torne lappmark gjorda växtfynd: Gymnadenia conopea × albida, Antennaria carpatica, Echinopspermum deflexum och — Papaver nudicaule. den sistnämnda funnen utplanterad i björkskogen i närheten af en banvaktstuga.

Den 15 april 1907.

Dr P. Dusén höll föredrag om ’minnen från en resa i Patagonien’, hvilken resa han företagit såsom deltagare i den af dr A. Thesleff ledda expeditionen till Patagonien. afseende en undersökning af områdets koloniseringsmöjligheter. Efter att i korthet hafta redogjort för expeditionens gång öfvergick föredraganden till en af talrikt pressadt växtmaterial belyst skildring af de genomresta trakternas växtvärld.

Docenten H. Simmons förevisade en talrik samling skioptikonbilder från Grönland och arktiska Amerika. De flesta bilderna härstamma från den af Sverdrup ledda norska polarexpeditionen åren 1898—1902, i hvilken föredraganden deltagit som expeditionens botanist. I anslutning till bilderna lämnades meddelande om de besöka trakterna i botaniskt afseende.

Botaniska sektionen af Naturvetenskapliga studentsällskapet i Uppsala.

Den 19 mars 1907.

Fil. kand. S. G:son Blomqvist föredrog om ungdomsstadier hos Berberis vulgaris. Utvecklingen från groddplantsstadiet till växtens öfvergång
i buskform utgjorde, enligt hvad föredragandens i Västergötland insamlade material visade, en karakteristisk utvecklingsperiod, som omfattade ungefär ett 10-tal år och utmärktes av en i ansatser skeende, i allmänhet terminal skottutveckling. Ofta kunde ungplantan en eller flera vegetationsperioder å rad frambringen endast toppställda bladrosetter. Efter en sådan tid av relativt hvila uppträdde — i regeln ur skottets spets — det första typiska långskottet med tornar och proleptiskt utvecklade kortskott. Under en följande vegetationsperiod utvecklades långskott ur basala lågbladsknoppar, hvarigenom ungplantan ernådde buskform. Frukterna av Berberis vulgaris vore hos oss ej föremål för någon särskild form av spridning, och ungplantornas vore i allmänhet bundna vid en med hänsyn till belysningen illa lottad ståndort, hvarmed sattes i förbindelse dels långsamheten i utvecklingen, dels såsom speciella tillpassningsföreteelser bladens form och ställningsförhållande hos ungdomsformerna.

Fil. stud. Th. C. E. FRIES meddelade iakttagelser öfver laflorans i trakten av Torne träsk. Följande vore i litteraturen ej angifna för Sverige: Cetraria islandica (L.) ACH. f. sorediata SCHLÆR. (ex. häraf, tagna vid Knifsta i Uppland 1900 af R. SERNANDER, finnas dock i Uppsala universitetets samlingar), Gyrophora reticulata (SCHLÆR.) TH. FR., Lecanora subfuscus (L.) ACH. var. sorediifera TH. FR., Pertusaria trochisea NORM. (ansågs af föredr. endast vara en form af P. glomerata (ACH.) SCHLÆR., Buellia parasema (ACH.) TH. FR. var. papillata (SMRF) TH. FR., Rhizocarpon chionem (NORM.) TH. FR., Collema ceranoides (BÖRRL.) MUDD.; dessutom två ännu obeskrifna former af Alectoria nigricans (ACH.) NYL. och Gyrophora anthracina (WULF.) KÖRR. Anmärkningsvärda vore också Acarospora molybdina (WNBG) Mass., Panuaria eleina (WNBG), P. Hookeri (Sm.) m. fl.

Den 9 april 1907.

Docenten R. SERNANDER föredrog i anslutning till RAUNKIÆR om eko-
logiska typer i våxtgeografien.

Fil. lic. C. SKOTTSBERG föredrog om inre assimilationsväsnad hos phaeophyceer. Förutom hos de i detta afseende förrut kända Desmarestia-
arterna hade föredr. funnit en kring de inre ledningsrören lagrad assi-
milationsväsnad afven hos flere för vetenskapen nya phaeophyceer från antarktiska och subantarktiska hav. Föredr. anslöt sig till WILLES teori, enligt hvilken en litlig andning försiggår i ledningsrören och den därvid bildade kolsyran kommer växten till godo genom de angränsande assi-
milationscellernas verksamhet.

Den 7 maj 1907.

Professor O. JUEL lämnade en öfversikt öfver vara vårdväxlande rost-
vampar. Se sid. 243 i denna tidskrift.

Fil. kand. T. LAGERBERG föredrog om blommen af Viola mirabilis. Se sid. 187 i denna tidskrift.
SMÅRRE MEDDELANDEN.

Typha angustifolia L. × latifolia L.

Sommaren 1901 tillbragte jag i Stockholms skärgård på Hysingsvik, en gård i Länna församling af Roslagen, ej långt från det gamla godset Penningby. Här inskjuter at väster från Saltsjön en ungefär 2 km. lång hafsvik, benämnd Edsviken. Vid västra ändan af denna vik utfaller vid gården Fiskarudden Penningbyån, som kommer från en del rätt stora sjöar, belägna längre in på fastlandet.

ningen, till bredden intermediära mellan de båda huvudarterna, ännu i torrt tillstånd 9—13 mm. breda.

Senare på hösten visade både hybriden och T. angustifolia den gemensamma egenskapen, att överallt på axet framskoto de gröna, i spetsen förtjockade, till s. k. pistillodier (ENGLER) ombildade ofruktbara blom- morna.

Såsom viktigt kännsärke mellan de båda huvudarterna angives i flororna, att blomfåstets utlöpare hos T. angustifolia ärö mycket korta, kägelformiga, 0,5—1 mm. långa, medan däremot hos T. latifolia dessa utlöpare ärö ända till 2 mm. långa, trådsmala och slaka. Hybriden visade härutinnan den egenskapen, att dessa utlöpare på några av voro korta och styfva, på andra långa och slaka, ja, till och med samma ax kunde hafva båda dessa slag av utlöpare blandade om hvarandra.

ASCHERSON och GRÉBNER, som i Synopsis der Mitteleuropäischen Flora, I, pag. 278, lämna en beskrifning på denna hybrid, anföra dessa skiljaktiga utlöpare hos fruktfåstet såsom hybridens viktigaste karaktär. Genom att göra fröset fritt från blommor och här har jag på många ax konstaterat denna karaktär hos den af mig funna hybriden.

Såsom sammanfattnings af karaktärerna kan anföras, att hybriden till de vegetativa delarna liknar T. latifolia, men till axet och blommorna erinrar om T. angustifolia, vid första påseendet synes den vara en mycket kraftig T. angustifolia.

Genom tillfälliga besök på växtplatsen i början av september månad under de flesta af de följande åren har jag haft tillfälle att följa denna hybrid och alltid funnit densamma väl utvecklad. Hösten 1903 var den till större delen steril med endast få blommande exemplar, hvilket möj- ligen kunde bero på kall och ogynnsam väderlek sommaren 1902.

Sistlidna sommar observerade hyrachefen i Domänstyrelsen TH. Öst- teNBLAD enstaka exemplar af hybriden växande vid östra ändan af Edsviken omkring 2 km. från det stora beståndet.

I sammanhang härmed kan nämnas, att då jag sommaren 1905 vistas i Söderköping, observerade jag vid Storans utlopp i Slätbaken vid Mem en Typha-form, som genom sin höga växt, grofva form, blågröna färg samt de näristående han- och honaxen mycket liknade den vid Penningbyän funna hybriden. Då jag den 27 juli 1905 såg denna form, var den så litet utvecklad, att frönjölet var knappt färdigt, medan hanaxen på alla i närheten stående exemplar af T. angustifolia voro affällna och
afven **T. latifolia**, som likaledes förekom öfverallt i än, var långt kom-
men i sin utveckling. Vid undersökning af frömjölet hos denna mellan-
form kunde jag ej se några sammanhängande korn. Denna mellanform
vore förtjänt af en närmare undersökning.

Johan Berggren.

Gymnadenia conopea (L.) R. Br. × Gymnadenia albida (L.) Rich. från Torne lappmark.

Under en excursions på fjället Nuolja vid Tornesjön¹ den 23 juli för-
lidet är anträffade undertecknad ett exemplar af ofvanstående sällsynta
orkidéhybrid. Såvidt jag har mig bekant är endast en fyndort förut
angifven för växten i fråga från vårt land, nämligen Åreskutan, i videregio-
innen invid Blåsten, hvarest den sommaren 1884 erhölls, likaledes i blott
ett exemplar, af Läroverksadjunkten E. COLLINDER i Sundsvall. I Botan-
iska Notiser för 1882 har dåvarande fil. kandidaten K. HEDBOM lämnat
en tämligen utförlig beskrifning på ett af honom funnet individ af samma
hybrid från Kongsvold på Dovre i Norge.

Det af mig funna exemplaret växte å Nuoljas östra sluttning i öfre
delen af björkregionen ej långt från den för alla Abiskoturister välbe-
kanta bäcken, som högst uppe i fjället bildar det från turiststationen syn-
liga lodrätta fallet. Som det uppträde i sällskap med åtskilliga individ af
Gymnadenia conopea, tog jag detsamma i förstone för en egendomlig färg-
varietet af denna art och utan att närmare gränsa mitt fynd, hvars
underjordiska del i orubbadt lage kvarlämnades på stället, inlade jag
detsamma i portören. Jag hade emellertid ej hunnit många steg från
platsen, förrän jag fick anledning något grundligare uppmärksamma min
Gymnadenia och det blev då genast klart för mig, att här förelåg en
otvetlig hybrid mellan de båda på Nuolja rått vanliga arterna **G. cono-
pea** och **G. albida**. Denna upptäckt medförde naturligtvis, att jag efter-
höll skarp utlik, men trots allt sökande på flerafaldiga lokaler kunde
icke ett enda individ af hybriden ytterligare anträffas.

Stjälken jämtte axet måtte nära 20 cm. i långd och uppbar tre väl ut-
vecklade blad förutom tvenne längst ned sittande bladslidor. Af bladen hade
det nedersta en skifva med en långd af 5 cm. och en bredd af 1 cm., det
mellersta visade en något långre 5.5 cm. men ej fullt så bred skifva: det
öfversta bladet höll 4 cm. i långd och 0.4 cm. i bredd (ofvan detta
funnos ytterligare ett par helt små blad). Bladskifvorna voro alltså betydligt
mera långsträckta än hos **G. albida** utan att dock antaga den hos **G.
conoopia** rådande jämnbreda eller smalt lancettliga formen: till såväl
störlek som form kunna de sägas förhålla sig intermediärt.

Blomställningen visade ett något mer än 3 cm. långt ax af ganska tätt
och allsidigt riktade blommor. Dessas färg var en svagt gulröd med drag-
ning åt violett.

¹ Alias »Tornetrask«: jag instämmer till fullo med professor S. Jolin — se Svenska Turistföreningens Årsskrift för innevarande år — m. fl. hvilka påyrkat ett
mera tilltalande namn på vårt lands största och stoltaste fjällsjö.
Af blommans delar äro särskilt läppen, sporren och de 2 sidoställda yttre kalkbladen af intresse. Hos *G. conopea* är läppen grundt klufven i 3 smånaggade, trubbiga flikar, medan *G. albida* har läppen tämligen djupt klufven i likaledes 3 men spetsiga och helbräddade flikar. Hos hybriden äro inskärningarna grunda men skarpa och flikarna tydligt trubbspetsiga samt helbräddade. Sporren är som bekant hos *G. conopea* lång (minst 1 1/2 gånger längre än fruktämnet), trådsmal, spetsig och böjd framåt, hos *G. albida* åter helt kort (omkring 1/3 af fruktämnets längd), rak och jämntjock. Hos hybriden befanns den vara nästan lika lång som fruktämnet samt något ehuru obetydligt krökt. De båda yttre sidoställda kalkbladen ha likaledes ett annat utseende än hos stamarterna. Hos *G. conopea* äro de riktade rakt utåt, hos *G. albida* däremot äro de liksom

Med det af d r Hedbom från Kongsvold beskrifna exemplaret synes detta från Nuolja mycket väl öfverensstämma.

Ett par andra växter från samma trakt ma här samtidigt få omnämnande, helst som mig vetterligen ingendera förut dårstädes blifvit observerad. På samma östra sida af Nuolja men ofvan björkregionen har jag inom ett helt obetydligt område funnit ett individ af Antennaria carpatica Wg. B. Br. och söder därom å en smal terrassformig afsats på en Tsasinnjaskatjåkko tillhörande lodrät brant Echinospermum deflexum Wg. Lehms växande i 30 à 40 ex. af mycket växlande storlek.

J. A. O. Skårman

Utnämningar och förordnanden.

Vid Uppsala universitets LINNÉ-fest blev följande botanister utnämnda till hedersdoktorer:

inom medicinska fakulteten.
inom filosofiska fakulteten.

Under vårterminen ha vid Uppsala universitet följande botaniska dispu-
tationsafhandlingar ventilerats:

C. O. NORÉN: Zur Entwicklungsgeschichte des Juniperus communis. Uppsala universitets Arsskrift 1907. 64 s. 8:o.

H. KYLIN: Studien über die Algenflora der schwedischen Westküste. Uppsala 1907. 288 s. 43 textfig., 7 pl. 4:o.

Till assistent vid Botaniska afdelningen af Statens Skogsförsöksanstalt har K. Domänstyrelsen förordnat den 17 maj fil. doktor N. SYLVÉN.
Nyutkommen litteratur med anledning af Linnéjubiléet.

C. BENEDICKS, Linnés Pluto suecicus. 48 pag. 3 planscher. Invitation pour assister à la promotion des docteurs juris utriusque dans la cathédrale d’Uppsala le 24 Mai 1907 publiée par le promoteur HUGO BLOMBERG.

Carl Linnés Beskrifning öfver stenriket. Ibid. 91 pag.

KARL BLINK, Carl von Linnés lefnadssaga. Samlade anteckningar.

S. J. ENANDER, Studier öfver Salices i Linnés herbarium.

JENS HOLMBOE, Carl v. Linné. Et 200-aarsminde (1707—1907). (Naturen 1907, no. 4, pag. 97—106, 2 portr.).

Linnés Dietetik på grundvalen af dels hans eget originalutkast till föreläsningar: Lachesis naturalis qua tradit dietam naturalem och dels lärnjunganteckningar efter dessa hans föreläsningar: Collegium dieteticum. 248 pag.
TULLBERG, TYCHO, Linnéporträtt. Vid Uppsala universitets minnesfest på tvahundraårsdagen af Carl von Linnés födelse. Stockholm 1907. Aktieb. Ljus. 21 Tall. 39 Fig. 1 färgtryckspl. 187 pag.

N. WILLE, En Linnérelikvie Nord. Tidskr., 1907, h. 3, p. 157—166).

— Carl von Linné. Tidskrift for kemi, farmaci og terapi (Pharmacia, IV) 1907, pag. 145—160.

Dessutom hela Band IV af:

Till redaktionen inlämnade tidskrifter och afhandlingar.

Laurell, J. G., Bibelns liljor i ord och bild. Strängnäs 1907.
Botanisk exkursion till Billingen

anordnas af Svenska Botaniska Föreningen den 29 och 30 Juni 1907

efter följande program:

Samling i Sköfde den 28 Juni på aftonen.

Omedelbart ofvan tuffen går vägen upp till Skulltorpa nabbe med en härlig utsikt. Nedanför väckra löfängar.

Middag i Stenstorp.

På eftermiddagen till Dala, där Stipa pennata växer i en rik flora af sydosteuropéisk prägel (Dracocephalum Ruyschianum, Potentilla rupestris, Lathyris heterophyllus etc.). Alfvarvevegetation på de omgifvande kalkplatäerna.

På kvällen med tåg åter till Sköfde.

Den 30 Juni. Med tåg tvårs öfver Billingen till Varnhem, hvartifran på f. m. en tur göres utmed Billingen till Öglanda grotta, där utåtiken öfver Vallehärad beses och under vägen tillfälle gifves att taga någon kännermed om Billingens flora.

Tidigt på e. m. fortsättes färden med tåg från Varnhem till Hornborgasjöns nordända. Denna sjö är bekant för sin rika vattenvegetation och egendomliga utvecklingshistoria stubblager på stora sträckor av sjöbotten. Inflytandet af sjösänkningen på växt- och djurvärld studeras. — Middagsproviant måste troligen medtagas från Sköfde.

På aftenom återfär till Sköfde.

Anmälningar till deltagande i exkursionen torde snarast möjligt insändas till

O. ROSENBERG,
förn sekreterare.
adr. Falsterbo.
BOTANISKA STUDIER
tillägnade
F. R. KJELLMAN

UPSALA 1906.

Bohlin, Über die Kohlensäureassimilation einiger grünen Sa-
menanlagen. — Borge, Süsswasser-Chlorophyceen von Feuerland und
Isla Desolacion. — Carlson, Über Botryodictyon elegans Lemmerm.
und Botryococcus braunii Kütz. — Dahlstedt, Einige wildwachsende
Taraxaca aus dem Botanischen Garten zu Upsala. — Fries, Mor-
phologisch-anatomische Notizen über zwei südamerikanische Lianen.
— Hedlund, Über den Zuwachsverlauf bei kugeligen Algen während
des Wachstums. — Juel, Einige Beobachtungen an reizbaren Staub-
fäden. — Kylin, Zur Kenntniss einiger schwedischen Chantransia-
Arten. — Lagerberg, Über die präsynaptische und synaptische Ent-
vicklung der Kerne in den Embryosackmutterzellen von Adoxa
moschatellina. — Lindman, Zur Kenntnis der Corona einiger Passi-
floren. — Norén, Om vegetationen på Vänerns sandstränder (Mit
einem deutschen Resumé). — Rosenberg, Erblichkeitsgesetze und
Chromosomen. — Samuelsson, Om de ädla lösträdens forna utbred-
ning i öfre Öster-Dalarna. — Sernander, Über postflorale Nektarien.
— Skottsberg, Observations on the vegetation of the Antarctic Sea.
— Svedelius, Über die Algenvegetation eines ceylonischen Korallenriffes
mit besonderer Rücksicht auf ihre Periodizität. — Sylvén, Jämfo-
rande öfversikt af de svenska dikotyledonernas första och senare
förstärkningsstadier. — Witte, Über das Vorkommen eines aëren-
chymatischen Gewebes bei Lysimachia vulgaris L.

Pris: 10 Kr. (11 Mark).

ALMQVIST & WIKSELL, Upsala.

R. FRIEDLÄNDER & SOHN, Berlin (11 Carlstr.).

PORTRÄTT af Professor F. R. KJELLMAN
(i ljustryck)

Pris: 1 Kr.

genom Botaniska Sektionens sekreterare, Upsala.
3) Växtnamn i texten sättas med kursiv stil (enkelt understrucket i manuskriptet).

4) Spärrad stil tillåtes icke.

Citeringar bör ske genom hänvisningar till en afhandling bifogad litteraturförteckning. Noter under texten bör så vidt möjligt undvikas.

Det är redaktionens mening att, efter det redaktionskommittén antagit en afhandling till införande i tidskriften, omedelbart befordra densamma till trycket, så att författaren kan erhålla separat af densamma äfven innan det häfte utkommit, i hvilket afhandlingen inflyter.

Korrektur och andra handlingar, som röra tidskriften, insändas direkt till redaktören. Direkt förbindelse mellan författaren och tryckeriet får ej äga rum.

Hvarje författare erhåller 100 särtryck med omslag afgiftsfritt af sin i tidskriften intagna afhandling; större antal efter öfverenskommelse. Af smärre meddelanden intagna i tidskriftens borgis-afdelning lämnas separat endast efter särskild öfverenskommelse.
INNEHÅLLSFÖRTECKNING.

R. SERNANDER: Om några former för art- och varietetsbildning hos laf-varna (med 2 textfigurer) ... 135
(mit deutschem Resumé) .. 176
T. LAGERBERG: Über die Blüte von Viola mirabilis (mit 11 Textfiguren) 187
K. JOHANSSON: Till Gotska Sandöns floristik 210
M. SONDEN: Anteckningar om floran inom Tornejavreområdet 215
O. JUEL: Öfversikt af våra värdväxlande rostsvampar 243
E. HEMMENDORFF: Fazenda Santa Albertina. Bilder från en brasiliansk kaffeplantage (med 7 textfigurer och 1 plansch) 249
G. O. A: N MALME: Några bildningsafvikelser i blomman hos Pyrola uniflora L. ... 270
N. SVEDELIUS: † F. R. KJELLMAN ... 276
SVENSKA BOTANISKA FÖRENINGEN ... 286

SAMMANKOMSTER:

Botaniska Sällskapet ... 289
Botaniska Sektionen i Uppsala ... 289

SMÅRRE MEDDELANDEN:

Typha angustifolia × latifolia .. 291
Gymnadenia conopea × Gymnadenia albida från Torne Lappmark (med 1 textfigur) ... 293
Utnämningar och förordnanden ... 295
Nyuutkommen litteratur med anledning af LINNE-jubiléet 296
Till redaktionen inlämnade tidskrifter och afhandlingar 298

Utgivet den 3 Juni 1907.

CENTRALTRYCKERIET, STOCKHOLM, 1907.
SVENSKA BOTANISKA FÖRENINGENS

styrelse och redaktionskommitté

under år 1907.

Styrelse:
V. B. WITROCK, ordförande; R. SERNANDER, vice ordförande; O. ROSENBERG, sekreterare och redaktör; G. INDEBETOU, skattmästare; J. BERGGREN, K. BOHLIN, K. JOHANSSON, O. JUEL, G. LÄGERHEIM, G. MALME, M. SONDÉN.

Redaktionskommitté:
O. ROSENBERG, K. BOHLIN, G. LÄGERHEIM, N. SVEDELIUS, R. SERNANDER.

Till tidskriftens medarbetare!

Med afseende på stilblandningar gälla följande regler:
1) Auktorsnamn sättas med vanlig stil.
2) Personnamn i texten sättas med KAPITÄLER (dubbelt understruket i manuskriptet).
 Hieracier från Torne Lappmark och närgränssande områden
af
H. Dahlstedt.

En granskning af dessa har gifvit vid handen, att om än i detaljer flera anmärkningsvärda olikheter förefinnas, likväl i stort sett så stor öfverensstämmlse råder mellan de nämnda trakternas Hieracium-flora, att de tills vidare kunna sammanhållas såsom ett från trakterna i söder och väster rätt väl begränsat område. Detta förhållande framgår med tydlighet af nedan anförda fyndorter. Mot öster synes området däremot vara mindre väl begränsat, att döma af J. P. Norrlins senast utgifna exsicater och det kan ifrågasättas, om icke motsvarande delar af norra Finland börja medräknas.

Formrikedom inom åtminstone norra delen af området är särdeles stor. Af det rika material, som stått till mitt förfogande, är det emellertid ett mindre antal former, som förefinnas i tillräcklig individmängd eller från tillräckligt många lokaler. att jag redan nu skulle våga gifva en fullständigare framställning af områdets Hieracium-flora. Jag måste därför i denna uppsats inskränka mig till att i närmaste anslutning till M. Sondéns uppsats i Svensk botanisk tidskrift 1907, Bd. I. s. 215 (Anteckningar om floran inom Torne-
javreområdet) endast beskrifva några af de där uppräknade formerna med uteslutande af sådana som även anträffats i Jämtland och Härjedalen, och hvilka skola behandlas i annat sammanhang. För jämförelses skull ha likväl några former, hvilka hittills blott påträffats i Lule Lappmark medtagits.

I. ALPINA Fr.

1. Eualpina.

H. includens Dahlst. n. sp.

Ab H. alpino L.; Backh., cui hahitu, foliorum forma et involucru fabrica valde est simile et affine, squamis latoribus, exterioribus longioribus nec non flosculis omnibus marginibus involutis satis differt. Ab H. cleistogamo Dahlst. subsimili folii brevioribus latoribus, ± obtusis, angustius et longius petiolatis, statura humiliore nec non stylo luteo v. luteo-cerino satis est diversum.

Utan tvifvel har denna form utvecklat sig ur H. alpinum L.; Backh., med hvilken den har de flesta karaktärer gemensamt. Från denna är den emellertid konstant skild genom sina inrullade ligule.

H. Lundboomii Dahlst. n. sp.

Caulis humilis — sat elatus. 10—25 cm. altus, strictus v. flexuosus. foliolis bracteiformibus linearibus instructus. monocephalus v. ± ramosus. caulibus secundariis sæpe evolutis, inferne parce, superne densius pilosus, usque a basi glandulosus, glandulis apicem versus majoribus et crebrioribus, inferne sparsim, apice densiusculae floccosus.

Folia basalia plurima longissime petiolata, exteriora ovalia — obovato-spathulata, obtusa, interiora magis lingulato-lanceolata, in tima ± acuta, omnia ± crebre et irregulariter runcinato-dentata. longe pilosa, in margine et subts densiusculae glandulosa.

Involucrum sat longum latiusculum fusco-canescens, basi ovato-turbinata in caulem apice ± incrassatum et bracteosum descendens, squamis exterioribus longis — longissimis, linearibus, laxis, interioribus linearibus acutis, intimis subulatis, omnibus ± comosis, dense et longe canescenti—v. fuligineo-pilosis et glandulis minus crebris obsitis.

Calathium subradians, c. 35 mm. diametro. Ligula apice longissime dentatae, sat longe ciliatae. Stylus luteo-citrinus.

Denna form står rätt nära H. alpinum L.: Backh., och lägre, enblomstriga exemplar likna den habituelt rätt mycket, men den är i hvarje fall lätt skild genom längre holk med nedlöpande bas och isynnerhet genom de smala holkfjällen och de smalt och långt skäftade bladen med sin karaktäristiska täta och oregelbundna tandning och sina mellan tänderna nedvikna kanter. Den varierar från enblomstrig och lågväxt till grenig och högväxt och erinrar i senare fallet habituellt ej obetydligt om H. praematurum Elfstr., från hvilken den emellertid bland annat är lätt att skilja genom sina ljusa stift. Hos enblomstriga individer utbildas oftare bistjälkar. Flerblomstriga exemplar åro vanligen grenade ända från midten och en nedat mycket obeväntad inflorescens med mycket långt akladium (från 20—60 mm. i längd) bildas härigenom. Stjälkens eller akladiets öfversta del är i allmänhet kladd af tämligen närsittande, ofta talrika (ända till 7) smala, yllika brakteer, som utan gräns öfvergå i de löst tilltryckta eller något frånstående smala och långa yttre holkfjällen.

Sverige: Torne Lappm., Kiruna (M. SONDÉN).
H. Sondenii Dahlst. n. sp.

Caulis 20—25 cm. altus, crassiusculus, inferne densiusculle pilosus, sparsim stellatus, superne sparsiis pilosus et ± dense floccosus, inferne glandulis raris, superne sparsis obsitus, 1—2-folius, a basi ramosus.

Folia basalia plurima, extiora ± ovali-lanceolata v. lanceolata — linear-lanceolata, crebre et anguste subulato-dentata v. ad basin haud raro longe subulato-dentata, dentibus longis angustis (curvatis) liberis sepe ist petiolis evolutis; caulium infimum lineari-lanceolatum in inferiore parte anguste dentatum, summum linear, subintegrum v. integrum; omnia longe pilosa, in marginibus et subitus glandulis minutis sparsiis obsita.

Inflorescentia 2—3-cephala, ob ramos ex axillis fol. exortos indeterminata, ramo v. ramis brevibus aedladium 10—15 mm. longum aequantium v. paulum superantibus, dense canofloccosis, inferne sparsiis superne sat dense glandulosis, pilis canescentibus, sparsiis immixtis.

Involucra brevia, fusco-canescentia, basi ovato-turbinata, squamis exterioribus angustis linearibus laxe adpressis, interioribus ± linearibus, omnibus acutis, intimis subulatis, apicibus piceis, ± conosis, glandulis brevibus — mediocribus, sat densis et pilis mediocriter longis, basi brevi nigra, apice canescentibus, densiusculis— sparsiis obtectis.

Sverige: Torne Lappm., Kiruna (M. Soxdén).
H. crispiforme Dahlst. n. sp.

Caulis c. 20 cm. altus, gracilis, flexuosus, simplex v. rarius ± ramosus, inferne densiuscule. superne sparsim pilosus. usque a basi glandulosus et ± floccosus.

Involucra longa, fusco-atra. basi ovato-turbinata, squamis exterioribus linearibus sublaxis. interioribus ± lineari-lanceolatis. in apicem acutum vix v. parum comosum sensim attenuatus. creberrime canescenti- v. fuligineo-pilosis et glandulis minutis. sparsi — densiusculis, ob pilos densos ægrec conspicuis vestitis.

Calathium c 40 mm. latum. *Ligula* apice ± ciliolatae. *Stylus* mere luteus.

Utmärkt af sina breda trubbtandade yttre och glest och skarpt tandade inre blad. enblomstrig eller stundom upptill grenad stjälk samt lång mörk holk med basen mer eller mindre nedlöpande i det förtjockade skaftet. Holk fjällen åro ganska tätt klädda av små glandor, som till följd af de täta mörkbasiga hären åro svåra att upptäcka utom på de mera harfria spetsarna, där de tydligt framträd. Stiftet har alltid en rent gul färg.

Saväl här som i öfriga karaktärer visar formen en otvetydig släktssp med *H. crispum* Elfstr.

H. cleistogamum Dahlst. n. sp.

Caulis 25—35 cm. altus. 2—5-folius. 1-cephalus. inferne densiuscule. superne dense. longe — longissime pilosus. basi sparsi, supra medium sat dense. apice dense floccosus. usque a folio caul. infimo glandulosus. glandulis inferne sparsi. parvis, superne densiusculis. validis vestitus.
Folia basalia plurina, extima ± spathulata, reliqua lingulata — lanceolato-oblonga v. lanceolata, obtusiuseula — subacuta, intima panca, acuta, subintegra — parce dentata v. interioria haud raro ± longe et anguste etiam in petiolo dentata, dentibus inferioribus sepe magnis unguiculatis, in petiola lata sensim decurrentia, ubique longe et densiusculae pilosa, in marginibus dorso minute glandulosa: fol. caul. inferiora ± oblongo-lanceolata — lineari-lanceolata, superiora magis magisque linearia, acuta, decrescentia.

Involucrum magnum, crassum, subglobosum, squamis exterioribus latiusculis, ± foliaceis, laxis, interioribus latiusculis, in apicem comosum, acutum attenuatis, densissime, et longe albidopilosis et glandulis minutis, crebris, apicem versus magis conspicuis vestitis.

Ligula marginibus involuta, apicem versus presertim pilosae. **Stylus** semper inclusus, nigrescens v. livido-nigrescens.

Liknar mycket, isynnerhet i spåda exemplar, *H. includens* Dahlst. genom de inrullade ligulæ, men skiljes från densamma genom mera utdragna spetsigare, ofta långtandade blad. hvilkas skifva utan gräns övergår i det breda och jämförelsevis korta skaftet samt genom flerbladigare stjälk, öfverallt längre och rikare hårighet, större, mera rundade holkar och mörka nästan svarta stift, som är svagt utvecklade och alltiden inneslutna inom det ständigt inrullade bränet. År utan tvifvel besläktad med *H. f. f. f.* Elfstr., med hvilken den har åtskilliga likheter i bladen och holkens byggnad.

Sverige: Torne Lappm., Wassijaure (M. Sondén). **Norge:** Tromsö (A. Notö), Finmarken, Nordreisen på fl. st. (G. Peters).

H. polysteleum Dahlst. n. sp.

Caulis 20—30 cm. altus, a basi vulgo valde ramosus et sepe caules secundarios, plurimos edens, parce pilosus et stellatus, usque a basi glandulosus, glandulis in apice caulis crebrioribus et longioribus, pilis atris sparsis immixtis.

Folia basalia plurima, exteriora obovata — lingulata crebre, et irregulariter, ± obtuse dentata, interiora angustiora et longiora, magis acuta, sepe acutius et angustius dentata, longe pilosa, in marginibus et subtus in nervo dorsali densiuscule et breve glandulosa: fol. caulina 2—3, linearia v. anguste lingulata, inferiora ± dentata, summa subintegra.

Inflorescentia oligocephala, ob ramos ex axillis fol. omnium exortos indeterminata, ramis ± arcuatis, acladium 3—10 mm. longum
± superantibus, obscuris, glandulis nigris sat validis crebris et pilis fuscascendentibus, sparris obtectis, densiuscule stellatis.

Calathium parvum. Ligula glabra v. parce ciliatae. Stylus nigrescens.

Denna form står onekligen mycket nära H. expansiforme Dahlst. från Härjedalen, men är bland annat skild genom större och bredare holkar, rikligare härighet på holkskaften, rikare förgrenning och tätare tandade blad. Vanligen utbildas ur alla bladveck 1—2-blomstriga grenar, af hvilka de öfre nå öfver korgsamlingen. Därjämte äro talrika bistjälkar ofta utvecklade, och hos frodiga exemplar äro ej sällan rhizomen rikt förgrenade, varigenom exemplaren ofta (helst på ruderatmark) bilda små tufvor. Akladiet växlar i längd från ett par ända till trettiotem mm. och de öfversta grevnarna, som äro mer eller mindre bågböjda, nå ofta långt öfver toppholken, isynnerhet då akladiet är kort.

H. mniarolepium Dahlst. n. sp.

Caulis 20—30 cm. altus, flexuosus, simplex v. superne ramosus, 2—3-folius, inferne sparsim pilosus et floccosus, superne sat dense pilosus et floccosus, fere a basi glandulosus, glandulis apice caulis majoribus, densiusculis.

Inflorescentia oligocephala, indeterminata, ramis acladium 5—50 mm. longum ± superantibus, dense floccosis et densiuscule glandulosis pilisque sparsis, apice canescetibus vestitis.

Involucrum sat latum, fusco-canescens, basi ovata — rotundata, squamis exterioribus linearibus, laxis, interioribus late linearibus, e basi lata sensim in apicem acutum — subulatum attenuatis, pilis molli-
bus, canescentibus. longis glandulisque minutis, inter pilos ægre conspicuis vestitis.

Calathium sat plenum c. 35 mm. latum. _Ligula_ apice ciliatae. _Stylus_ livescens, fusco-hispidulus.

Sverige: Torne Lappm., Kiruna—Loussavara (M. Sondén), Ume Lappm., Blajkfjäll i Doroteas s:n (C. O. Schlyter). _Norge:_ Finnmarken, Nordreisen på fl. st. (G. Peters).

2. **Nigrescentia** Elfstr.

H. concinnum Dahlst n. sp.

Caulis c. 20 cm. altus, gracilis, 1—2-folius, inferne sparsim pilosus et floccosus, superne densiuscule pilosus, sat dense floccosus, apice sparsim—densiuscule glandulosus.

Folia basalia 4—6, anguste petiolata, parva, exteriora ovalia, denticulata, obtusa, intermedia ± ovata, basi sæpe subsagittata, irregulärter et acute dentata, acuta, interiora ovato-lanceolata—lanceolata, sparsim, anguste et acute dentata, apice sat longo integro acuta, in marginibus et in petiolis densiuscule pilosa, supra parce, subtus sparsim pilosa, in marginibus glandulis minutis, raris obsita: fol. caulin. infimum petiolatum lanceolato-lineare v. lineare, subulato-dentatum, summum lineare, integrum, subulatum.

Inflorescentia oligocephala, sepe e ramis ex axillis fol. exortis acuta, ramis brevibus, acladium 3—10 (— 25) mm. longum æquantibus v. paullum superantibus, dense canofoocosis, glandulis parvis, densis et pilis brevibus, fuscis dense vestitis.

Involucrum parvum, fusco-atrum, basi ovato-turbinata, squamis exterioribus linearibus, acutiusculis, interioribus latiusculis, e basi
Caulathium parvum, c. 25 mm. latum. Ligulae parce et breve ciliatae. Stylus livescens, fusco-hispidulus.

H. microcomum Dahlst.

Caulis 20—40 cm. altus. gracilis — crassiusculus. ± flexuosus. 0—2-folius. inferne parce pilosus, sparsim floccosus v. fere elloccosus. glandulis minutis raris obsitus. medio sparsim pilosus et stellatus. vix glandulosus. apice glandulis minutis parcis—sparsis et pilis raris vestitus. sparsim—densiuscule stellatus.

caul. inferius ± longe usque breve petiolatum, ovato-lanceolatum —lanceolatum, ± acutum, basi contracta, ± acute et sepe subulato-dentatum, summum lineare subintegrum, subtus parce, in nervo sparsim v. densiuscule lloccosa.

Inflorescentia laxa furcata v. furcato-paniculata—contracta paniculata ob ramos ex axillis folium omnium sepe exortos ± indeterminata, ramis sat erectis, ± curvatis, acladium 5(−10—30)—70 mm. longum vulgo paullum superantibus, dense canfolloccosis, glandulis tenuibus, nigris, mediocriter longis, parvis immixtis, inferne sparsioribus, superne densis et pilis sat brevibus — mediocriter longis tenellis, fuscis, apice ± longo albescente, inferne raris, superne sparsis obtectis.

Involucrum breve, crassiusculum, sat latum, basi ovato-rotundata —rotundata, fusco-atrum v. fusco-viride, squamis exterioribus elongate triangularibus v. linearibus, obtusiusculis, interioribus e basi latiore linearis-lanceolatis, sensim in apicem obtusiusculum — acutum, piceum, ± comosum attenuatis, intimis paucis subulatis, pilis tenuibus, basi brevi nigra, apice canescentibus, brevibus — mediocriter longis densis — sat crebris obtectis, microglandulis glandulisque parvis et minutis, sat densis, inter pilos fere occultis vestitis.

Calathium parvum c. 35 mm. latum, plenum, obscure luteum. Ligule apice glabre v. levissime ciliata. Stilus obscure lutescens, fuscohipidulus.

Den ganska stora habituella olikheten, den olika utbildade korgställningen och de bredare bladen, ha föranledt att afskilja formen från Kiruna och Jockmock under namn af H. gyratifrons från Gellivara-formen, H. microcomum, ehuru likheten i holkarnas beklädnad onekligen var mycket stor. Sedan jag emellertid varit i tillfälle att granska ett rikhaltigare material, finner jag, att båda formerna icke kunna särhållas, utan måste anses som olika ståndortsformer af samma art. Jag har därför här meddelat en ny och mera omfattande beskrifning. Det mest karakteristiska hos arten äro de korta och breda, af täta flina hvitspetsade hår och små täta, af hårén nästan dolda glandler klädda holkarna. För öfrigt är utseendet tämligen växlande, beroende dels på bladens individerna emellan högst växlande bredd, dels och i ännu högre grad på det olika utseende, korgställningen kan antaga. Hos små och svagt utvecklade exemplar kan den vara enkelt eller upprepadt gaffelgrenad med ofta mycket långt akladium (ända till 70 mm.) och mycket späda
exemplar kunna bli enblomstriga. Men från dessa finnas alla öfvergångar genom individ med kvastlik-gaffelgrenad till sådana med hopdraget kvastlik inflorescens med mera bågböjda grenar och kort akladium. Längden af det senare kan likväl växa såväl hos fäblomstriga som flerblomstriga individ.

H. nautanense Dahlst. n. sp.

Caulis 25—50 cm. altus, gracilis — crassiusculus usque crassus, 1—2-folius, inferne densiuscule v. ut plurimum sparsim pilosus, rarisme stellatus, ± rubescens, superne rare pilosus — epilosus, medio sparsim, apice densiuscule stellatus, supra folium caulim inferne rare, superne sparsim et apice sæpe densiuscule glandulosus.

Folia basalia 4—5, exteriora rotundato-ovalia v. ovalia — ovata basi nunc lata nunc ± contracta ± cordulata-truncata, apice rotundato-obtusa, aequaliter et latiuscule dentata, interiora ovalia — elliptica, ± obtusa-acutiuscula, ± dense et acute dentata, basi contracta v. sub-truncata paullo longius et acutius dentata, longe petiolata, in petiolis dense pilosis et densiuscule, in marginibus parce et minute glandulosis, supra fere glabra v. parce pilosa, subitus parce — sparsim et in nervo dorsali vix stellato densiuscule pilosa, in marginibus densiuscule ciliata; fol. caul. infimum prope basin affixum oblongo- v. elliptico-lanceolatum, vulgo breve acutum, inequaliter et acute ad basin sæpe sat longe (interdum sublaciniato-) dentatum, in petiolum breve v. mediocre, late — latiuscule alatum, subamplectens sensim descendens, summum vulgo parvum, sessile v. subsessile, linear lanceolatum v. lineare, denticulatum — integrum.

Inflorescentia oligo- v. polycephala, sæpe sat ampla, sat determinata v. in spec. majoribus ramis ± distantibus aucta, umbellata — paniculata, ramis mediocrer longis, ± approximatis et arcauis sat dense floccosis, glandulis longis brevibus immixtis densiusculis, pilis brevibus solitariis objectis, acladium 10—20 mm. longum paulum superantibus, pedicellis sat brevibus densius floccosis et glandulosis, pilis brevibus fuseis immixtis.

Involucra c. 12 mm. longa et 6 mm. lata, atroviridia, squamis interioribus elongato-triangularibus margine, ± dilutis et floccis parcis limbatis, interioribus latiusculis, linear lanceolatis, e basi lata sensim in apicem acutum — subulatum piceum, leviter comosum attenuatis, marginibus ± late fusco- virescoentibus, omnibus glandulis mediocribus et longis, sat dense et pilis atraiti apice breve canescen-tibus sparsim objectis, intimis parcius v. vix glandulosis, magis virescoentibus, subulatis.

Calathium obscure luteum, 35—45 mm. latum. Ligulae apice glabrae. Stylus livescens v. luteo-ferrugineus, fusco-hispidulus.

H. nautanense utmärker sig genom sina breda, vackert och mörkt något lökgröna, fasta, trubbiga basalblad med särdeles tydligt markerad nervatur, det bredskaftrade nedre stjälkladet, vanligens med
största bredden ofvan midten och med oregelbunden skarp, endast vid basen något djupare tandning samt i det breda, något omfattande skaftet långsamt nedlöpande bas och de mörkt grönsvarta holkarna, som åro klädda af tåta olikstora glandor och spridda, någon gång tätare, föga längre mörka hår med ytterst kort och knappt märkbar ljus spets. Habituellt påminner den ej så litet om H. kirunense, men är bland annat lått skild genom trubbigare och mörkare gröna blad samt genom förekomsten af hår på holkspetsen. Den erinrar åfven ej obetydligt om H. melanocranum, men denna har betydligt mörkare, nästan svarta och mera glänsande samt större holkar med talrikare glandor och inga eller svagare utbildade, glesa hår samt skarpare tandade och spetsigare blad.

Den af I. P. Norrlin under namn af H. fraudans utdelade forn men skiljer sig något från de svenska och norska exemplaren genom smalare blad med nedlöpande bas. mycket rikblomstrig och tätare inflorescens samt mera utpräglad ludd på de yttre holkfjällen och möjligen något rikligare hår på holken, men den torde knappt vara att uppfatta pa annat sätt än såsom en mera utpräglad standortsform (skuggform).

Sverige: Torne Lappm., Kiruna—Luossavara (M. Sondén); Lule Lappm., Jockmock (Th. Wolf), Nautanen, ymning i björkskog (K. Steenhoff).

Norge: Tromsö (A. Notō), Nordreisen (G. Peters).

Finland: Kemi Lappm., Ylimuonio (J. Montell i I. P. Norrl., Hier. exs, Fasc. VII. n. 56).

H. melanocranum Dahlst. n. sp.

Caulis 30—40 cm. altus, 1|—2|-folius, gracilis — crassiusculus, inferne parce pilosus. superne fere epilosus. apicem versus sparsim pilosus, inferne fere floccosus. superne rare floccosus. basi parce et breviter, superne magis magisque glandulosus, apicem versus glandulis crassis, sparsis — densiusculis obtectis.

supra subglabra, subtus in nervo dorsah densiuscule, cæterum spar-
sim pilosa: fol. caul. parvum lineari-lanceolatum, longe acutum, ±
peliolatum, integrum v. denticulatum.

Inflorescentia laxa, paniculata, e ramo ex axillo folioli sæpe exorto ± indeterminata, ramis longis arcuato-patentibus, acladium 3—10(—15) mm. longum longe superantibus, obscuris, parasim canofoecosis, glandulis atris crassis brevibus et mediocribus, inferne densiusculis, superne crebris vestitis et in acladio pilis brevibus, atris sæpe inmixtis.

Involucra crassiuscule atra, 14—15 mm. longa et 8 mm. lata basi ovata—ovato-turbinata, squamis exterioribus elongate triangulari-
bus, obtusiusculis, interioribus latiis, e basi lata ± lanceolat, supra medium sensim in apicem acutiusculum—acutum, piceum atte-
nuatis, glandulis crassis nigris brevibus et mediocriter longis densi-
Crebris obectis et sæpe, præsetim in inv. primario, pilis paullo lon-
gioribus, atris, parcis — sparsis obsitis.

Calathium parvum, 80—35 mm. latum. Ligula breves, dentibus longis, inæqualibus laceratis, apice glabra. Stylus obscure livecens, fusco-hispidulus.

Utmärkt af sina smalt och glest skarptandade, mer eller mindre lång-
spetsade blad med lång, helbräddad spets, ett litet sylspetsadt nästan
helbräddad eller glest fintandad stjälkblad (hvarrill komma 1—2
lineāra brakteliknande öfre blad) samt gles och vid korgställning
med tämligen stora, svarta, tätt glandeltåriga holkar, i allmänhet
utan hår utom på primärholken, som vanligen är försedd med glesa
eller sparsamma till större delen svarta hår. Dessutom åro ligulae
ganska korta med djupa olikstora tänder, och de mörka stfenten
skjuta tämligen högt upp över blomsamlingen. Tydligen tendera
korgarna starkt att bli stylösa. Från de öfre små linjesmala blad-
dens veck utga ofta korta, i allmänhet enblomstriga grenar. Arten
synes ganska nära besläktad med H. subhigrescens (Fr), från hvilken
den bäst skiljes genom bladformen och de aldrig verkligt stylösa
korgarna, samt med H. pycnadenium Dahlst., från hvilken den lättest
skiljes genom betydligt smalare och spetsigare blad och de på
primärholken och akladiet utvecklade mörka hären.

Sverige: Torne Lappm., Kiruna (G. Peters); Lule Lappm., Gelli-
vara lappkyrkogård (K. Steenhoff).
H. kirunense Dahlst. n. sp.

Caulis 25—40 cm. altus, gracilis — crassiusculus. 1—2-folius, inferne parce pilosus et fere effloccosus, superne epilosus v. sparsim pilosus et sparsim glandulosus.

Folia basalia 4—6. exteriora late ovalia, obtusa, denticulata. intermedia ovalia—ovata v. ovato-oblonga, obtusiuscula. æqualiter, acute et late dentata. basi ovata v. ± subsagittata, interiora ± ovata—ovato-lanceolata, vulgo angustius et acutius ad basin sæpe longe dentata, acuta. saturate viridia, in petolis dense et longe, in marginibus densiusculae brevius pilosae, in margini rariissime glandulosae: _fol. cauL_ inferius petiolatum, ovato-lanceolatum—late lanceolatum. acute dentatum. ad basin sæpe subulato-dentatum. summum sessile lineare; omnia subtus vix stellata.

Inflorescentia oligo—polycephala, paniculata—umbellata. ramis acladium longum (15—35 mm.) æquantibus v. paullum superantibus. pedicellis brevibus. densiusculae canosiofloccosis. glandulis longis inferne sparsis, superne densiusculis vestitis.

Calathium sat obscure luteum. subplenum. c. 35 mm. latum. _Ligula_ apice glabra. _StyIus_ livescens.

Tillhör onekligen _Nigrescentia_ och står inom dessa närmast den grupp. som till habitus och karaktärer mest närmar sig _Silvaliciformia_ af _subvulgatum_-typen. Till holkarna närmar den sig i synnerhet denna senare grupp genom de mellersta och inre holkfläckens breda gröna kanter samt genom de längre och finare glanderna. Dessa, som är långa och mörkknappiga öfvergår emellertid genom alla mellanformer i mycket sparsamma mikroglandler. Förekomsten af dessa liksom af de, om än sparsamma, glanderna i bladens kanter gör mig benägen att hellre föra denna form till _Nigrescentia_ än till _Silvaticiformia_. Dessutom har den en ganska stor och ej enbart habituell likhet med _H. nautanense_, som utan tvekan kan
hänföras till den förra gruppen. Från denna art är den bland annat skild genom saknad af hår på holkarna.

Sverige: Torne Lappm., Kiruna (M. **Sondén**, G. Peters); Luossavara (M. **Sondén**); Björkliden—Nuolja, Abisko (M. **Sondén**).

II. VULGATA Fr.

1. **Silvaticiformia** Dahlst.

H. halsicum Dahlst. n. sp.

Caulis gracilis flexuosus, 20—35 cm. altus, 0—1-folius, inferne sparsim pilosus, fere elloccosus, superne fere epilosus et glandulis solitariis obsitus, sparsim floccosus.

Folia basalia 4—5, longe petiolata, exteriora parva, ovala v. ovato-quandrangularia, basi sepe truncata—subcordata et haud raro obliqua, subintegra v. obtuse, fere undulato-dentata, rotundato-obtusa, intermedia ovata—ovato-oblonga, sparsim, late et acute dentata, acuta, interiora ± ovato-lanceolata, basi obliqua, subcuneata v. contracto-ovata, crenbrius et acutius dentata, longius acuta, exteriora, interdum omnia, subtus ± violascentia; *fol. caul.* prope basin v. ad medium insertum (vulgo autem nullum), ± longe petiolatum, anguste ovato-lanceolatum, acutum, sat crebre et acute denticulatum; omnia supra subprasinoviridia, subtus ± casio-viridia, supra glabra, in margine et subtus rare—rarissime pilosa, in petiolis sparsim pilosa, in nervo dorsali ± floccosa.

Inflorescentia oligocephala, paniculata, ramis brevis — sat longis, acladium 5—30 mm. longum sepe longe superanthis, ± arcatris, dense canoflouccisis, pilis perbrevisibus obscuris et glandulis parvis, raris, superne sparsis vestitis.

Involucra parva, sat lata, basi rotundata e floccis canescente, squamis exterioribus inaequaliter longis, anguste triangularibus, obtusiusculis — obtusis, interioribus e basi lata lanceolatis, in apicem obtusiusculum — sat acutum, piceum, ± comosum attenuatis, intimis subulatis, obscure fusco-virescensibus, ubique floccis sparsis — densiusculis pilisque brevibus, obscuris, apice brevi canescente sparsis vestitis.

Sverige: Torne Lappm., Abiskosuolo, Björkliden m. fl. st. (M. SONDÉN).

Norge: Nordlanden, Saltdalen, Hals (SCHLEGEL och ARNELL); Tromsö, Kvenangen vid Gargovarre samt Oxjorddalen (A. NOTÖ); Nordreisen (G. PETERS); Alten, Storgärdet nära Bosekop (C. O. SCHLYTER); Dovre, Högsnyta (A. HAGLUND).

H. poliosteleum Dahlst. n. sp.

Caulis 25—35 cm. altus, sat gracilis, flexuosus, 0—1-folius, inferne sparsim pilosus et stellatus, superne sparsim — densiuscule floccosus, epilosus v. pilis raris obsitus.

Folia basalia 4—6. exteriora late ovata—ovalia, basi truncata—subcordata parce et obtuse dentata, obtusa, intermedia anguste — sat late ovata. basi ± cordata, crebrius, breviter et ± acute, sæpe subinaequaliter dentata, dentibus basalibus paucis. sæpe longioribus curvatis, obtusa—acutiuscula, intima ± ovato-lanceolata, basi ovata v. paullum descendente, sat crebre et acutius dentata, dentibus basalibus haud raro longioribus, angustis, curvatis, ± acuta: *fol. caul.* folio bas. intimo simillimum, vulgo angustius, basi magis irregulariter dentatum: omnia supra obscure lutescenti-viridia, subitus pallidiora, subcesia et præsertim exteriora in pag. inf. ± hepaticoviolascentia, supra glabra. subtus sparsim, in nervo dorsali ± stel-

Swensk Botanisk Tidskrift.
lato paullo densius pilosa, in petiolis densiuscula et longe pilosa, in marginibus sat dense ciliata.

Inflorescentia oligo- v. sat polycephala, humilis, laxa v. subcontracta, paniculata, e ramo ex axillo folioli exerto sepe indeterminata, ramis mediocriter longis, arcuatis et pedicellis sat brevibus, a cladium 5—15 mm. longum vulgo paulum superantibus v. æquantibus dense canfloccosis, glandulis brevibus, inferne raris, superne sparsis — densiusculis vestitis.

Involucra parva, brevia, canovariegata, squamis exterioribus lineatibus, obtusis, in margine ± floccosis, interioribus latioribus, linearibus, supra medium sensim in apicem obtusiusculum — subactus attenuatis, glandulis parvis, densiusculis et pilis brevibus obscuris, inferne basilibus, superne sparse, — densiusculis vestitis.

Involucro parva, brevia, canovariegata, squamis exterioribus lineatibus, obtusis, in margine ± floccosis, interioribus latioribus, linearibus, supra medium sensim in apicem obtusiusculum — subactus attenuatis, glandulis parvis, densiusculis et pilis brevibus obscuris, inferne basilibus, superne sparse, — densiusculis vestitis.

Calathium obscure luteum, sat plenum, 30—35 mm. latum. *Ligulae* breviter dentatae, sat latæ, apice glabrae. *Stylus* livescens.

Denna vackra form utmärker sig genom sina mörkt gröna i gulaktigt skiftande, fasta och breda, underröttlade blågröna och ofta åtven lefvverfärögade blad med åtvervägvande bred, ofta något hjärtlik has, den låga korgsamlingen med bagbögda askgrå, akladet föga eller icke överskjutande grenar och korta holkar, som åro brokiga af företrädesvis i holkfjällens kanter samladt stjärnludd, samt små mörkt gula korgar med breda korttandade liguler. Holkarna åro därför klädda af korta glandländer med inblandade mörka och korta föga hvitpetsade hår, som åro talrikast på primärholken, men sparsammare på sidoholkarna, där de till följd af sin korthet lätt förbis. Stjälkbladet är föstatd ån nära basen och är då större, än högt upp och är i så fall föga utvecklad. I detta fall och då, såsom stundom händer, ett litet brakteliknande blad (utom det nedtill befintliga stjälkbladet) är utvecklad i närheten af korgställningen, blir denna ofta nedåt obegränsad genom en gren från detta bladveck. Åtven då bladet är föstatd nära stjälkens mitt, utbildas ej sållan från dess veck en kort men vanligen enblomstrig gren. Detta förhållande tyder på släktets med *subcasium*-typens former. Holkarna påminna också till bekådnaden och sitt allmänna utseende ej så litet om föregående, men fjällen åro nästan jämnbreda och trubbiga eller kort spetsade utan den karaktäristiska tjarbruna
färgen i spetsen, och glandlerna äro rikligare, hvaremot håren äro sparsammare, och luddet är samladt till en tydlig rand i fjällens kanter. På sått och vis sammanbinder denna form nyssnämnda subcosium-artade former med sådana former af subvulgatum-typen, som H. albovittatum Dahlst., expallidiforme Dahlst. m. fl., med hvilka den till holkarnas byggnad och beklädnad har vissa likheter. Upptäder stundom stylös (såsom vid Sörkjosen i Nordreisen).

H. decurrentidens Dahlst. n. sp.

H. farreitimbatum Dahlst. in sched. et apud M. SONDÉN. Anteckningar om floran i Tornejavreområdet.

Caulis 40—60 cm. altus. crassiusculus—crassus. 1-folius, inferne sparsim pilosus et stellatus, superne densiuscule — sat dense floccosus et glandulis sparsis — sat densiusculis obtectus, apice pilis paucis immissis.

Involucra 12—14 mm. longa. 7—8 mm. lata. basi ovata. squamis exterioribus brevibus. ± linearibus obtusiusculis. interioribus linearí-
lanceolatis obtusiusculis—subacutis, intimis paucis, margine ± vi-
rescentibus, subulatis, omnibus apice ± piceo leviter comosis, glan-
dulis longis et medioeribus gracilibus, densiusculus obtectis, floccis
in marginibus (presertim in squ. ext.) inferne densiusculus superne
sparsis, cæterum in dorso parcis vestitis.

Calathium sat lœte luteum, 40—45 mm. latum. *Ligulae* breviter
dentatae. *Stylus* livescens, fusco-hispidulus.

Denna form erinrar såväl om *H. praevianum* K. Joh. som om
H. diminuens Norrl. och *H. obtextum* Dahlst. och är utan tvifvel
nära besläktad med dem. Från den förra, hvilken den mest liknar
till bladens mörka färg, är den bland annat skild genom längre
och glesare glandar samt längre och grövre holkar med mera mot
basen samlad ludd. Till holkarnas allmänna beklädnad är den
ytterst lik *H. diminuens*, men holkarna äro gröfre och något längre
och fjällen bredare. Från typiska, korttandade exemplar af den
senare skiljes den lätt genom de långa basaltänderna, de bredare
bladen, hvilka ofta hafta mer eller mindre bakåtriktade bastäder
och äro tunnare, ljusare till färgen och rikligare härklädda, men i
nordliga trakter förekomma dock former af *H. diminuens*, hvilkas blad
äro djupare tandade och bredare. I detta fall synes emellertid
alltid holkarnas storlek vara en konstant skillnad. Utan tvifvel är
H. decurrentidens en i sen tid ur *H. diminuens* utbildad nordlig
form. Från *H. obtextum*, hvilken närvarande form mycket liknar
till bladens form och tandning, skiljes den lätt genom mörkare
bladfärg, mörkare och grövre holkar med betydligt svagare ludd i
fjällens kanter, hvilket dessutom ej går så långt upp mot spetsarna
och där utbreder sig mot fjällets rygg. Till stjälkbladets tandning
och form, isynnerhet med afseende på de långa sylvvassa utåt- eller
bakåtriktade basaltänderna, erinrar den ej obetydligt om *H. Nord-
länderi* K. Joh., som dock lätt skiljes genom de mörka korta håren
bland holkfjällens glandar.

Den under namn af *H. farreilimbatum* urskilda formen har, sedan
rikare material ställts till mitt förfogande, visat sig vara en stånd-
ortsform, skild endast genom mera nedlöpande bladbas och kortare
basaltänder.

Sverige: Torne Lappm., Abisko (M. SONDÉN, C. F. SUNDBERG),
Nuoljafjället (M. SONDÉN);
Norge: Tromsö (A. NOTÔ, G. PETERS); Nordreisen, Sörlkosan m.
fl. st. (G. Peters).
H. albovarium Dahlst n. sp.

Ab *H. obtexto* diversum *fol. basalibus* angustioribus, basi magis cuneatis, omnibus minus acutis, dentibus crebrioribus, magis obscure viridibus, in pagina superiore vulgo ± maculatis: caulinis sæpe 2 magis lanceolato-oblongis, sæpius angustius et crebrius dentatis, minus acutis: *inflorescentia* vulgo magis contracta, rannis minus arcuatis acladioque breviore, sæpe brevissimo, glandulis longis—longissimus (sæpe 2—2,5 mm. longis), præsertim in caule superiore, sub involucris et hinc inde etiam in basi involucri evolutis, nec non involucris longioribus, validioribus, floccis in margine sq. exteriorum et apicem versus sq. interiorum densius vestitis.

Genom ofvan anförda karaktärer synes denna art vara väl skild från *H. obtextum*. Får genom sina rikt tandade trubbiga, ofvan vanligen mörkfläckiga blad, den upptill täta inflorescensen med kort akladium och de i synnerhet på övre delen af stjälken, på akladiet, här och hvar under holkarna och stundom på deras basfjäll ytterst långa glanderna ett särdeles karaktäristiskt utseende. Är jämte *H. obtextum* insamlad från talrika lokaler i Lule Lappm. vid Jockmock och är där konstant skild från densamma genom ofvan anförda karaktärer.

Sverige: Lule Lappm., Jockmock (O. VESTERLUND).
<table>
<thead>
<tr>
<th>Hieracium albovarium</th>
<th>Dahlst.</th>
<th>s. 319</th>
</tr>
</thead>
<tbody>
<tr>
<td>cleistogamum</td>
<td></td>
<td>303</td>
</tr>
<tr>
<td>concinnum</td>
<td></td>
<td>306</td>
</tr>
<tr>
<td>crispiforme</td>
<td></td>
<td>303</td>
</tr>
<tr>
<td>decurrentidens</td>
<td></td>
<td>317</td>
</tr>
<tr>
<td>farreilimbatum</td>
<td></td>
<td>317</td>
</tr>
<tr>
<td>fraudans</td>
<td></td>
<td>309</td>
</tr>
<tr>
<td>gyratifrons</td>
<td></td>
<td>307</td>
</tr>
<tr>
<td>halsicum</td>
<td></td>
<td>314</td>
</tr>
<tr>
<td>includens</td>
<td></td>
<td>300</td>
</tr>
<tr>
<td>kirunense</td>
<td></td>
<td>313</td>
</tr>
<tr>
<td>Lundbomii</td>
<td></td>
<td>301</td>
</tr>
<tr>
<td>melanocranum</td>
<td></td>
<td>311</td>
</tr>
<tr>
<td>microcomum</td>
<td></td>
<td>307</td>
</tr>
<tr>
<td>miniarolepium</td>
<td></td>
<td>305</td>
</tr>
<tr>
<td>nautanense</td>
<td></td>
<td>309</td>
</tr>
<tr>
<td>poliosteolum</td>
<td></td>
<td>315</td>
</tr>
<tr>
<td>polysteleum</td>
<td></td>
<td>304</td>
</tr>
<tr>
<td>Sondëni</td>
<td></td>
<td>302</td>
</tr>
</tbody>
</table>
OM ENDEMISMEN OCH DE NYARE ARTBILDNINGSTEORIERNA.

AF

NILS SVEDELIUS.

De Vries' mutationsteori för växtarternas uppkomst har liksom alla mera omhvälffvande vetenskapliga teorier icke enbart inskränt sig till att vidga och fördjupa vår kunskap inom det mer speciella område, där den först tillämpats, nämligen sättet för huru arterna uppstå, utan den har äfven ställt i en klarare dager en hel del andra spörsäm in den botaniska vetenskapen. Så är fallet t. ex. med endemismen inom växtgeografien.

Sedan länge har endemismen eller vissa växtarters ytterst begränsade utbredning ofta varit ett ganska svårförklarligt fenomen att bringa i samklang såväl med teorien om många små, nyttiga egen-skapernas ackumulering som artbildande faktor likasåväl som med läran om selektionen. Vanligen tänker man sig ju endemism uppstå därigenom att en växtart med vid en viss tidsepok stor utbredning i ett sammanhängande areal på olika punkter af detta genom "anpassning" till olikartade klimatiska förhållanden ger upphof till olika, men härav andra närstående arter. Den vidare utvecklingen för kanske sedan med sig, att af olika anledningar stora luckor uppstå i den ursprungliga artens enhetliga utbredningsområde antingen då t. ex. genom olika fördelning af land och haf
eller genom lokala klimatförändringar o. s. v. De nybildade arterna blifäva så begränsade inom hvart och ett af de mindre, af dem bebodda områdena, d. v. s. de äro endemiska. Och när deras respektive utbredningsområden utesluta hwartandra, plägar man äfven kalla dem vikarierande arter.

Men när det gäller växter med ytterst ringa utbredning blir endemismen med hittills rådande teorier om anpassning och selektion sasom artbildande faktorer betydligt mera svårförklarlig. Ty skulle dessa växter verkligen vara anpassade för yttre förhållanden, som endast verkade inom så snäfva gränser som dessa endemiska arter förekomma inom? Detta vore i många fall helt enkelt otänkbart. Man kunde då kanske ofta få en antaglig förklaring i själva växtområdets historia, i det att de yttre lefnadsförhållanden för en ursprungligen mycket utbredd art under jordens vidare utveckling blott bibehållit sig oförändrade inom en mycket inskränkt areal och härigenom har växens utbredningsområde, i forna tider kanske vidsträckt, nu inskränkts till en obetydlig. En sådan växt är då ett exempel på en s. k. reliktendemism. Otvifvelaktigt får på detta sätt många växtarters isolerade förekomst sin naturliga förklaring i florområdets utvecklingshistoria. Men härmed är naturligen ej all endemism förklarad. I många fall är en sådan fordomtima, på grund af förändrade klimatiska eller andra förhållanden vidsträckta utbredning med säkerhet icke påvisad eller ens tänkbar. Så är t. ex. endemism säkert iakttagen inom många tropiska florområden, där otvifvelaktigt inga klimatväxlingar eller andra förändringar inom ofantliga tidrymder ägt rum. Hur skall nu endemismen få sin förklaring där?

Det är ett bidrag till besvarandet af dessa frågor som direktören för den botaniska trädgården i Peradeniya Dr. Willis lämnat genom sina undersökningar öfver vegetationen å berget Ritigala på Ceylon och hvilka offentliggjorts i ofvan citerade publikationer.

Ceylons flora utmärker sig i sin helhet betraktad för en mycket stor procent endemiska arter, nämligen nära 30 % eller omkr. 800 på 3,000 arter. Detta kan icke gärna tillskrifvas en ofullständig kännedom om vegetationen, ty så pass floristiskt utforskad i sina huvuddrag är dock icke blott Ceylon utan äfven grannområdena (Syndindien och malajiska arkepilagen), att denna endemism icke kan tillskrifvas bristande kännedom om arternas verkliga utbredning i öfrigt.

Innan jag öfvergår till redogörelsen för Dr. Willis' undersökningar öfver endemismen på Ceylon, må emellertid lämnas en framställning i största korthet af hufvuddragen af den ceylanska florans sammansättning och hårkomst. Genom ett bergigt högland i det inre afdelas Ceylon liksom i tvenne eller kanske snarare tvenne klimatskt skarpt skilda områden, nämligen: 1) det fuktvarma området i sydväst med endast obetydlig, knappt någon torrtid (under slutet af NO-monsunen): 2) det torra området i nordost med en regntid (under NO-monsunen) och mycket lång torrtid (under SW-monsunen) samt 3) höglandsområdet, som är fuktigt, med nederbörd nästan hela året om. Dessa olika klimatområden bero på monsunvindarna, i det att sydvästmonsunen, som är sommarmonsun (april—oktober), medför ymnig nederbörd åt landet i sydväst och åt höglandet. Det är just detta högland, som verkar afkylande på den fuktighetsmättade hafsvinden och som därför orsakar nederbörd. Men sedan atmosfären så afgifvit sin fuktighet som regn öfver sydvästra Ceylon, har den intet till öfvers för landet i nordost, som därför under denna tid lider af i hållande torka och endast de uppsvällda floderna bära där vittnesbörd om de regnmängder, som falla i höglandet. Under nordostmonsunen åter åro förhållandena omvända. Nu kommer nederbördern öfver landet i nordost och torrtid infaller i sydväst. Men på grund af — bland annat — nordostvindens större fuktighet räcker nordostmonsunen dock till att äfven medföra något regn öfver landet i sydväst, som äfven under nordostmonsunen får sina skurar och således aldrig blir helt utan nederbörd. Detta förorsakar nu en stor olikhet i vegetationens sammansättning, i det att sydvästra Ceylon får en mera rent tropisk prägel och på sina ställen utbildar typisk regnskog, medan nordöstra Ceylon blir underkastad en utprägad, liktidig periodicitet i sin utvecklingscykel, så att t. ex. många lövhållande träd också ingå i dess skogar. Höglandet med sin under hela året tämligen likformigt fördelade nederbörd har den tropiska höglandsflorans typiska natur: låga, knotiga träd med små, läderartade, mångäriga blad med rikt epifyllt af mossor och orkidéer, på samma gång floran äfven är rik på örter.

Utvecklingshistoriskt och växtgeografiskt är området i sydväst nära besläktat med det stora malajiska florområdet — det är således af sydostligt ursprung — medan åter vegetationen i nordost har fullständigt sydindisk karaktär af samma slag som på Coromandelkusten. Höglandsfloran åter med sin relativt stora rikedom på örter är en sydlig af läggare av den centralasiatiska höglandsfloran och
har utanför Ceylon sina närmaste släktingar på de sydindiska höjderna, t. ex. på Nilgiribergen.

Beträffande de endemiska arterna är det nu att märka, att dessa icke åro likformigt fördelade på de olika klimatområdena. Så förekomma så godt som inga endemister inom det torra området i nordost, däremot åro de talrika såväl inom höglandsfloran som inom vissa delar av det fuktvarma sydvästområdet, hvilket åfven hyser endemiska släkten (t. ex. af familjen DipterocarpACEae). Höglandsfloran visar åfven endemismen mycket utprägladt. Men det är anmärkningsvärdt, att om också likheten med Sydindiens bergsflora är stor beträffande släkten, är den ganska ringa beträffande arter, i det att endast ungefär hälften af den ceylanska höglandsflorans arter åfven funna i Sydindien. Således kan om dessa höglandsflorar uttolas den paradoxen, att de både åro hvarandra mycket lika och mycket olika. Så t. ex. af släktet Strobilanthes, som ofta bildar undervegetationen i skogarna på höjderna, har Ceylon 22 arter och Nilgiri-höjderna 29, men endast 2 åro gemensamma! Likaså af Impatiens åro endast 2 arter gemensamma, medan Ceylon har ytterligare 10 endemiska arter och Nilgiri-bergen 30 arter!

Nu har det sedan länge iakttagits, att många af Ceylons högsta berg och ofta just topparna hyser en stor mängd endemiska arter, hvilka där hafva en ytterst begränsad utbredning. Det är en dylik bergstopps vegetation som Dr. Willis nyligen undersökt och skildrat i sitt arbete om floran på Ritigala.

När nu dessa 41 arter uteslutits, så är resten af floran på Ritigalas topp — naturligtvis med undantag af endemisterna — arter, som å Ceylon endast äro funna inom höglandsområdet och hvilka ha sina närmast angränsande stamförvanter minst 7 mil därför,
åtskilda likväl af torr läglandsskog. Då nu alla nivå- och klimat-
förändringar äro ur räkningen, måste alla dessa växter på Ritigala
alltså åtminstone hafta i ett sträck tillirygggalagt minst 7 mil.

Bland dessa märkas nu en hel del, som uppenbarligen trans-
porterats af fåglar. Deras antal är 24. Anmärkas bör, att de, som
inkommit med fåglar, alla äro utmärkta af mycket grant färgade, i
ögonen tällande frukter. Bland dem finnes endast en endemisk form
och denna mycket svagt begränsad, till och med ganska tvifvelaktig
som art betraktad.

Därefter må uteslutas sådana, som transporteras och spridas af
vinden. Härvidlag är man praktiskt taget nästan uteslutande be-
gränsad till orkidéer och ormbunkar jämte ett fåtal arter hörande
till familjerna Composite, Asclepiadaceae och Apocynaceae, emedan,
äfven om organisation lämplig för vindspridning finnes, den dock
i regel icke kommer i tillfälle att transporterata från så särdeles
långt i ett klimat sådant som Ceylons, där vinden alltid är ganska
svag. Ön ligger för nära ekvatorn för att komma inom området
för cyklonerna, och inga skäl föreligga för att antaga, att vindarna
varit starkare någon gång förr än de äro nu. Arter, som sprida-
das med vind, uppgå till ett antal af 49.

Som ofvan nämnts äro ormbunkar dominerande bland dessa,
och härigenom bekräftas den ofta gjorda iakttagelsen, att ormbunkar
ganska lätt kunna spridas på stora sträckor. Också förekomma de
mycket allmänt på oceaniska öar, förutsatt att förhållandena i öfrigt
äro gynnsamma för deras fortkommen. Ritigalas topp är nästan den
enda plats på hela norra Ceylon, som skulle kunna passa för orm-
bunkar och de hafta också talrikt lyckats komma dit och där gjort
sig hemmastadda. Af de nu nämnda, af vinden transporterade arterna
äro 3 endemiska, nämligen 2 orkidéer och en Trichomanes-art. Men
dessa — märk väl — lefva på för vinden ganska otillgängliga lo-
kaler. Trichomanes t. ex. i djupa klyftor och klipphålor och orki-
déerna inne i jungeln, där vinden icke har så lätt att nå dem.

Anmärkas bör, att vinden synes sprida ett större antal arter än
något annat spridningsagens. De vindspridda arterna på Ritigalas
topp representera nämligen 10 % af Ceylons alla dylika arter, de
med fåglar spridda 3,6 % och slutligen de med okändt spridnings-
sätt endast 1,7 %.

Vi hafva nämligen nu till sist omkring 30 arter på Ritigalas topp,
hvilkas spridningsmetod o. s. v. är okänd eller osäker. Om man
nu undersöker dessa något närmare, skall man finna ett ganska
anmärkningsvärd förhållande. Af dessa 30, eller — om vi utesluta några (6) såsom eventuella låglandsarter, hvilka möjligen kunna tänkas i stånd att hafva vandrat steg för steg — af dessa således 24 åro icke mindre än åtminstone 8 endemiska antingen som arter eller varietetar och det på ett så ytterst begränsadt område om några kvadratkilometer som toppen af Ritigala. Af dessa med osäker eller okänd spridningsmöjlighet åro således icke mindre än 33,3 % endemiska d. v. s. en större procent endemister än Ceylon i dess helhet kan uppvisa (jfr ofvan sid. 322).

Alltså hafva vi på Ritigala bland växter från torra området i nordost, hvilkas närvaro där naturligen är lättast förklarad, följande antal endemiska arter: nämligen 1 på 49 (2,1 %); bland öfriga, från andra områden dittransporterade: fördra med fåglar: 1 på 24 (4,2 %); fördra med vinden: 3 på 49 (6,1 %) samt slutligen bland dem med okända eller försvärade spridningsmöjligheter: 8 på 24 (33,3 %). Dessa fakta synas visa, att endemism, om öfriga förhållanden åro lika, står ungefär i proportion till svärligheten för en växt att blifva spridd och komma bort från en viss växplats.

Samma sak framgår äfven af andra omständigheter. Det är ju ett påfallande drag i de tropiska strandflororna, att de över-

allt inom de bägge stora oceanområdena (det atlantiska och det indisk-pacifika) visa stor öfverensstämmelse med hvarandra alldeles oberoende af de floristiska växlingar de olika inlandsvegetationerna än må visa. Mangrovevegetationen t. ex. i Indiska—Stilla Oceanen är ju så godt som likartad inom hela detta väldiga område och några endemiska mangrover äro ju icke kända. Att detta till öfvervägande del får tillskrifvas just strandflorornas gynnsammare spridningsmöj- ligheter äfven långa haftvidder lider väl intet twifvel.

Då nu alla Ritigalas arter måste hafva inkommit och transporteras från de omkringliggande höjderna med spridningsagentier af just samma slag, som verka ännu i denna dag, och Ritigalas endemiska arter icke finnas anorstådes och vidare icke heller några nivåförändringar eller klimatväxlingar hafva ägt rum, som kunna antagas hafva splitterat förut mera utbredda arter, så måste alltså dessa endemiska former antagas hafva uppstått på Ritigala och orsaken till deras endemism ligger i deras stora svårighet att blifva spridda.

Om det således är uppenbart, att floran på Ritigala har invandrat dit på ett sätt, som verkar än i denna dag och alltså också de endemiska arterna uppstått där och icke anorstådes, så frågas: i enlighet med hvilka artbildningsteorier måste detta tänkas hafva skett? Man har da egentligen endast att välja mellan teorien om naturligt urval ur ett ofantligt antal oändligt små variationer eller ock mutationsteorien.

När det nu gäller att förklara en arts uppkomst, måste med antagandet af den första teorien om urval hvarje enstaka artkaraktär hafva:
1) någon praktisk nytt nu,
2) eller haft det fordom antingen i dess nuvarande form eller i förändrad (rudimentära organ),
3) eller vara en korrelationsföreteelse i samband med någon nyttig organisation.

Mutationsteorien däremot fordrar inga sådana nyttiga egenskaper. Mutationerna verka i det hänseendet blindt, fast väl genom urval förr eller senare de alldeles liksodugliga formerna gå under. Hurm ställer sig nu floran på Ritigala med hänsyn till dessa olika teorier? Det har förut visats, att då de yttre förhållandena måste antagas hafta varit oförändrade sen evärdliga tider, de endemiska arterna måste hafta uppstått där på platsen och således alls icke kunna tänkas vara resterna af någon splittrad flora, hvars skilda former nu leva isolerade. Om således teorien om naturligt urval af de nyttigaste bland ett ofantligt antal fluktuationer skulle tillämpas på floran på Ritigala, så måste de endemiska arternas karaktärer vara speciellt nyttiga just på toppen af Ritigala.

Några af de olika karaktärerna må för jämförelse här anföras:

Coleus barbatus Benth.

(Bot. Mag. t. 2318.)

Tämligen allmän på Ceylon och i Indien.

Stam cylindrisk, men fyrkantig i blomregionen.

Stam med långa hår.

Blad ganska tjocka.

Bladskäft kort.

Blommor skenbart kransställda, sittand i tvenne motsatta omkr.-5-bloommiga oskaftade knippen.

Blommor stora omkr. 20 mm. långa.

Coleus elongatus Trim.

(TRIMEN, Handb to the Flora of Ceylon, Pl. 74.)

Endemisk på Ritigala.

Stam öfverallt fyrkantig.

Stam med korta hår.

Blad tunna.

Bladskäft längre och spensligare.

Blommor i tvenne ensidiga, klase-liknande, långt utdragna knippen.

Blommor små (högst 12 mm. långa).
Foder långhårigt.

Foderblad olikstora, bestående av en övre stor och fyra smärrre foderflikar.

Vi kunna vidare icke gärna antaga, att C. barbatus och C. elongatus utvecklats från en gemensam, nu utdöd stamform, ty i så fall skulle ju detta ha skett på Ritigala och hvarför skulle då endast C. barbatus ha spridt sig så vidt omkring både på Ceylon och i Sydindien, men däremot C. elongatus förblifvit kvar?

Huru vi än resonera, måste vi således till slut liksom drifvas till det resultatet, att C. elongatus' utpräglade karaktärer icke kunna tänkas hafta uppstått genom någon stegning af småvariationer, gynnade i kampen för tillvaron, utan de måste hafta uppstått genom diskontinuerlig variation d. v. s. mutation.

Samma resonemang kan nu föras om nästan alla de andra 800 ceylanska endemiska arterna och till sist måste framhållas: om verklig de karaktärer, som utmärka de olika endemiska arterna, vore värdefulla för dem, värdefullare än stamarternas, hvarför äro då endemisterna i allmänhet så sparsamma? Man skulle ju annars i stället vanta, att de skulle vara allmänna, om karaktärerna
verkligen varit gynnsamma för de lokala förhållanden. Men endemic a arter åro nästan alla utmärkta för sällsynthet, ofta åro de på Ceylon begränsade till någon enstaka lokal i en skog eller på en isolerad bergstop eller dyligt. Särskilt det sistnämnda är mycket vanligt och nästan hvarje litet mera afsides belägen ceylansk bergstop hyser någon för den toppen karakteristisk endemist.

Orsaken hvarför just bergstoppar företrädesvis hyssu endemic a arter, fär på grund af hvad ofvan anförs nu sin förklaring i den försvårade spridningen eller ofta rent utaf omöjligheten för en växt att genom successiv vandring, steg för steg, komma från dylika platser. De yttre förhållanden, vegetationsbetingelserna t. ex. vid bergets fot och landet omkring, åro nämligen så olikartade dem på toppen, att en växt utbildad för klimatiska förhållanden o. s. v., såsom råda på toppen, helt enkelt icke kan existera i låglandet. En successiv spridning blir då absolut uteslutlen och äger icke växten i fråga särskild organisation för spridning på länge sträckor genom vind eller djur, så måste den förbli på den plats, där den en gång uppstått, d. v. s. den blir en endemic art för platsen i fråga. På detta sätt förklaras ju också lått öarnas endemism.

Nu ger mutationsteorien en naturlig förklaring å alla dessa fenomen. Endemisterna hafva icke uppstått genom urval ur många små variationer, de åro icke heller 'anpassningar' till några klimatiska förhållanden, som härska just inom de ofta mycket små begränsade områden, där de förekomma, utan de åro helt enkelt mutanter, hvilkas begränsade utbredning beror på deras ringa spridningsmöjligheter. Detta framgår tydligt af Willis' undersökning af floran på Ritagala.

Nu blir det också litet mera förklarligt, hvarför de endemic a arterna på Ceylon företrädesvis förekomma i höglandet samt i de spridda regnskogsområdena i sydvästra Ceylon, däremot alls icke i låglandet i nordost. Såväl på bergen i höglandet, hvilka ofta åro skilda åt af vegetationsbälten af helt annan karaktär som inom de rent tropiska skogsområdena i sydväst, hvilka icke bilda ett sammanhängande helt, utan åro insprängda mellan vegetation af annan natur, förefinnas de bästa betingelserna för endemism, emedan just de erhjuda så talrika växtlokaler med alla förutsättningar att förbliva isolerade. Här inom dessa områden ha vi åfven den del af Ceylons vegetation, som längst har gått sina egna utvecklingsvägar och hvars närmaste stamförvanter åro mest allägset belägna. Den tropiska regnskogen är nämligen af indo-malajisk natur liksom hög-
landsfloran å topparna är af centralasiatiskt ursprung. Florområdet i nordost äremot är åter af rent sydindisk natur, uppenbarligen relativt sent invandrad från det närliggna Indien och hela detta vegetationstäcke bildar ett mera sammanhängande helt, där inga yttre förhållanden framkalla isolerade växtlokaler. Däraf dess brist på endemiska former.

Om således de af Willis undersökta, af mig nu skildrade fallen af endemism å Ceylon få sin naturliga förklaring genom antagandet af en artbildning genom af yttre förhållanden oberoende mutationer, så må dock icke aldeles förbises, att en del systematisk-växtgeografiska undersökningar gifva stöd för att en artbildning äfven synes kunna försiggå på ett annat sätt, hvarvid man icke icke alldeles får bortse från yttre faktorers inflytande på artkaraktären.

Vidare finna vi *R. simplificiflorus* † maderensis och *R. simplificiflorus* † libycus med utbredningsområden, som gränsa intill, men falla utom utbredningsområdet för huvudformen *R. simplificiflorus* † typicus.

Detsamma är slutligen också fallet med *R. vesicarius* † rhodophysa i jämförelse med dess huvudformer.

Då således inom ett stort klimatiskt likformigt område det just är på gränserna, där de klimatiska förhållandena begynna andra karaktär, som underarterna uppstå, så synes detta tala för att de morfollogiska afvikelsena hos underarterna i jämförelse med huvudformens i detta fall äro att tillskriva klimatiskt verkande faktorer. Ett stöd härfor är då också, att just på gränsområdena mellan huvudarterna och de respektive underarterna dessa äro relativt svagast differentierade, med talrika övergångsformer. Det är just här som ett av sannolikhetsbevisen för artbildningen under inflytande av yttre klimatiska faktorer skulle ligga.

Men i de fall, där den nya arten förekommer tillsammans med stamarten, d. v. s. där de respektive arternas utbredningsområde icke utesluta hvarandra (såsom förhållandet är med *R. roseus* och *R. cyprius* samt *R. vesicarius* † typicus och *R. planivalvis*), där kan det väl ändå knappt nekas, att man måste fråga sig, hvarför icke de klimatiska faktorerna då skulle verkat likformigt artombildande på alla, utan som nu tillåta såväl den nybildade arten att trifvas som att stamformen lefver kvar. Man skulle väl snarare vänta sig att alla former ombildades och så till sist stamformen åtminstone genom selektion doge ut, för sa vidt ej en ständig nyinvasion av densamma från angränsande områden måste tänkas alltjämt äga rum. Det kan ju heller icke nekas, att just det förhållandet, att de nya underarterna förekomma på små öar (*R. cyprius* på Cypern, *R. simplificiflorus* † maderensis på Madeira och *R. vesicarius* † rhodophysa på Canarieöarna och angränsande kustremsa) i viss mån skulle snarare tala för en uppkomst genom mutation och endemismen skulle
sen herro på just försvårande spridningsmöjligheter såsom förut ofvan framhållits på tal om endemismen på Ceylon. Men å andra sidan synes närvaron just af ölvergångsformer strida emot detta antagande att här mutationer skulle föreligga.

Men att klimatiska faktorer kunna inverka på typers eller modifikationers (Hedlund) egenskaper vid deras uppkomst är dock icke därför alldeles uteslutet. Vissa iakttagelser öfver vinterhärdfiga hvetsorters uppkomst peka ju åt det hållet.¹

¹ Se härom Tedin, Ytterligare bidrag till kännedomen om hösth vetesorternas vinterhärighet. (Sveriges Utsådesföreningens Tidskrift 11, 1901) samt Hedlund, Om skillnaden mellan Lactuca Chaixii Vill. och L. quercina L. Bot. Not. 1906.
Det ligger ju da också ganska nära till hands att möjigen antaga, att likartade klimatiska förhållanden äfven skulle kunna gifva upphof till likartade arter. Murbeck's undersökningar såväl öfver Gentianorna som nu öfver Rumex vesicarius-gruppen syfta ju otvivelaktigt därhän.

Tydligt är i hvarje fall, att Murbeck genom studiet af dessa nordafrikanska Rumex-arter och deras geografiska utbredning väsentligt ökat de fakta. den Wettstein'ska skolan förut hopbragt, som styrka antagandet, att artbildningen i naturen i hvarje fall synes kunna äga rum på olika vis.

Detta var ju äfven Darwins asikt, fast omständigheterna fogade, att hans efterföljare mera kommo att fästa sig vid den långsamt skeende omvandlingen. Nu ligger problemet annorlunda och med de Vries' mutationsteori har åter den plötsliga, af de yttre förhållanden skenbart oberoende artbildningen ryckt fram i förgrunden som den viktigaste artbildningsmetoden. Huru de olika fakta, som äro hämtade från ett studium af endemismen och som synas tala till förman för det ena eller det andra af dessa sätt för växtarters uppkomst. skola bringas in till förklaring under en enhetlig artbildningsteori. det blir väl den kommande forskningen förbehållet att uppvisa.
NÅGRA ORD OM DE I STOCKHOLMSTRAKTEN FÖREKOMMANDE PARMELIA-ARTERNA AF UNDERSLÄKTET HYPOGYMINA.

AF
GUST. O. A:N MALME.

Värdet af Bitter's arbete och de af honom uppstålda i Sverige förekommande arterna har dragits i tvivel af Birger Nilson, 2 som synes hålla före, att P. tubulosa och P. farinacea icke äro någon ting annat än genom afvikande belysnings- och fuktighetsförhållanden frambragta individuella modifikationer af P. physodes. Anmärkas bör, att Nilson stöder sitt uttalande så godt som uteslutande på teoretiska spekulationer och att han icke ens sett P. farinacea, långt mindre underkastad den en erforderlig undersökning i naturen. Att under sådana förhållanden hans omdöme är utan reell betydelse, torde ligga i öppen dag.

För att i någon mån fylla den lucka, som förefinnes i känndomen om de ifrågavarande växternas utbredning och frekvens i

1 Zur Morphologic und Systematik von Parmelia, Untergattung Hypogymnia.
vårt land, äfvensom för att skaffa mig en på iakttagelser i naturen grundad uppfattning af desamma ägnade jag dem sistförflutna sommar min uppmärksamhet. Då de till följd af sin storlek och sin karakteristiska habitus lätt kunna urskiljas och igenkännas även af den, som ej speciellt sysslats med lafvar, har jag ansett det icke vara ur vägen att för Svensk botanisk tidskrifts läsare i korthet påpeka resultatet af mina iakttagelser.

Efter Nylanders föredöme har P. villata af senare svenska lichenologiska författare, t. ex. J. Hulting, behandlats som särskild art. P. tubulosa har hos E. Wainio rangen af var.; och enligt Bitter har samma finska lichenolog på etiketter benämnt P. farinacea »P. physodes f. sorediata«, men huruvida detta namn offentliggjorts, har jag ej lyckats utröna.

Mina undersökningar sistförflutna sommar inskränkte sig till St. Malm som på Värmdön nödgades jag begränsa mina exkursioner till ett litet område med föga mer än tre kilometers radie. På hösten

1 Adjuncta ad lichenographiam Lapponiæ fennicae atque Fenniæ borealis (1881), p. 126.
företogos några andra exkursioner i Stockholmstrakten, t. ex. till Stäket (Almareätäket), Järfvä och Nackanäs. Endast tre af de för Sverige uppgifna arterna anträffades, men dessa äro just de, om hvilka meningarna varit mest delade, nämligen P. physodes (i inskränkt bemärkelse), P. tubulosa och P. farinacea.

P. physodes (i inskränkt bemärkelse) visade sig öfverallt vara den vanligaste och på samma gång den, som kunde fortkomma under de mest olikartade yttre förhållanden. Bålen smyger sig mindre tätt till underlaget än hos P. farinacea. Dess flikar ligga vanlig ganska nära intill hvarandra, kunna dock stundom vara rätt långt åtskillda och ågo (liksom hos P. farinacea) städse i torrt tillstånd tillplattade. Växande på horisontellt underlag utbreder den sig likformigt åt alla sider. Ofta växa yngre bålilikar öfver äldre, och en eller annan höjer sig snedt upp ifrån substratet. På vertikalt underlag utbreder den sig tämligen likformigt uppåt och åt sidorna; på den nedre sidan ställa sig däremot flikarna mer eller mindre rent horisontellt, blifva korta och brytas ganska tidigt utaf. Bålen antager därför där mer eller mindre tydligt formen af en halfcirkel. Soredier bildas endast apikalt på bålilikarna, företrädesvis på sådana, som höja sig från underlaget; spetsen på fliken spricker upp,
och på undersidan af den mer eller mindre tillbakaböjda öfverläppen af den sålunda bildade öppningen alstras soredierna. I ett par fall har jag dessutom funnit sorediebildning afven på apotheciernas bålkant. Understundom anträffar man visserligen soredier strödda på bålens öfversida, men dessa äro ditförda af vinden och hafva ej alstras, där de ligga, något som otvetydigt framgår däraf, att barklagret där är sammanhängande. Apothecier anträffas mångenstädes, men i allmänhet i ringa mångd.

I korthet kunna de vid vanlig lupförstoring märkbara olikheterna mellan de ofvan skildrade arterna sammanfattas på följande sätt, hvorvid bör anmärkas, att de alla tre hafva ihåliga bålflikar, som, när de äro tillplattade, vid anfuktning svälla upp särskilt i spetsen.

P. farinacea Bitter.

Bål smygande tätt intill underlaget, med tätt intill varandra ligande, tillplattade flikar, som afven på vertikalt substrat utbreda sig likformigt åt alla sider. Sorediebildning på bålens centrala delar, diffus.

P. physodes (L.) Acharius (excl. varr. nonnullis).

Bål smygande mindre tätt till underlaget, med vanligen tätt intill varandra ligande, tillplattade flikar, som på vertikalt substrat utbreda sig likformigt endast uppåt och åt sidorna. Sorediebildning inuti den sig öppnande spetsen af vanligen snedt uppåtriktade eller uppstigande bålflikar.
P. tubulosa (Hagen) Bitter.\(^1\)

De flesta bålflikarna uppstigande eller snedt uppåtriktade, nästan cylindriska; de nedliggande långt åtskillda från hvarandra. Sorediebildning på skarpt begränsade fläckar, ytligt på den uppbästa, ej uppbristande spetsen af uppåtriktade bålflikar.

Anmärkningsvärdt är, att sistnämnda art, som att döma efter förhållandet i Stockholmsstrakten ingalunda är sällsynt i vårt land, så godt som fullständigt undgått de svenska lichenologernas uppmärksamhet. Förutom det ofvan anförda omnämndet af den-

\(^1\) Bitter anför som auktor för varietetsnamnet tubulosa ScherER och citerar Enumeratio: där citerar dock ScherER själf Spicilegium, hvilket arbete alltså är källan för namnet, om ScherER skall betecknas som auktor.

»Apices lobulorum farina concolor adspersi sunt«, hvilket ju särdeles väl passar in på P. tubulosa. Om Lichen physodes heter det däremot (p. 77):

»Ramuli tubuliformes in juniori plantula clausi deprehenduntur, dum vero adultior fit, foraminulo rotundo perforantur et hiatus».

OM FÖREKOMSTEN AF BETA MARITIMA
PÅ SVERIGES VÄSTKUST.
AF
GUNNAR ANDERSSON.

Under ett uppehåll vid Skeldervikens (Engelholmshamn) badort sistlidne sommar (1907) meddelade mig en dag h:radshöfding L. Améen, att hans flicka funnit en växt på stranden, som han icke var i stand att bestämma med tillhjälp af floran. Då jag blef i tillfälle att se densamma, visade det sig, att ett stånd af Beta mari-
tima L. anträffats. Detta fynd af en för Sveriges flora ny art har ett ganska stort växtgeografiskt intresse och är därförme i sin män egnad att bidraga till kännedomen om växternas spridning genom strömmar i havnet, hvadan detsamma hår torde i korthet börja om-
nämnnas. Detta är så mycket mera fallet sedan jag från prof. E. War-
ing erhållit underrättelse, att den 8 sept. d. a. vid en exkursion

till Kullen »stud. mag. Gunnar Teglberg fandt et Exemplar af Beta maritima på sydsiden i Strandgruset».

Till Red. af tidskriften har ock från telegrafassistenten herr Th. Lange ingått nedanstående meddelande angående ett högst intres-
sant fynd af arten i Bohuslän:

»Under en utflykt i Göteborgs skärgård sistlidne september an-
träffade jag å en af de yttre öarna, Vargö, en del exemplar af Beta
maritima växande bland gruset vid själliva hafsstranden tillsam-
mans med andra hafsstrandväxter, såsom Atriplices, Suæda m. fl.;
den tycktes trifvas utmärkt, hvarför det är att hoppas, att den bör
kunna fortvara.»

En närmare beskrifning af de punkter, på hvilka fynden gjorts,
bör hår ej lämnas af hänsyn till att rofgriga växtsamlare lätt
då kunde uppsnoka och borttaga exemplaren och dessas afkomma,
som då icke finge tillfälle att spontant föröka sig, om de det
mäkta.

1 Enligt meddelande af kand. S. Birger är Beta maritima 1890 tagen som ballast-
växt af J. A. Holm vid Skönvik i Medelpad.
Angående lokalen vid Skelderviken må dock ytterligare något nämnas. Utmed Skeldervikens norra sida utgöres stranden i stor utsträckning av en erosionsterrass, i vilken vågorna bortsköltt finmaterialet i moränen, hvadan ytan utgöres av en blockstrand, som mellan låg- och lågvatten har växlande bredd. Vanligen dock ett par tre tiotal meter samt i vertikal riktning enligt skattning c. 2—3 m. Markytan intages här av huvudstora eller större block.

Under ett ungefär meterstort sådant block, hvars ena kant snedt utsköts träffades ett ganska stort exemplar av *Beta maritima*. Det växte vid ca 2/3 av skillnaden mellan hög- och lågvatten. 1/3 under det förras gräns något mer än 1 m. över medelvatten. Typen är den vanliga: köttiga, rombiska stjälkblad — rotbladen voro bortvissnade — samt nedliggande, starkt grenig blomställning ca 1 m. lång. Oaktadt ifrigt letande i omgivningarna kunde endast detta enda exemplar anträffas. Den öfriga vegetationen utgjordes av mellan stenarna spridt växande individ av nedanstående arter. Det lider intet tvifvel, att växternas rötter mellan blocken lått nog kunna söka sig ned i underliggande outtvättade leriga moräner, hvilken här och i området på grund av utglidning i grundvattensnivån är synlig.

Nu beskrifna lokal, blockstrand upp mot högvattensgränsen, är uppenbarligen alldeles likartad den där *Beta maritima* träffas inom sitt egentliga utbredningsområde i det skandinaviskt-danska flornärområdet, nämligen utmed stränderna av Stora hält. — Vid ett besök i Köpenhamn genomgick jag i Botaniska museet befintliga samlingar av *Beta maritima* och genom väntligt biträde av museinspektör C.H. Ostenfeld kunde jag upprätta en karta, som här återgivves öfver de danska fyndorterna enligt exemplar i museet och enligt uppgifterna i de danska floristiska arbetena, i främsta rummet Langes. **1**

1 Utom Langes flora 4:de uppl. har använtits Rettelser och tillföljelser till Haanbog i den danske Flora. Köpenhamn 1897, sid. 15.
I Danmark har *Beta maritima* som sagt en väsentlig till Stora Bält begränsad utbredning, i det att alla de omkring 24 kända lokalerna träffas utmed dettans stränder; enda undantag är Hirtsholms-

...

Omgivningen af *Beta maritima* omfattar i huvudsak långsträngade, naturliga sandstränder och situationer som är de enklaste och de mest naturliga. I detta avseende är det inte allmänt påstått att *B. maritima* är en art som utvecklas i syfte att förbättra sandstränder och sina önskedar omgivningar, utan att det är allmänt accepterat att den är en art som utvecklas i syfte att förbättra sandstränder och sina önskedar omgivningar.

1. I Langes flora uppgiftes även att arten skulle finnas på ”Vestkanten” af Jylland, dock utan närmare lokaluppgift. Intet exemplar härifrån finnes i Botanisk Museums samlingar i Köpenhamn.

okt. 1891) unga exemplar af B. maritima från Mullerups hamn längs Bältets strand förbi Drösselberg till Blidsö skog »i saadan

Mängde, at jeg talte over hundrede Planter paa en Strækning af mindre end en halv Mil⁰. Detta förundrade M. mycket, då han sedan 1886 hade passerat denna sträcka ett par gånger om året, utan att finna något exemplar. Alla de funna voro unga plantor
och icke enda var i frukt. Större delen förstördes för öfrigt vid en följande stormflod. M. anser, att alla dessa plantor med en stormflod sprids »fra det närliggende Rersö eller Musholm och besaaret Kysten». Han företog också försök angående flytformågan hos torra och fuktiga frukter af strandbetan och fann att de förra »to Dage efter, at jeg havde lagt en del Frugter i Vand, sank de dog nästen alle til Bunds, da jeg rystede Flaskan». Våta frukter sjönko i regel efter ca 18 timmar, några höllo sig dock flytande i öfver två dygn. Om man har rätt att generalisera dessa försök till alla mogenhetsgrader och alla salthalter i vattnet är kanske osäkert.

Det synes mig ytterst sannolikt att Beta maritima sprids från sitt centrum kring Stora bält under särskilt gynnsamma förhållanden dels mot norr till öarna vid Jyllands nordspets, dels till Kullen, Skelderviken och Göteborgstrakten. Ett omsorgsfullt eftersökande på Hallandsashalföns blockstränder och framför allt på Hallands Väderö och kringliggande skär skulle möjligen låta oss lära känna flera lokaler för dennaart, som har sin egentliga utbredning utmed Europas sydligare kuster, ända bort till Kaspiska havet och Indiska oceanen.

Tillägg. Dagen innan ofvanstående skulle gå i präss, erhöll jag från docenten H. Simmons i Lund meddelande, att åfven han sommaren 1907 anträffat Beta maritima vid Mölle, att arten 1906 af E. Broddesox funnits vid Skelderviken, dock »säkert icke vid Engelholms hamn«, att i Lunds universitets botaniska instituts herbarium finnes »ett ungt, sterilt exemplar från Hallands Väderö, taget af L. Holmström«.

De ej få iakttagelser, som nu föreligga, synas göra det sannolikt att 1905 hafsströmmarna varit särdeles ägnade att förmedla frö-spridning från Bälten mot NO till den svenska västkusten. Någon granskning af de hydrografiska och meteorologiska förhållandena under denna tidsperiod har jag emellertid ej medhunnit.

Finge nu dylika rötter, som vuxit i kloralhydratlösning, växa under normala förhållanden en längre eller kortare tid så visade det sig, att i de två-kärniga cellerna kärnor förenade sig till en stor dubbelkärna och vidare att normala förhållanden såtillvida inträdde, att cellerna i rotspetsen åter började dela sig, hvarvid åfven de nämnda -dubbelkärnnorna delade sig karyokinetiskt. Dessa ha bildats genom förening af två diploida kärnor, (s. k. syndiploida kärnor, enl. Strasburger), ha alltså i detta fall kromosomtalet 28. NÉMEC fann vidare att efter en tids förlopp dylika syndiploida kärndelningar blefvo allt sällsyntare och slutligen alldeles upphörde: alla kärndelningar i de kloraliserade rötterna voro slutligen normala, med det diploida kromosomtalet. Enligt NÉMECS åsikt kan detta ej förklaras uteslutande genom antagandet, att de

Svensk Botanisk Tidskrift.
syndiploida cellerna kommit in i roten sträckningsregion, utan han antager att i dylika celler en särskild delning av cellkärnan kan åga rum, hvarigenom kromosomtalet återföres till det diploida. Han afbildar ett fall, som enligt hans åsikt skulle kunna ge anledning till antagandet, att en reduktionsdelning förekommer i dessa kärnor.

Strasburger har nu företagit en omfattande undersökning av kloraliserade rötters cytologiska förhållanden, men därjämte en granskning af de uppgifter som finnas om förekomsten af ymphyrider, både från cytologisk och historisk synpunkt.

De resultat han därvid ernått äro i korthet följande:

Hvad speciellt beträffar den af Némec som bevis för en reduktionsdelning publicerade figuren, så har nog Strasburger ganska rätt i sin uppfattning att den bevisar skäligen litet. Det enda märkvärdiga med densamma är, att cellen är så mycket större än kringliggande och man därför väntar sig ett större kromosomtal än hvad figuren anger.

Vidare söker Strasburger, genom en ganska ingående granskning af de historiska dokumenterna beträffande uppträdandet af ymphyrider visa att ännu så länge är dessas ursprung åtminstone ganska tvivelaktigt. Och frågan är om ej i vissa fall ympkvisten själf redan varit en hybrid. En utförlig behandling ägnas den
egendomliga Citrus-formen Bizarría, hvarur till fall evidens framgår att densamma ej är att uppfatta som en ymphybrid, utan enligt alla tillgängliga historiska källor är en verklig fröhybrid mellan apelsin- och citron-former (»cedrat« m. fl.).

Särskilt egendomlig är den af Noll undersökta »ymphybriden» mellan Crataegus monogyna och Mespilus germanica som växer i Bronvaux i närheten af Metz. Underlaget för densamma är en mer än 100-årig Crataegus monogyna. Omedelbart under det ställe, där en kvist af Mespilus germanica inympats, utgå från olika håll omkring stammen 4 kvistar, som förete en blandning af de nämnda arternas egenskaper. Strasburger är ej böjd att anse dessa skott som ymphybrider, utan han försöker en annan förklaring. Man kunde tänka sig att ursprungligen en kvist af en verklig hybrid ymпатs på Crataegus monogyna, och, även om det ej just är sannolikt att denna slog tillbaka i en Mespilus germanica, sa kunde man tänka sig att denna art ymпатs på hybriden vid dess has och att denna sedermera bortskurits så när som till ympstället. »Das mag unwahrscheinlich sein, lässt sich nicht erweisen, ist aber sicher nicht ganz ausgeschlossen.» Anmärkningsvärdt är just att här detta ejest så ytterligt sällsynta fenomen skulle visat sig ej en gång utan flera gånger under årens lopp.

Strasburgers tvifvel på möjligheten af ymphybrider i allmänhet synas berättigade »so lange als für das Zustandekommen von Pfropfhybriden nur nachträglich gemachte Wahrnehmungen angeführt werden können, so lange es in einem Worte nicht gelang, Pfropfhybride willkürlich hervorzubringen und in ihrer Entstehung zu verfolgen«.

Hvilken ställning man än intager till den nämnda frågan, är det i alla fall klart att resultaten af Nemec's undersökningar af klorali-serade rötter ej lämna något stöd för uppfattningen att en karn-sammansmältning med efterföljande reduktionsdelning vid ymp-stället kan vara upphofvet till »ymphybrider«.

Strasburger tillägger: »Bei alledem ist es klar, dass wenn auch alle theoretischen Erwägungen, die auf Grund bekannter Tatsachen sich jetzt anstellen lassen, gegen die Annahme von Pfropfhybriden sprechen würden, sie den Tatsachen sich zu fügen hätten, mit dem Augenblick, wo die Existenz derartiger Hybriden erwiesen wäre. Dann läge eben der Beweis vor, dass die vorhandenen Theorien nicht zutreffen, oder nicht für alle Fälle reichen, und dass sie ent-weder aufgegeben oder erweitert werden müssen.«
LITTERATUR.

SMÄRRE MEDDELANDE.

Erythraea vulgaris (Rafn) Willd. ånyo funnen i Medelpad.

Några bladrosetter af groddplantor kunde ej upptäckas, och det skall bli intressant att ett följande år få se, huruvida växten på denna plats kan bibehålla sig efter de ogyttiga förhållanden, varunder den i år lefvan.

Sundsvall i sept. 1907.
E. COLLINDER.

Främlingar på Kalmar hamn.

På utfyllningarna inom Kalmar hamnområdes hastigt kommande år infunnt sig åtskilliga främlingar, hittills sällan eller ej alls påträffade på svensk mark. Till namnet har undecknad kunna bestämma följande:

Caucalis latifolia L., blott enstaka exemplar, på grund af den magra växtplatsen obetydliga, men blommande med vackert rödlätta blommor och fruktificerande.

Nasturtium austriacum Crantz. Sannolikt blott ett exemplar, men med talrika stjälkar, fruktificerande.

Salvia sylvestris L. Ett exemplar.

Rapistrum rugosum All. Frodig och i tämligen talrika exemplar. Först iakttagen af tandläkare HAGLUND.

Potentilla canescens Besser. Ett exemplar, redan under fjolåret iakttaget af kandidat MEDELJUS.

Dessutom har iakttagits en Aster i frodliga exemplar, men ej blommande på grund af den regniga sommaren.

Ytterligare må nämnas Sisymbrium altissimum, numera allmän på utfyllningarna, Sisymbrium Loeceii, Lepidium Draba, Erigeron canadensis och Brassica juncea (?).

Dr. ALBERT ATTERBERG.

Pris: 10 Kr. (11 Mark).

ALMQVIST & WIKSELL, Upsala.

R. FRIEDLÄNDER & SOHN, Berlin (11 Carlstr.).

PORTRÄTT af Professor F. R. KJELLMAN
(i ljustryck)

Pris: 1 Kr.

genom Botaniska Sektionens sekreterare, Upsala.
3) Växtnamn i texten sättas med kursiv stil (enkelt understruket i manuskriptet).

4) Spårrad stil tillåtes icke.

Citeringar bör ske genom hänvisningar till en afhandlingen bifogad litteraturförteckning. Noter under texten bör så vidt möjligt undvikas.

Det är redaktionens mening att, efter det redaktionskommittén antagit en afhandling till införande i tidskriften, omedelbart befordra densamma till trycket, så att författaren kan erhålla separat af densamma även innan det häfte utkommit, i hvilket afhandling inflyter.

Korrektur och andra handlingar, som röra tidskriften, insändas direkt till redaktören. Direkt förbindelse mellan författaren och tryckeriet får ej äga rum.

Hvarje författare erhåller 100 särtryck med omslag afgiftsfritt af sin i tidskriften intagna afhandling; större antal efter öfverenskommelse. Af smärre meddelanden intagna i tidskriftens borgis-afdelning lämnas separat endast efter särskild öfverenskommelse.
INNEHÅLLSFÖRTECKNING.

H. DAHLSTEDT: Hieracier från Torne Lappmark och närgränsande områden ... 299
N. SVEDELIUS: Om endemismen och de nyare artbildningsteorierna 321
G. O. MALME: Några ord om de i Stockholmstrakten förekommande Parmelia-arterna af undersläktet Hypogymina .. 336
G. ANDERSSON: Om förekomsten af Beta maritima på Sveriges västkust 342
O. ROSENBERG: Till kändedomen om myphybrider 347

SMÄRRE MEDDELANDEN:
Främlingar på Kalmar hamn .. 352
Erythraea vulgaris (Rafn) Willd. änyo funnen i Medelpad 352

Utgivet den 14 December 1907
Svensk Botanisk Tidskrift

Utgifven af
Svenska Botaniska Föreningen

Redaktör: Dr. O. ROSENBERG

BAND 1 1907 HÄFTE 4
SVENSKA BOTANISKA FÖRENINGENS
styrelse och redaktionskommitté
under år 1908.

Styrelse:
V. B. WITTRÖCK, ordförande; R. SERNANDER, vice ordförande;
O. ROSENBERG, sekreterare och redaktör; G. INDEBETOU, skatt-
ämstare; J. BERGGREN, K. BOHLIN, HJ. NILSSON, O. JUEL,
G. LAGERHEIM, G. MALME, M. SONDÉN.

Redaktionskommitté:
O. ROSENBERG, K. BOHLIN, G. LAGERHEIM, N. SVEDELIUS,
R. SERNANDER.

SVENSK BOTANISK TIDSKRIFT utkommer i fyra häften årligen.
Prenumerationsafgiften (för personer ej tillhörande Svenska Bo-
taniska Föreningen) är 15 kronor.
Medlemsafgiften, 10 kronor, torde snarast insändas till föreningens skattmästare, fondhäklares G. Indebetou, adr. Kungsträd-
gårdssten 4, Stockholm 5.

Till tidskriftens medarbetare!

Samtliga manuskript till Svensk Botanisk Tidskrift skola in-
lämnas i fullt tryckfårdigt skick till tidskriftens redaktör, docenten
O. Rosenberg, Stockholm, Tegnérstaden 4. Redaktionskommittén af-
gör om insända afhandlingars intagande i tidskriften. Antalet plan-
scher och figurer till hvarje afhandling, som kunna af tidskriftens
medel bekostas, bestämmes af redaktionskommittén i samråd med
författaren, likaså hvilka reproduktionsmetoder, som böra komma
till användning, och liknande angelägenheter.

Med afseende på stilblandningar gälla följande regler:
1) Auktorsnamn sättas med vanlig stil.
2) Personnamn i texten sättas med KAPITÄLER (dubbelt understru-
ket i manuskriptet).
Antalet blad i blommans olika kransar är, som bekant, hos många växter underkastadt betydliga växlingar. *Naumburgia thyrsiflora* (L.) Reich., *Trientalis europaea* L. och *Sempervivum tectorum* L. erbjuda i det hänseendet allbekanta exempel. Oftast förhåller det sig så, att ett bestämt antal, t. ex. 7 hos *Trientalis*, 5 hos *Fragaria vesca* L., 4 hos *Potentilla erecta* (L.) Hampe, uppträder i de flesta blommorna hos samma art och därför betraktas som det för densamma normala: andra tal betecknas som (vanligare eller sällsyntare) avvikelser.

Afvikelserna kunna i vissa fall gruppera sig i det närmaste likformigt på båda sidorna, på +sidan och —sidan, t. ex. hos *Fragaria vesca*¹ och *Pyrola uniflora* L., eller hufvudsakligen samla sig på den ena, t. ex. på +sidan hos *Potentilla erecta*, *Campanula rotundifolia* L. och *Solanum tuberosum* L., på —sidan hos *Myrtillus niger* Gilib., *Myrtillus uliginosa* (L.) Drej. (hos hvilka båda 5-talet är det vanligaste) och *Sedum sexangulare* L. När blommorna åro samlade i blomställningar, kunna de förhålla sig olika i olika delar av dessa. Hos *Menyanthes trifoliata* L.² t. ex. gruppera sig afvikelserna i toppblomman och de nedersta blommorna i inflorescensen (särskildt i toppblommorna i partialinflorescenserna, om såsom ofta är fallet, blom-

¹ Som exempel anföras här växter, dem jag själf varit i tillfälle att undersöka i ett stort antal exemplar.

² Afvikelserna i blommans byggnad hos denna växt hafta under sistförflutna sommar undersökts af fröken M. Geijer: det är att hoppas, att resultaten snart skola offentliggöras.

Svensk Botanisk Tidskrift.
mor utveckla sig i förbladens axiller i nedre delen af inflorescensen och denna sålunda i verkligheten blir sammansatt) på +sidan, under det att de i övre delen af inflorescensen gruppera sig huvudsakligen på —sidan. Med andra ord uttryckt, hos vissa växter leda afvikelserna än till polymeri, än till oligomeri, hos andra öfvervägande till polymeri, hos åter andra öfvervägande till oligomeri.

Finner man l. ex. hos *Potentilla erecta*, som ju typiskt har fyraliga blommor, att en hög procent (mera än en tredjedel) utgöres av antingen normalt femtaliga blommor eller sådana, som i ett eller annat afseende tendera mot 5-talet, ligger det nära till hands att antaga, att afvikelser beror på atavism, då ju artens samsläktingar harva typiskt femtaliga blommor. Jag vill visserligen ej förneka, att så möjliga kan vara fallet, men enligt min öfvertygelse vore det förhastadt och orightigt att bestämdt påstå, att så nödvändigtvis är fallet. Hos andra växter tendera afvikelserna lika otvetydigt bort från släktets eller gruppens grundtyp. I kortet vill jag här påpeka ett exempel, som belyser detta mitt påstående och på samma gång uppvisa ett och annat af intresse även i andra afseenden.

Under kortare besök i min hembygd, St. Malms skogsbygd i sydvästra Södermanland, i slutet af juni och början af juli 1905 och vid samma tid 1907 ägnade jag någon uppmärksamhet åt den därställda ymnigt förekommande *Gentiana campestris* L. Det frappera mig därför mycket snart, att de från bladvecken utgående blommorna ofta hade treflådd krona. En undersökning visade, att dessa blommor vanligen voro normalt tretaliga äfven i fråga om foder och ståndare. Topplommorna däremot företedde mera sällan

1 Den vid denna tid undersökta och insamlade växten tillhör elementararten *sueica* (Froel.) Murb. Vid ett tillfälligt besök i trakten i augusti 1905 insamlades äfven *germanica* (Froel.) Murb., men någon undersökning af afvikelser hos denna medhanns icke.

En skillnad mellan dessa båda elementararter, som ej med tillräcklig skärpa framhållits, ligger i akladets olika längd; hos *sueica* är detta i allmänhet lika långt eller längre än blommen, hos *germanica* däremot betydligt kortare. Hos den första har jag observerat blad endast på de biaxlar, som utgå af den basala bladrosetten och hvilka alltså kunna vara 3-, någon gång flerblommiga. Hos *germanica* finnas i regeln blad äfven på de grenar, som utgå upptill på stjälken (däraf ”rami pauci- v. pluriflori”), hvilket i hög grad bidrager att förlåna den en annan habitus.

Germanica (Froel.) Murb. som namn på en elementarart torde enligt de internationella nomenklatureglererna näppeligen få bibehållas (jfr art. 53), då det, redan innan den Froelichska varieteten upphöjdes till art, fanns en *Gentiana germanica* Willd.

Diagrammet för de axillära blommorna hos Gentiana campestris är i korthet följande. Förblad saknas. De båda större foderbladen falla i transversalplanet eller med andra ord äro sidoställda (deras kanter löpa ned på blomskaftet, hvilket därför är försedt med fyra skarpa äsar eller lister): de mindre stå mediant. De fyra kronbladen alternera med foderbladen och ståndarna i sin tur med kronbladen, så att två komma att stå mediant. Fruktbladen stå i de allra flesta fall mediant: de intaga alltså den ställning, som enligt A. W. Eichler (Blüthendiagramme. I. p. 248) skall utmärka fyrtaliga gentianaceblommor med förblad. 2 I endast fyra fall har jag

2 Eichler framhåller dock att denna regel lider af åtskilliga undantag.

Enligt Döll. Flora des Grossherzogthums Baden. II (1859). p. 797, stå frukt bladen i de fyrtaliga axillära blommorna hos Gentiana cruciata L. i transversal
fannit axillära, fyrataliga blommor med i transversalplanet stående fruktblad. Två av dessa anträffades på ett och samma individ, hvars öfriga blommor i detta hänseende voro af vanlig beskaffenhet. De två andra förekommo på individ, hvilkas toppblomma visade samma avvikelse, i det att de båda fruktbladen stodo innanför de större foderbladen; de öfriga axillära blommorna hade däremot mediana fruktblad.

Mycket ofta finns mellan blomskafteet och stödjebladet en blomma, som kommer till utveckling senare. Dess orientering i förhållande till huvudaxeln är densamma. Man har här således att göra med i (longitudinell) serie anordnade knoppar, som utveckla sig i basispetal följd. När hos ett undersökt individ i två hvarandra motsatta bladveck denna blomma satt näst på den först utvecklades skaff, förelåg således en sammanväxning. Hade ej detta varit fallet, skulle nödvändigtvis dess större foderblad legat i medianplanet i förhållande till axeln af första ordningen. I tre dylika sig senare utvecklade blommor har jag funnit i transversalplanet liggande fruktblad; i intet af dessa fall upprivas de tidigare utvecklade blommorna i samma bladveck denna afvikande fruktbladsställning.

Toppblommans diagram är i tillämpliga delar detsamma. Fruktbladen stå i regeln innanför de båda mindre foderbladen. Dock synes det motsatta förhållandet här vara något vanligare än i de axillära blommorna. i det betydligt mindre (vid pass en fjärdedel sa stora) antal toppblommor, som undersöks, hafta anträffats fyra normalt fyrataliga med innanför de större foderbladen stående fruktblad. Denna fruktbladens växlande ställning är något synnerligen egendomligt, det jag konstaterar utan att kunna på något sätt förklara detsamma.¹

Hvad Gentiana campestris beträffar, som på grund af foderbladens ställning kan med bestämndhet sägas redan till anlaget sakna förblad, kan möjligen den tidiga och starka utvecklingen af de sidoställda foderbladen hafta betingat den ställning, som
Såsom redan ofvan påpekades, anträffas hos Gentiana campestris ej sällan axillära blommor, som äro tretaliga i krona och androecium: mer än ett hundra sådana hafva undersökts. Många gånger visade sig de flesta blommorna på samma individ vara så beskaffade: i andra fall förhöll sig endast en eller annan på detta sätt och då huvudsakligen sådana, som sutto vid de öfversta bladparen. Fruktbladen, voro hos dessa blommor alltid två och mediana. I fodret var det städse det ena av de båda mindre bladen, nämligen det bakre (in emot huvudaxeln sittande), som undergått reduktion. Än saknades det helt och hållet, och i så fall var blomskafset endast försedd med tre åsar, af hvilka dock den bakre var mer eller mindre tydligt dubbel: än var det tillstädes i form av ett större eller mindre rudiment eller åtminstone betydligt mindre än det främre, och i så fall var visserligen blomskafset försedd med fyra åsar, men de båda bakre voro mer eller mindre närmade hvarandra. De tre kronbladen voro vanligen lika stora, och ett af dem var städse vändt mot huvudaxeln. Dessa tretaliga blommor följa alltså i fråga om orienteringen den allmänna regeln för blommor utan förblad (jfr Eichler, Bläthendiagramme. I, p. 31).

Fränsedt foderbladen, visade sig öfvergångar mellan tre- och fyrtalighet i de axillära blommorna skäligen sällsamma. I ett par fall hade i blommor med fyrtalig krona den bakre mediana ständaren slagit fel eller var förkrympt. I några andra fall var i tretaliga blommor det bakre kronbladet större än de öfriga, och ett par gånger fann jag detta kronblad grundt klutfet och innanför detsamma en fjärde fullständig eller rudimentär ständare.

Tretalighet i de ofvan omnämnda framför stående, senare sig utvecklande blommorna visade sig vara lika vanlig som i de tidigare och stod ej i något beroende af tretalighet i dessa: det kan hända att båda blommorna i samma bladveck äro tretaliga (lika väl som båda fyrtaliga), eller att den tidigare är tretalig, den senare fyrtalig och vice versa.

Afvikelser i riktning mot tretalighet i toppblomman har jag iakttagit mycket sällan. På ett individ, som hade mellanbladen ordnade i krans med tre i hvarje och en eller två blommor i hvarje fruktbladen i mer än nittionio fall af hundra intaga. En tanke i den riktningen synes hafva föresvävats E. Gilg, när han [Engler & Prantl, Die natür. Pflanzenfam. IV: 2 1895], p. 35] säger: \"Ich möchte glauben, dass wir es hier mit Druckwirkungen der einzelnen Blätterstelle auf einander zu thun haben, welche ja häufig in gewisser Weise zu variieren pflegen.\"
bladveck, funnos i toppblomman endast tre foderblad, och dessa alternerade med de tre öfversta mellanbladen. De voro sins emellan lika stora och erinrade till formen om de båda större foderbladen i en normalt utvecklad blomma. Krona och androeceum voro tretaliga med normal anordning i förhållande till fodret. De båda fruktkladen into go samma ställning som i de tretaliga axillärblommorna, d. v. s. det ena stod rakt innanför ett af kronbladen. På ett annat individ med motsatta mellanblad saknades blommor vid det öfversta bladparet. Det ena bladet hade, utan att förändra storlek eller form, ryckt upp till blomman, där det intog samma ställning som det ena af de mindre foderbladen, dock så att dess kanter lågo utanför de båda större foderbladens. Det foderblad, som borde haft sin plats innanför detsamma, saknades helt och hållet; det andra mindre foderbladet var däremot normalt utveckladt. Androeceum och krona voro regelbundet tretaliga och anordnade på samma sätt som i de tretaliga axillärblommorna. Fruktbladen voro två med vanlig ställning. Tillägges, att några gånger i eljest normala fyrtaliga blommor ståndaren saknades innanför det ena mindre foderbladet, är allt omnämndt, som jag observerat i fråga om tretalighet i toppblommor.

Ehuru det visserligen icke kan anföras såsom något med föreliggande fall analogt, då ju Gentiana campestris är hapaxanthisk, vill jag dock framhålla, att bildningsafvikelser kunna vara rhizombeständiga, om detta uttryck får användas. Två exempel ur min egen erfarenhet må anföras. År 1886 anträffade jag vid Brännkärr i St. Malm en *Anemone nemorosa* L. med fyllda och åfven i andra afseenden missbildade blommor. Samma missbildning uppträdde sedan under ett tiotal år på samma fyndort och uppenbarligen från samma underjordsstam, ända tills växten till följd af yttre åverkan på växtplatsen gick ut. I samma nejd fann jag år 1905 *Carex hirta* L. med vackert förgrenade honax (med >Schoenoxiphiumliknande utväxter från fruktgömmena<). Under de båda följande somrar har jag återfunnit denna bildningsafvikelse på samma plats och utan allt tvifvel utvecklade sig från samma underjordsstamssystem, under det att endast ett par meter därifrån och under alldeles samma yttre förhållanden växande individ hade normalt byggda honax.

ABWEICHENDE ZAHLEN- UND STELLUNGSVERHÄLTNISSE IN DER BLÜTE VON GENTIANA CAMPESTRIS L. ZUSAMMENFASSUNG.

In den Jahren 1905 und 1907 untersuchte der Verf. (in der schwedischen Provinz Södermanland) eine größere Anzahl Individuen von *Gentiana campestris *suecica (Froel.) Murb., und es stellte sich dabei heraus, dass wenigstens bei dieser elementaren Art die tri- meren Blüten viel häufiger vorkommen als die pentameren. Er konnte sogar keine durch Kelch, Krone und Andróceum vollständig pentamere Blüte ausfindig machen. Dagegen hatte er Gelegenheit mehr als hundert zu untersuchen, die regelmässig trimere waren, nur dass oft das vierte Kelchblatt in mehr oder weniger verküm- merter Form vorhanden war.

Die Seitenblüten von *Gentiana *suecica sind immer vorblattslos; die beiden äusseren, grösseren Kelchblätter stehen deshalb quer (transversal). Die beiden Fruchtblätter sind dagegen mit sehr sel- tenen Ausnahmen median; ihre Stellung stimmt also nicht mit derjenigen überein, die nach A. W. Eichler (Blüthendiagramme. I, p. 248) in den vorblattslosen Gentianacee-Blüten die gewöhnliche sein soll. Auch in den terminalen Blüten fallen die Fruchtblätter fast immer in die Richtung der inneren Sepala.

Trimerie kommt fast ausschliesslich in den Seitenblüten vor. Das hintere Kelchblatt fehlt (oder ist verkümmert); eins von den Petala steht median, gegen die Abstammungsachse. Die beiden Frucht- blätter sind median. Wenn man von dem Vorhandensein eines mehr oder weniger verkümmerten vierten Kelchblattes absieht, sind Übergänge zwischen trimeren und tetrameren Blüten sehr selten.

Vollständige Trimerie in terminaler Blüte hat der Verf. nur ein- mal angetroffen, und zwar an einem Individuum mit in dreizähligen Quirlen stehenden Blättern. Die drei Kelchblätter, die breit waren, hatten dieselbe Grösse und Form und wechselten mit den Gliedern des obersten Blattquirles ab.

Polymere Blüten fand der Verf. sehr selten, und zwar nur einige pentamere in Krone und Andróceum und eine hexamere in den- selben Quirlen.

Die hier beschriebenen Abweichungen gehen hauptsächlich in der Richtung von dem pentameren Typus der Gattung weg; es liegt deshalb kein Grund vor, von atavistischen Bildungen zu sprechen.
Af föreståndaren för Sorunda sockens folkskola å Fagervik i östra Södermanland. GUSTAV SÖDERBERG, sändes mig i midten af november 1907 en honom okänd växt till bestämning. Denna visade sig vara kosmopoliten Polycarpon tetraphyllum L.

Polycarpon tetraphyllum L. är en Alsinacé, tillhörande en förut hos oss ej representerad grupp, Polycarpeae. Liksom de flesta arter, som hafva en vidsträckt geografisk utbredning, är den pleomorf. Den form, som uppträtt först hos oss, är den som betraktas såsom ar-

tens huvudform och som af Willkomm (Prodromus Florae Hispa-
nicae, III, sid. 160) benämts *a vulgare*. Dess utseende framgår af
nedanstående fotografiska bild, som visar ett exemplar af växten
från Fägervik i naturlig storlek.
Artens hemtrakt är Medelhafsländerna. Allra allmännast torde
den vara i Italien, där huvudformen af Arcangeli (Compendio della

Flora italiana) angifves förekomma »communissimo» långs vägar
och på odlade ställen; under det att arten på sandiga hafsstränder
representeras af varieteten *alsinifolium* Biv.¹
Allmän är arten äfven i Spanien samt förekommer för öfrigt i
nästan alla länderna kring Medelhavet.

¹ Af en del författare betraktas denna som särskild art.

Från Medelhafsområdet har arten ytterligare spridit sig — såsom det vill synas först under sistförflytta århundrade — till Schweiz, Tyskland, Belgien, Nederländerna och Polen. Dess nordligaste stationer äro den i Nederländerna samt den vid Posen, å hvilka ställen arten iakttagits först åren 1896 och 1902.1

Men äfven i ej få extraeuropeiska länder har växten under de senare årtiondena visat sig: och detta nästan öfverallt vid hafskusterna. Så uti Asien i sydvästra Arabien; 2 uti Sydamerika vid Uruguays 3 och Rio Grande do Suls kuster; samt i Australien flerstädes, t. ex. på Nya Zeeland. 2 Att spridningen i dessa fall förmedlats genom fartyg — medelst barlast o. d. — synes så godt som säkert.

Till sist må nämnas, att Polycarpon tetraphyllum L. sedan 10 år funnits i Bergielunds botaniska trädgård, första året odlad ur frön från Sydamerika, sedermera själfsådd. Någon spridning utanför det ursprungliga odlingsområdet har dock ej ägt rum.

1 Enligt Just’s Botanischer Jahresbericht för åren 1898 och 1902.
2 Enligt Just’s Botanischer Jahresbericht för åren 1896—1898.
3 Enligt muntligt meddelande af lektor G. O. Malme.
RÜGEN SOM EXKURSIONSORT FÖR SVENSKA BOTANISTER.
AF
SELIM BIRGER.

Ofta har jag af såväl yrkesbotanister, som botaniska amatörer, blifvit tillfrågad om en exkursionsort, där man kunde få se både de intressantare växtsamhällen och de sällsyntare växtarter, hvilka karakterisera sydligaste Sverige.

Kullen, Möens klint, Bornholm, Skanör och Falsterbo, alla utgöra hvar för sig utmärkta exkursionsorter, men af flera skäl kan, särskildt om man disponerar något längre tid, Rügen, ehuru det ligger utom det egentliga skandinaviska floraområdet, sättas främst.

Norr om det på öns nordöstra del belägna Sassnitz höjer sig Rügen till ett platåland af kalk, väl kändt under namnet: die Stubnitz. Som af fig. 1 och 2 framgår, stupar den skogbevuxna platån tvärbant mot hafvet; strandklipporna nå en höjd af 100—120 m i nästan lodrätt stup.

Hafvet, som utanför Stubnitz är tvärdjupt, åter sig år efter år längre in, och särskilt under våren inträffa ofta stora ras, hvilka så småningom minska den skogbevuxna platåns yta. Nedanför kalkklipporna finnes en smal strandremsa beläckt af mer eller mindre rundsköldja kalkstensblock, stora massor af flinta samt hår och hvar nagra flyttblock, det hela ofta doldt under mäktiga vallar af uppkastade hafsalger.

Stubnitz är lättast tillgängligt, om man bor i Sassnitz eller vid de å områdets norra del belägna orterna Stubbenkammer eller Lohme. Af de många exkursioner, som kunna göras på Stubnitz, redogöres här något närmare endast för den, som berör strandklipporna mellan Sassnitz och Stubbenkammer. Afståndet är omkring 9 km. Lämpligast följer man den nyanlagda strandvägen från Sassnitz norrut, sedan kan man efter behag på någon af de
Fig. 1. Kustparti å Stubnitz (Rügen). Mellan kritklipporna synes rasmark med snårskog. I fögrunden ett stort bestånd af Hippophae rhamnoides.

Selim Birger toto.

Fig. 2. Kustparti å Stubnitz (Rügen). Klipporna äro omkring 100 m. höga. Inåt land synes bokskogen täcka platån.
många sidovägarna taga sig upp från stranden till bokskogen på platån och följa vägen längs dennes rand fram till Stubbenkammer.

Naturen på Stubnitz är verkligt vacker och förtjänar mer än väl stjärna i resehandböckerna. En solig sommardag, helst på våren,

![Selim Birger foto.](image)

Fig. 3. Wissowerklinken a Stubnitz (Rügen).

för man se Stubnitz i all dess prakt. Mer än hundra meter nere i djupet ligger Östersjöns klarblå yta. Närmast stranden har vattnet fått en säregen färgton genom reflexer från den hvita bottnen samt den i vattnet uppslammade kalken och här och hvar utbreda sig algformationerna som stora svarta fläckar. Bländande hvita kalkklippor sticka öfverallt fram ur den mörkgröna bokskogen.
Några af dem ha i likhet med Königsstuhl och Wissowerklinken af vatten och vittring utformats i verkligt imponerande former. Uppe på klippornas krön stå bokskogens jättar, på deras sluttningar öfvergår den till snärskog, täckande ravinerna och rasmarken ända ned till hafsstranden. Under våren ökas färgrikedomen af talrika orchideer och Primulor.

Nedan skildras floran sådan den möter på olika ståndorfer under denna exkursion: uppräknats ha först och främst karaktärsväxterna, och de arter, som åro af särskildt intresse för den skandinaviska botanisten.

Den slutna bokskogen.

Där öfverskuggningen ej är så stark, infinna sig en hel rad af arter. Dessa träffas enstaka eller fläckvis och bilda inga växtsamhällen med konstant sammansättning, utan den ena arten förekommer här, den andra där. Sådana arter åro:

- Anemone hepatica
- Arenaria trinervia
- Allaria officinalis
- Adoxa moschatellina
- Aegle spicata
- Aspidium cristatum
- Cardamine impatiens
- C. silvatica
- Carex digitata
- C. silvatica
- Festuca silvatica
- Galeobdolon luteum
- Geranium robertianum
- Lactuca muralis
- Melica uniflora
- Myosotis silvatica
- Phyteuma spicatum
- Pulmonaria obscura
- Ribes grossularia
- Scrophularia nodosa
- Stellaria nemorum
- S. holostea
- Stachys silvatica
- Urtica dioica
- Veronica montana
- Viola mirabilis

Rasmarkens och ravinernas vegetation.

På rasmarken och i ravinerna mellan de framspringande kritklipporna blir öfverskuggningen sträckvis. tack vare den starkt
sluttande marken, ej så stark. Boklöfven bortföras här af vind och vatten, därigenom blir ytskiktets humushalt mindre, helst som med det nedrinnande vattnet kalk i riklig mängd tillföres. Vegetationen får ibland typen af en löfäng med slutet trädbestånd, ibland af en snårskog, hvilkas mest framträdande drag är rikedommen på buskar och andra träd än boken samt mängden af örter och gräs, hvilka bilda en täckande matta. De flesta af föregående ståndorts arter återfinnas här; därjämte antecknades:

Buskar och träd:

- Acer pseudoplatanus
- Cornus sanguinea
- Corylus avellana
- Crataegus oxyacantha
- C. monogyna
- Evonymus europaeus
- Fraxinus excelsior
- Hedera helix
- Hippophae rhamnoides (särskilt vid stranden)
- Ilex aquifolium

Örter och gräs:

- Anthoxanthum odoratum
- Anemone nemorosa
- A. ranunculoides
- Astragalus glycyphylllos
- Angelica silvestris
- Asplenium filix mas
- Campanula rotundifolia
- Carex glauca
- Cephalanthera longiphylllum
- Cerastium visciosum
- Chelidonium majus
- Convallaria majalis
- Cypripedium calceolus
- Dentaria bulbifera
- Equisetum silvaticum
- Fragaria vesca
- Geum urbanum
- Habenaria bifolia
- Juniperus communis
- Populus tremula
- Prunus avium
- Ribes alpinum
- Rosa sp.
- Rubus sp.
- Salix aurita
- Sorbus aucuparia
- S. terminalis
- Ulmus montana
- Viburnum opulus
- Lathyrus pratensis
- Listera ovata
- Lysimachia nemorum
- Milium effusum
- Melampyrum silvaticum
- Orobus niger
- Orchis maculata
- O. purpurea
- Oxalis acetosella
- Pteris aquilina
- Primula acaulis
- P. elatior
- P. officinalis
- Polygala vulgaris
- Potentilla erecta
- Phegopteris polypodioides
- Poa serotina
- Rubus saxatilis
Solidago virgaurea
Torilis anthriscus
Valeriana officinalis
Vicia sepium

Vicia silvatica
Veronica officinalis
Viola silvatica.

På en del ställen, särskilt där bokskogen bifvit afverkad, har en löfäng med öppet trädbestånd uppkommit, där bokarna sta i tätare eller glesare grupper. Här tillkomma särskilt följande arter:

Alchemilla vulgaris *subcrenata
Bellis perennis
Clinopodium vulgare
Erigeron acris
Linaria vulgaris
Pimpinella saxifraga
Phyteuma spicatum

Plantago lanceolata
Potentilla reptans
Ranunculus acris
Rubus idaeus
Silene nutans
Trifolium medium.

Någon gång ingår Phyteuma sa rikligt, att en verklig Phyteuma-äng uppstår.

Bäckloppen och kärren.

På ståndorter kring de små bäckarna växa särskilt:

Cardamine amara
Carex elongata
C. riparia
C. teretiscula
Circava intermedia
Chrysosplenium alternifolium
Epilobium hirsutum
E. montanum
Nasturtium silvestre
Ranunculus repens
Tussilago farfara
Veronica beccabunga.

Fig. 4 visar ett kärr af det här vanliga utseendet. En liten bäck har svämmat ned kalk, hvilken genomsilas af vattnet. Den yppiga metershöga vegetationen består af:

Carex pendula
Crepis paludosa

Eupatorium cannabinum
Equisetum maximum.

en formation som äfven är vanlig på andra ställen å Stubnitz.

Ute på de fritt exponerade kalkklipporna är floran fattig, dock förtjänat att nämnas:

Ajuga genevensis
Arabis arenosa

Carlina longifolia
Polygala vulgaris.

Ofvan har lämnats en redogörelse för en del af de arter, som man anträffar under en jämförelsevis kort exkursion på Stubnitz.

I den lilla staden Putbus finnes vid det furstliga slottet en synnerligen vacker trädgård, i hvilken man lätt nog kan tänka sig fö-

![Selim Birger foto.](image)

Fig. 4. *Equisetum maximum—Carex pendula—Eupatorium cannabinum-*formation i kalkkärr på Stubnitz (Rügen).

flyttad till långt sydligare breddgrader. Man bör ej försumma att hår se det vackra trädet af *Carpinus betulus f. incisa*, på hvilket dock bladen på en stor del grenar äga hufvudartens bladform.

Nedan ha lokaler för en del arter, som särskilt kunna vara af intresse för skandinaviska botanister, sammanförts. De äro observerade på Rügen af förf. under besök åren 1898, 1899 och 1907.

Airopsis caryophyllea, Sellin; Binz; Putbus: *f. pallescens* Neum. förekommer på skuggrika lokaler vid Sellin.

Ajuga genevensis h. o. d. på Stubnitz.
Alsine viscosa, nära Sellins östra bangård.
Arnoseris mínima, Sellin.
Anemone nemorosa × ranunculoides, Stubnitz: Schloss Berg.
Cardamine pratensis, en form med dubbla blommor anträffades vid Sellin.
Carex pendula, denna art förekommer spridd öfver hela Stubnitz.
C. strigosa, iakttogs endast vid Waldhalle- norr om Sassnitz och vid Stubbenkammer.
Carlina longifolia (Grab.) Rchb. Denna numera åsven från Sverige bekanta art förekommer på många ställen, särskilt på strandklipporna å Stubnitz.
Cephalanthera lonchophyllum, Wissowerklinken å Stubnitz.
Cypripedium calceolus, Stubnitz på flera ställen.
Epipogum aphyllum, Stubnitz.
Equisetum maximum, ganska allmän på Stubnitz.
Fagus silvatica. En form med bladkanten naggad genom de utlöpande bladnerverna, påminnande om v. repanda Lge anträffades nära Stubbenkammer.
Festuca sciuroides, Sellin.
Geum rivale pallidum, mellan Stubbenkammer och Lohme.
Hippophae rhamnoides, t. allm. på Stubnitz.
Hordeum nurinum, Sellin.
Ilex aquifolium. Stubnitz samt i bokskogen söder om Dwasieden.
Linaria minor, på stranden norr om Sassnitz.
Lysimachia nemorum, h. o. d. på Stubnitz.
Onobrychis sativa, iakttogs alla åren rikligt i strandbranten ofvanför Sassnitz' hamn.
Orchis purpurea, h. o. d. på Stubnitz.
Ornithopus perpusillus, rikligt i skogen söder om Dwasieden; mellan Granitz och Sellin.
Orobanche Caryophyllacea Sm., denna art träffades i vidsträckta bestånd (växande på Galium mollugo) vid Sellins hafsbad kring Quitzlaser Ort.
Phyteuma spicatum, t. allm. på Stubnitz.
Populus tremula villosa, Stubnitz nära Wissowerklinken.
Potentilla opaca, strax norr om Sassnitz.
Poterium polygamum. strandbranterna kring Sassnitz' hamn.
Pulmonaria officinalis L. (vera), mellan Stubbenkammer och Lohme.
P. officinalis *obscura (Dum.) är den på Stubnitz i öfrigt vanliga formen.
Sagina apetala f. caespitosa, Lohme.
Senecio vernalis, h. o. d. t. ex. Sassnitz; Dwasieden; Binz; Sellin, där äfven f. monocephala förekommer.
Sonchus palustris. Stubnitz; Altefähr.
Sorbus torminalis, Wissowerklingen på Stubnitz.
Stellaria media *neglecta Weihe., Sellin.
S. apetala Ucria, flerstädes å Stubnitz, t. ex. Hagen.
Symphytum officinale f. patens (Sibth.), Putbus' bangård.
Veronica montana, t. allm. på Stubnitz.

Den intresserade hänvisas i öfrigt till L. M. NEUMANS: Botaniska anteckningar från norra Tyskland år 1890 och 1891. Botaniska Notiser 1894 s. 97—108, där bland annat lokaler för följande växter finnas angifna: Galium mollugo × verum (Bergen; Naselow), Veronica aquatica (Erdmannshagen), Ligustrum vulgare (Lietzow; Ralswick), Thalictrum minus (Göhren; Priswitz; Buschwitz), Tunica prolifera (Lietzow), Epilobium hirsutum × parviflorum (Lohme), E. parviflorum × roseum (Döbitz), Medicago minima (Västra Semper; mellan Lietzow och Hülsenkrug), Euphorbia esula (Rugard), Ononis campestris (Arcona), Ulex europeus (på stranden mellan Dwasieden och Mueran), Herminium monorchis (Ralswick), Juncus maritimus (Ralswick), J. effusus × glaucus (Lohme), Koehleria glauca β lobata Marss. (Falckenberg).

Hvad tiden för ett besök på Rügen angår, torde tiden kring midsommar eller något senare vara den lämpligaste. Vill man se Primulor och andra vårväxter i fullt flor, bör man besöka ön senast i början af juni.
Orobanche alba Stephan *Rubra Hooker och dess förekomst på Gotland.

Af

Henrik Hesselman.

Träd, spr.

Pinus silvestris, spridd, mycket låg, vidgrenig, talrika grenar utbredda utmed marken.

Buskar, spr.

Juniperus communis, spr.

Coloneaster integerrima, spr.

Prunus spinosa, e.

Ris, spr.—str.
Arctostaphylos uva ursi, spr.—str.
Halbfuskar, str.—rikl.
Thymus serpyllum, str.—rikl.
Örter, str.—rikl.
Cynanchum vincetoxicum, str.—rikl.
Galium verum, str.
Helianthemum chamcecius, str.
Asperula tinctoria, spr.—str.
Anthericum ramosum, spr.—str.
Arenaria golhica, spr., på mera nakt vittringsgrus.
Campanula rotundifolia, spr.
Geranium sanguineum, spr.
Globularia vulgaris, spr.
Hieracium pilosella, spr., fläckvis.
Linum catharticum, spr.
Potentilla arenaria, spr.
Pulsatilla pratensis, spr.
Scabiosa columbaria, spr.
Sedum album, spr.
Asplenium ruta muraria, e.—spr., i klippspringor.
Orobanche alba Steph. *rubra Hook, e.—spr.
Allium schoenoprasum, e.
Arabis sudetica, e.
Artemisia campestris, e.
Anthyllis vulneraria, e.
Carlina vulgaris, e.
Cirsium acaule, e.
Crepis tectorum f. glabrescens, e.
Galium boreale, e.
Geranium roberlanum, e.
Prunella grandiflora, e.
Polygonatum officinale, e.
Sedum rupestre, e.
» sexangulare, e.
Silene marilima v. petraea, e.
» nutans, e.
Spiraea filipendula, e.
Thalictrum minus f. Kochii, e.
Gräs, str.
Melica ciliata, str.—rikl. på mera naket grus.
Carex glauca, spr.—fläckvis rikl.
Agrostis vulgaris, spr.
Festuca ovina, spr.
Poa alpina, spr. på någon mera fuktig fläck.
» compressa. spr.

I markstäcket ingå huftväxtsakligen fåtvar, näml.:
Cetraria islandica. str.
Cladina rangiferina. str.
Cladonia alcicornis. spr.

Fig. 1. Grupp af Orobanche alba rubra á Hejdeby hållar.

Icke vara för mycket att uppskatta de blommande Orobanche-individens antal på Hejdeby hällar till flera hundra, säkerligen omkring tusen, inom ett område av flera tunnlands vidd. Därtill komma talrika groddplantor på rötterna av **Thymus serpyllum** samt andra plantor, som ännu ej kommit till blomning. Af telegrafkommissarien **Lange** blev den sedermera, längre fram under augusti mämade funnen vid Ölbäck i Endre socken, ett par km. söder om fyndstället a Hejdeby hällar. Där fanns den blott i ett fåtal exemplar. Växtsamhället var detsamma som a Hejdeby hällar.

Hejdeby hällar ärvisserligen sedan gammalt bekanta som växplats för **Arenaria gothica** (Johansson 1897, pag. 192), och ej så få botanister torde här ha samlad denna för Gotlands flora egendomliga växt. Växplatsen för Orobanche ligger dock något söder om den egentliga växplatsen för **Arenaria gothica**, och de torra, sterila, om sommaren ofta brunbrända hällarna torde i allmänhet ej ha locket de växtsamlande botanisterna till några vidare ströftag. Men hvad som framför allt torde ha bidragit till att Orobanche ej förut blivit upptäckt är dess oregelbundna uppträdande under olika år. Denna egendomlighet delar den sannolikt med de andra arterna af släktet inom Sverige. Orobanche major L., som upptäcktes i Skåne af J. LECHE i mediet af 1700-talet, (C. F. Nyman

Som bekant är det ej första gången, som en Orobanche-art blivit funnen på Gotland. En sådan togs år 1841 af J. E. Zetterstedt på

Det intressanta och märkliga med fyndet å Hejdeby hållar är i första rummet det stora individantal, hvari Orobanche alba uppträdde, och den stora utbredning den äger. Man har svårt för att tänka sig, att växten icke här skulle vara fullt hemmastadd och här förekommit sedan gamla tider. Platsens belägenhet och växtens sannolikt sporadiska uppträdande ha gjort, att den icke förut har blifvit funnen. Efter den erfarenhet, som man äger om andra Orobanche arter, bör den förflutna sommaren ej ha varit särdeles gynnsam för dess uppträdande i stor mängd. Enligt Mathesius (l. c.) förekommer O. cirsii å Mösseberg i större antal under varma och torra än under kalla och våta somrar, och i de berättelser om härjningar af Orobanche på kulturväxter, som intagits i Kochs stora arbete (1887) öfver släktet Orobanche, finner man uppgifter, som visa att Orobanche-härgningarna äro svårare under varma och torra än kalla och våta somrar. I afseende på klimatet bör sålunda den förflutna ej sommaren ha varit särdeles gynnsam, den hör till de nederbördsrivaste, som Gotland haft i mannaminne. Möjligens

1 Botaniska Notiser 1841, pag. 160. Lund 1841.
är lokalen i och för sig själv så torr, att en våt sommar kunnat vara gynnsam för växtens utveckling.

plaren och de från Torsburgen, att de förra haft värre, mera klocklika blommor, de senare närmast mer cylindriska, samt att de förra haft mycket tätare ax och högre växt. Enligt de pressade exemplaren skulle färgen på exemplaren från Torsburgen haft varit ljusare än hos dem från Sandön. Norén stödde sin jämförelse på granskning av det ringa material af Zetterstedts fynd, som förvaras i Uppsala universitets herbarium. Genom mätning af blommorna på Zetterstedts exemplar i universitetsherbarierna från Lund och Uppsala samt i Riksmuseet har jag funnit, att dessa ofta nå en längd af 17—18 mm., och att de endast är hölt oberoende mindre än Sandöexemplarens. Även blomformen är densamma; ä exemplar från Lund och Stockholm (Riksmuseet), som jag granskat, är blomkronan klocklik liksom hos Sandöexemplaren. I afseende på blommornas form fanns, i synnerhet var detta fallet på Hejdeby hållar, en liten variation mellan mera cylindriska och mera klocklika blommor; härvidlag spelar åldern en viss roll. Under postflo-rationen — kronorna kvarstilla länge, medan frukten mognar — förvandlas kronans form från mera klocklik till mera rent cylindrisk (jfr fig. 3). I samma ax kan man därför finna i nedre delen cylindriska, i övre delen mera klocklika blommor. Detta synes hos materialet från såväl Hejdeby hållar som Torsburgen. Hvarken blommornas storlek eller form berättigar sålunda att åtskilja Sandö- och Torsburgsexemplaren som skilda former. Enligt Noréns beskrifning voro blommorna rödbruna med violett skimmer. Detsamma kan sägas om Hejdeby-

Då det sålunda visat sig, att det är samma form, som på skilda tider och på olika ställen blifvit funnen på Gotland, finnes det en viss sannolikhet för att OROBANCHE alba har gammal medborgarrätt i den gotländska floran, ehuru dess nyckfulla uppträdande, som den har gemensamt med andra OROBANCHE-artor, gjort, att den hittills i så hög grad undgått våra botanisters uppmärksamhet. I alla händelser är sannolikheten för detta antagande större under dessa förhållanden, än om man vid de olika tillfällena anträffat olika former af den starkt variabla OROBANCHE alba. Säkert kan ju aldrig frågan afgöras. Dess besvarande kommer alltid att ligga endast inom sannolikheternas område, men hvad man alltid bör kunna få utredt, det är OROBANCHES framtida uppträdande i den gotländska floran.

Lokalen å Hejdeby hällar är lätt att nå, den ligger endast 0,5 mil från Visby. Man kan sålunda vänta att de för Gotlands flora så högt intresserade visbybotanisterna skola följa växtens uppträdande
olika år, så att vi närmare kunna blika bekanta med villkoren för dess uppträdande. Detta skulle ju ha ett icke ringa intresse. Men då måste den också få skydd mot de stråröfvarskaror af växtsamlande skolpojkar, som då och då draga till Gotland, eller de växtkrämare, för hvilka en sällsynt växt endast har intresse såsom objekt för växtpressning och byte.

Men utom individbildning genom frö påträffades äfven ett annat slags individbildning, som förjänar ett kortare omnämnande. Från de vid basen knollformigt ansvällda Orobanche-individernas utgå åt olika håll talrika grofva rötter, som med haustorier fästa sig vid vårdplantans här och där i jorden framstrykande rötter. På äldre dylika rötter funnos talrika små knoppar. Bland det insamlade materialet anträffades flera dylika rötter, som redan förlorat sin förbindelse med friska, lefvande Orobanche-individ. Rötterna hade en mörkbrun färg, barken var dock fullt frisk och var rik på stärkelse. I syn-
nerhet var detta fallet i själva haustoriegrene.

Hos några af Orobanche-individen finnas vid basen af de blommande skotten flera knoppar i olika utvecklingsstadien, som under nästföljande sommar tyckas komma till vidare utveckling. Sannolikt hafva dessa knoppar utbildats såsom sidoskott på den knöl, som bildas vid plantans groning. Orobanche alba skulle även på så sätt vara flerårig. Några individs beskaffenhet talar för den möjligheten, att nya skott kunna utvecklas från den intramatrikala delen i roten, en form för individbildning, som Koch beskrivit hos Orobanche-arter. Emellertid må här betonas, att det material, som insamlades, hvarken var så rikligt, att det tillåter en närmare redogörelse för växtens lefnadshistoria, ej heller var det samladt i
afsikt att åstadkomma en sådan. Det torde för öfrigt vara mycket svårt att på tillfälligt insamladt material utreda en sådan fråga. Hårför erfordras det säkerligen att i kultur följa växtens lif.

Till slut vill jag uttrycka min tacksamhet till de personer, som gifvit mig upplysningar angående Orobanche-arterna, särskilt till f. adjunkten T. O. B. N. Krok, som genom sin grundliga känndom om den äldre floristiska litteraturen i vårt land lämnat mig många värdefulla upplysningar.

LITTERATUR.

F. W. C. ARESCHOUG. Skånes flora. Lund 1881.
EL. FRIES. Novitiae Florae Sueciae Mantissa III. Lund 1843.
EL. ERIES. Summa vegetabilium Scandinavie. Upsala 1849.
LINNÉ. Flora suecica. Stockholm 1755.
G. F. NYMAN. Utkast till de svenska växternas naturhistoria. Förra delen. Örebro 1867.
LISTE OVER SVAMPE INDSAMLEDE UNDER SVENSKA BOTANISKA FÖRENINGENS EXKURSION TIL BILLINGEN 1907.

AF

J. LIND.

Det var mig en stor Glæde at faa Lov til at deltage i Svenska Botaniska Föreningens første Exkursion, og jeg vil her tillade mig at meddele nogle spredte Anmærkninger om de mere mærkelige Svampe, som jeg fandt paa Exkursionen foruden nogle enkelte, som jeg fandt i Göteborg paa Vejen derop.

Protomyces pachydermus Thém. paa Taraxacum ved Göteborg.

Ustilago Tragopogii [Pers.] Schroet. i Kurvene af Trag. pratense, Sköfde.

Svensk Botanisk Tidskrift.

Puccinia Carices montanae E. Fischer, st. I paa Centaurea Scabiosa (Aecidium Centaureae Scabiosae P. Mg.) og st. II—III paa Carex montana, Västergötland, Dala, Varholmen. Den er ikke fundet i Sverrig før og kun kendt fra Østrig-Ungarn og Schweiz, det var derfor ganske mærkværdigt, at finde den netop her i Selskab med Slipa, Dracocephalum og de andre Vækter som heller ikke findes andetsteds indenfor mange Miles Omkreds.

Puccinia Lolii Nielsen, st. I paa Rhamnus cathartica. Sköflde.

Puccinia Viola (Schum.) de C. Viola hirta. Dala.

Triphragmium Filipendulae Pass. paa Filipendula hexapetala og — Ulmariae (Schum.) Link paa Filipendula Ulmaria, begge ved Dala.

Exobasidium Vaccini (Fuck.) Woron. Vaccinium uliginosum. Röde Mose.

— Vaccini uliginosi Boud. Andromeda polifolia. Röde Mose. Boudiers Navn er vildledende, thi man kan i Virkeligheden finde begge disse Exobasidiumarter paa alle de samme Værtpplanter af Ericaceae og Vacciniaceae: de kendes meget let fra hverandre
paa at Fückels Art har 10—14 μ lange og 2 μ brede Sporer og danner begrensede Pletter paa Bladene, mens Boudiers Art har dobbelt saa lange og dobbelt saa brede Sporer og danner Hexekoste paa Værtplanterne.

Taphrina epiphylla (SAD.) SACC. Alnus incana. Skøfde.
Nectria ditissima TUL. Sorbus aucuparia. Skøfde.
— punicea (KZE. & SCHM.) FRIES. Rhamnus Frangula. Skøfde.

Leptosphaeria marcyensis (PECK) SACC. paa Lycopodium annotinum i Røde Mose. Ny for Sverrig. Optræder som en ægte Parasit, der dræber de levende Blade og udvikler sine Sporehuse paa dem, naar de ere døde.

Ophiobolus tenellus (AWD.) SACC. paa tørre Stængler af Solanum. Västergötland, Asvall.
Eutypa Acharii TUL. Acer platanoides. Skøfde.
Pseudovalsa Betulae (SCHUM.) SCHROET. med sin Conidieform Coryneum Notarisanum paa Betula ved Skøfde.

Valsa Auerswaldii Nitschk. med sin Conidieform Cytospora personata Fries paa Grene af Frangula ved Skøfde.

Septoria Hepaticae DESM. Hepatica triloba. Skøfde.
Gloeosporium deformans (SCHROET.) LIND. Salix caprea. Skøfde.
Bostrichonema alpestre CES. Polygonum viviparum. Dala.
Monilia cinerea Pers. optraadte paa Grund af det vaade Vejr i Aar meget ødelæggende paa Kirsebærtræerne overalt i Vg.

Ny for Sverrig.

Coniothecium complanatum (Nees) Sacc. Salix caprea. Axvall.

Radulum atrimum Fries paa tørre Grene af Betula verrucosa. Røde Mose. En mærkværdig sclerotieagtig Svampedannelse, som aldrig er fundet med nogenslags Formeringsorganer og hvis Plads i Systemet derfor endnu er ubestemt.
OM VÄXTLIGHETEN Å NÅGRA TÅNGBÄDDAR I NYLÄNDSKA SKÄRGÅRDEN I FINLAND.

AF CARL SKOTTSBERG.

Vattnets betydelse för våra skandinaviska växters spridning har förut genom SERNANDERS undersökningar (Den skandinaviska vegetationens spridningsbiologi. Uppsala 1901) blifvit klar. Den s. k. driften medför vår och höst mängder af frukter, från och vegetativa skottdelar, hvilka ha all utsikt att vidare utveckla sig. ifall de landa på ett lämpligt ställe.

Under en vistelse i somras i trakten öster om Hangö kom jag att ge akt på den flora, som uppblomstrat å uppkastad tång, och som vid närmare påseende visade sig kunna vara rätt artrik. Då den ena af de bågge lokaler jag undersökte — belägna vid Björk-skär ej långt från Tvärminne lotstasjon — syntes mig kunna ge anledning till några reflexioner af allmänt intresse art, och den andra var förknippad med en rätt intressant växtförekomst, har jag velat offentliggöra min lilla undersökning.

Lokal 1 utgöres af en liten bukt med långgrund sandstrand, begränsad å ena sidan af ett klipp-parti, å den andra af en stenstrand med större och mindre block. Årligen drifva tången och Zostera i land här och ordnas af vågorna till mer eller mindre tydliga vallar. I början af augusti kunde man urskilja tvenne tångbäddar, som jag betecknar med a, b och c: de tvenne sistnämnda äro svårare att hålla isär och flyta delvis ihop, men äro tydligens afsatta vid olika tillfällen. Figur 1 visar lokalens utseende samt de olika tångbäddarnas läge. Den öfversta tångbädden, a, är 2—3 cm. mäktig och belägen ungefär 3 m. från stranden och ½ m. öfver vattnyran. Denna tångbädd är en gammal bildning, hvarifran vinden årligen bortför en del torr tång, men som åter får nya tillskott från

Vegetationen hade \(\frac{11}{8} \) 1907 följande sammansättning.

![Image](image_url)

Fig. 1. Sandstrand med vid olika tillfällen uppkastade tångvallar. Endast den öfversta är bevuxen med stadigvarande vegetation. — Björksskär, Tvärminne, Finland, aug. 1907. Förf. foto.

Rikliga:
- *Galium palustre*
- *Potentilla anserina*
- *Sonchus arvensis* (som mer eller mindre utpräglad f. *integri folia* H. D.)

Strödd:
- *Vicia cracca*

Spridda:
- *Agrostis vulgaris*

Atriplux litorale
- *Baldingera arundinacea*
- *Cakile maritima*

Enstaka:
- *Angelica silvesrlis*
- *Atriplux hastatum*
- *Calamagrostis neglecta*
- *Carex Goodenoughii*
- *Festuca rubra*

\(^1\) Nomenklatur enligt Neuman, Sveriges flora, Lund 1901.

De funna arterna kunna lämpligen delas i tvenne grupper.

1. Arter, som under vegetationsperioden hunnit till blomning och delvis åfven till fruktsättning.

<table>
<thead>
<tr>
<th>Riklig:</th>
<th>Atriplex hastatum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spergula arvensis</td>
<td>— litorale</td>
</tr>
<tr>
<td>Strödd:</td>
<td>Juneus bufonius</td>
</tr>
<tr>
<td>Polygonum aviculare</td>
<td>Nasturtium palustre (dvärgartad)</td>
</tr>
<tr>
<td>Spridda:</td>
<td>Potentilla anserina</td>
</tr>
<tr>
<td>Polygonum lapathifolium</td>
<td>Ranunculus reptans</td>
</tr>
<tr>
<td>Tritium repens</td>
<td>Sagina nodosa</td>
</tr>
<tr>
<td>Enstaka:</td>
<td>Salsola Kali (dvärgartad)</td>
</tr>
<tr>
<td>Anthoxanthum odoratum (dvärgartad)</td>
<td>Stellaria media</td>
</tr>
</tbody>
</table>

2. Arter, som uppträda i form af groddplantor — något mera avancerade årsplanter.
Riklig:
Plantago maritima

Strödd:
Galium palustre

Spridda:
Angelica silvestris

Balduingera arundinacea

Festuca rubra

Sonchus arvensis

Viola canina

Enstaka:
Ammodenia peploides

Antennaria dioica

Betula sp.

Bidens tripartitus

Campanula rotundifolia

Cirsium lanceolatum

Festuca ovina

Galeopsis sp.

Hieracium pilosella

Leonodon autumnale

Lythrum salicaria

Matricaria maritima

Peucedanum palustre

Potentilla alpina

Ranunculus repens

Ribes grossularia

— *nigrum*

— *rubrum*

Rumex acetosella

Sedum acre

Sorbus aucuparia

Spiraea ulmaria

Trifolium pratense

Valeriana officinalis.

Den nedersta tångbädden, c, är belägen c. 1/2 meter närmare vattnet än b, d. v. s. 1 – 1,5 meter från detta vid normalt vattenstånd. Den är mycket tunn och endast få dm. bred samt flyter invid berget ihop med b. Kvarlämnad af vårens högre vattenstånd, sköljdes den under sommaren då och då af vattnet.

Grupp 1 innehåll 6/8 följande arter:

Spridda:
Carduus maritima

Atriplex litorale

Polygonum lapathifolium
Potentilla anserina (refvorn från öfre tångbädden)
Spergula arvensis
Enstaka:
Atriplex hastatum

Grupp 2 bestod af:
Spridd:
Galium palustre
Baldingera arundinacea
Enstaka:
Angelica silvestris
Elymus arenarius

Om man bortser från de altestådes närvarande Potentilla-refvorna, finns man grupp 1 uteslutande bestå af annuella arter, grupp 2 endast af perenna.

Spergula arvensis och Juncus bufonius var flytförmågan = 0, hos Galeopsis bifida och Polygonum lapathifolium bättre samt hos Potentilla anserina mycket god. Märkas bör emellertid, att små frön, sådana som hos Spergula eller Juncus, simma på vattnet ända till dess de blifvit vätta; dessutom kunna de följa med tången eller andra föremål.

Intresset med denna obetydliga undersökning ligger egentligen i det öde, som, efter hvad jag fann, redan samma höst öfvergick tångbäddarna b och c, ett öde som regelbundet bör drabba platser af deras beskaffenhet. Redan den \(11/\)s, då originalet till bild 1 togs, hade högt vatten i fören med höljslag åstadkommit en förändring i förhållanden. Bädden c var fullständigt derangerad och täckt af nyuppkastad Zostera marina, och äfven b var betydligt skadad af tång och sand. I slutet af augusti var platsen fullkomligt oigenkännlig. En del af de annuella arterna hade väl då hunnit fullständiga sin utveckling och sprida sina frön. Men hela skaran af perenna, som jag anträffade såsom späda, delvis mycket ömtåliga plantor, voro med största sannolikhet dömda till undergång. Vore ej så fallet, borde jag väl hunnit en hel del öfverlevande från föregående år — nu fanns ju af perenna plantor, äldre än 1 år, endast Triticum repens, Potentilla anserina samt ett par andra arter, som ofvan diskuterats.

Det synes mig, som om förhållandena á lokalerna b och c skulle kunna berättiga till några slutsatser af allmännare art beträffande effektiviteten af vattenspridningen.

Hvarje höst föras frukter och frön af strandväxter i stor mängd ut i vattnet. Men vi kunna väl antaga, att minst lika många spridas i moderplantans omedelbara närhet eller sköljas upp på stranden ett stycke. Af dem som föras ut och bort till andra stränder är det återigen endast en del, kanske en ringa procent, som hamnar å sådane platser, där groningsmöjligheter finnas, och icke ens då gro alla frön af en art, om ej dess groningsprocent är lika med 100. Såsom vi ha sett af det föregående, är afståndet från vattnet af stor betydelse för utvecklingsmöjligheterna. Endast de annuella arterna äro mer eller mindre oberoende häraf; under sommaren med dess lägre vattenstånd och lugnare våder hinna de väl ofta genomgå hela sin utveckling och kunna lämna efter sig frön på platsen. Men med öfriga arter är det klert beställdt — de finna nätt och jämnt påbörja sin utveckling, förrän de finna sig upp-ryckta med rötterna och begrafva bland sand och tång. Endast
de få, som kastats så högt upp att hafvets inflytande är försvagadt, kunna beräkna att få i lugn växa vidare. Hafvet förstör alltså kallblodigt den vegetation det själft skapat — oneklinen ett föga ändamålsenligt arrangemang.

Lokal 2. I en bergskrefva, belägen 1½ meter öfver medelvattenståndet å en udde ett litet stycke från föregående plats, har sjön kastat upp en del tång, som hvilar på en flat håll och som af om-gifvande bergkanter hindras från att åter bortspolas. Största delen af tångbädden ditkom hösten 1906. Dess längd var 19/₅ 1907 ungefär 5 m., dess bredd varierade mellan 1 och 2½ m. Den hvilar direkt på klippan och hade en mäktighet af 3—15, vanligen 5—10 cm. Bild 2 ger en god föreställning om tångbäddens lage, bild 3 är en detaljbild från densamma, där flera arter med låthet kunna urskiljas. Följande arter förekommo:

Sonchus arvensis: ett 30-tal exemplar, hvaraf några just hunnit i blom.

Polygonum lapathifolium: en fläck jämte några enstaka individ: blommande.

Potentilla anserina: ett tiotal individ, spännande sina refvor till ett glest nät öfver tången: tvenne buro blommor.

Gallium palustre: en fläck vid bergfoten, blommande.

Festuca rubra: tvenne afblommade exemplar.

Sedum telephium: tvenne individ i knopp.

Leontodon autumnale: ett äldre individ i blom, en groddplanta.

Triticum repens: ett sterilt individ.

Crambe maritima: en årsplanta.

Angelica silvestris: en groddplanta.

Fig. 2. Tångsamling, uppkastad i en klipprämna. — Björkšär, Tvärminne, Finland, aug. 1907. — Förf. foto.

Fig. 3. Detaljbild från den å figur 2 afbildade lokalen. De bäst framträdande växterna äro Sonchus arvensis, Polygonum lapathifolium och Sedum telephium. — Förf. foto.
på Skomakarskär vid Tvärminne, där den dock dött ut för några år sedan. Ett exemplar insamlades 1885 i Lovisa på barlastplats, men ej vidare återfunnen.

Den har alltså förr vid ett par tillfällen anträffats i Nyland, men därifrån åter försvunnit, till dess nu plötsligt ett individ dykt upp vid Björkskär, den östligaste nuvarande fyndorten.

Huruvida den lyckas bibehålla sig här, är en annan fråga. Dess läge synes mig tämligen gynnsamt, men naturligtvis är det icke omöjligt, att höst- och vinterstormarna komma att taga lifvet af den, innan den hinner blomma och sätta frukt.
ZUR KENNTNIS DER PRÄSYNAPTISCHEN ENTWICKLUNGSPHASEN DER REDUKTIONSTEILUNG.

VON

O. ROSENBERG

(hierzu Tafel 7).

Betreffend den ersten Punkt haben Grégoire (I) und Berghs (I) gefunden, dass die Chromosomen in der Synapsis ebenso wie in den vorangehenden Stadien als mehr oder weniger wohl abgegrenzte Chromatinfäden auftreten, die sich in der Synapsis der Länge nach paarweise vereinigen.

Andererseits wurde durch die späteren Untersuchungen von Strasburger (I), Allen (I), Miyake (I) und Overton (I) gefunden, dass in dem zur Reduktionsteilung sich anschickenden Kern der Gonotokonten die Chromatinkörper oder Pangenosomen sich kurz vor der Synapsis um gewisse, Gamozentren genannte Zentren gruppieren. Die dichteren Chromatinanhäufungen werden Gamosomen oder Prochromosomen genannt. Dieselben treten in paarweiser Anordnung auf; die Zahl der Gamozentren entspricht ungefähr derjenigen der reduzierten Zahl der Chromosomen. In einigen Fällen konnten Overton und Miyake die Gamosomen schon in den ersten Prophasen des Mutterkerns beobachten, die Zahl derselben konnten sie jedoch nicht mit Bestimmtheit feststellen; sie schien indessen ungefähr doppelt so gross wie die reduzierte Chromosomenzahl zu sein.

Mottier (I) ist in einer neuen Arbeit ganz entschieden gegen die „prochromosome theory“ aufgetreten. In denselben Pflanzen, bei denen Overton und Miyake Gamosomen beschreiben, konnte er nur Chromatinklumpen sehen, deren Zahl jedoch nicht mit der Chromosomenzahl der jeweiligen Pflanze übereinstimmte: there is no definite relation existing between the number of these lumps and the number of somatic chromosomes der untersuchten Pflanzen.

Ehe ich auf meine eigenen Untersuchungen eingehe, möchte ich kurz noch auf die verschiedenen Ansichten von einer anderen, zur Reduktionsteilung gehörigen Frage hinweisen, die freilich nicht direkt mit dem etwaigen Vorhandensein von Gamosomen in Beziehung steht.

Nach Grégoire, Berghs, Strasburger und seinen Schülern paaren sich die Chromosomen in oder kurz nach der Synapsis der Länge nach, d. h. es werden vom Standpunkte der Gamosomen-Theorie die „vereinten Klumpchenpaare“ mit Hilfe des Linins zu
einen Doppelfaden ausgesponnen. Nach dem Spiremstadium tritt die »Längsteilung« wieder auf, wird immer deutlicher und konstiiuiert die Teilungsebene der Chromosomenpaare in der Diakinese.

Farmer und Moore (I) dagegen finden, dass in einer späteren Phase des Spiremstadiums die Chromatinschlingen sich umbiegen und paarweise umeinander drehen, wobei gleichzeitig die Längsteilung, die im Synapsisstadium sichtbar wurde, zurückgeht, dass somit die Teilungsebene der Chromosomen I nicht durch eine »Längsteilung«, sondern durch eine Umbiegung der mit den Enden paarweise vereinigten Chromosomen angegeben wird.

Die erstere Theorie wird zweckmäßig mit HÄCKER (I) als Junktionstheorie, die letztere als Faltungstheorie (STRASBURGER) zu bezeichnen sein.

Für die letztgenannte Auffassung des Reduktionsvorganges ist nun auch MOTTIER in seiner genannten Arbeit eingetreten, und zwar auf Grund seiner Untersuchungen über die Pollenzellbildung in Lilium und Podophyllum. Es ist sehr auffallend, dass dieselben Untersuchungsobjekte, die immer wieder von verschiedenen Forschern untersucht werden, fast immer könnte man sagen, neue Deutungen erfahren. Die Figuren von MOTTIER sind überaus schön und klar; gleichzeitig und unabhängig von ihm erscheint eine Arbeit von GRÉGOIRE (II), ebenfalls über Lilium, wo die Faltungstheorie ebenso entschieden bestritten wird, wie sie von MOTTIER gestützt worden ist.

Es ist klar, dass unter diesen Umständen noch viele Untersuchungen nötig sind, ehe man auch nur einigermassen zur Erkennnis selbst der Hauptphasen der Reduktionsteilung kommen kann.

Ich werde im Folgenden besonders auf die Gamosomen-Theorie eingehen, u. a. weil ich vor einigen Jahren etliche Untersuchungen publiziert habe, die in gewisser Hinsicht von ÖVERTON mit der genannten Theorie in Beziehung gebracht worden sind.

Beider genannten Arbeit (I) zeigte ich, dass bei einigen Pflanzen, besonders Dikotyledonen, die früher als Pseudonukleolen bezeichneten Chromatinkörper in einer für jede Pflanze bestimmten Anzahl vorkommen, die jedesmal der Chromosomenzahl gleich ist. Eine Bestätigung dieser Angaben erfolgte später von ÖVERTON (I) und LAIBACH (I), und ich habe bei erneuerten Untersuchungen gefunden, dass sich sehr oft unter den Dikotyledonen Pflanzen mit ähnlichem

Die Bedeutung dieser Gebilde ist noch unklar. Overton meint, dass die Prochromosomen „die Chromosomen andeuten“ und eine Art Zentren für die Chromatinanhäufung bei der Herausdifferenzierung der Chromosomen sind. Strasburger (I p. 36) meint von Overtons Prochromosomen, sie seien solche Teile der Chromosomen aus dem vorausgegangenen Teilungsschritt, „die nicht ganz in dem Gerüstwerk aufgingen“. Dem gegenüber möchte ich hervorheben, dass in den von mir untersuchten Objekten die konstante Zahl dieser genannten Chromatinklumpchen sich dann am deut-
lichsten ermitteln liess, wenn Kerne aus mehr oder weniger vollkom-
men ausgewachsenem Gewebe vorlagen.

Der Hauptzweck meiner Arbeit ist der wegen der neueren Kritik
der Gamosomenteorie die Resultate, zu denen ich schon gelangt
bin, einer nochmaligen Prüfung zu unterwerfen. Es ist dabei
zweckmässig, ein durch niedrige Chromosomenzahl charakterisiertes
Untersuchungsobjekt auszuwählen. Ein solches fand ich in Hieracium venosum und H. auricula, deren Chromosomen in den hetero-
typischen Teilungen ich auf 7 und 9 bestimmt hatte. Eine genaue
Untersuchung zahlreicher Mitosen veranlasste mich dazu, für diese
Objekte eine schwankende Chromosomenzahl anzunehmen. In H. venosum war die häufigste Zahl 7, aber Kerne mit 8 und 9 Chro-
omomen kamen auch ziemlich oft vor. In H. auricula war um-
gekehrt 9 die gewöhnlichste Zahl, während 8 und 7 nur selten
auftreten (Rosenberg). Das Material wurde mit Alkohol-Chloroform-Eisessig (nach Car-
noy) fixiert und nach Heidenhains Hämatoxylin-Methode gefärbt.
Eine Nachfärbung mit Fuchsin oder dgl. erwies sich für diese Un-
tersuchung nicht als angebracht, da die »Chromatinkörper« hierbei
weniger scharf von den übrigen Bestandteilen des Kerns abgegrenzt
werden.

Fig. 1 (Taf. 7) zeigt zwei Zellen aus dem Archespor eines jungen
Antherenfaches; der Kern der unteren Zelle befindet sich im Ruhe-
stadium, sein Kerngerüst besitzt nur sehr wenig chromatische Sub-
stanz. Auffallend ist die einseitige Lagerung sowohl des Kerngerüsts,
wie auch die des Zytoplasmas. Diese Erscheinung erinnert sehr
an ein Synapsisstadium, rührt hier aber sicherlich von der Fixie-
rungsfüssigkeit her. Eine derartige einseitige Lagerung des Kern-
gerüsts somatischer Zellen ist schon mehrmals von anderen For-
schern beschrieben worden, wie z. B. bei Alchemilla, nach Mur-
beck (I) und Strasburger (I). Die untere Zelle in Fig. 1 ist in
der Teilung begriffen, die zur Bildung der Pollenmutterzellen führt.
Wenn das sporogene Gewebe fertig ausgebildet ist, zeigen die Kerne
ungefähr den Bau wie in Fig. 2. Das Kerngerüst stellt ein dünn-
maschiges, vom Hämatoxylin fast ungefärbtes Netzwerk dar; an
einer Seite des Kerns liegt eine Anzahl fast gleich grosser, vom
Hämatoxylin intensiv gefärbter Körner, die wahrscheinlich den Pro-
chromosomen Overtons entsprechen. Die Anzahl derselben habe
ich bei einer grossen Anzahl Kerne durch Untersuchung aufeinander-
folgender Schnitte auf ungefähr 14—18 feststellen können. Im all-
gemeinen verteilt sich bei 5 μ dicken Schnitten in diesem Stadium der Kern auf zwei oder seltener drei Schnitte; die Kernhälften wurden mit Hilfe des Zeichenprismas abgezeichnet und dann die durch die Hämatoxylinfärbung sehr deutlich unterscheidbaren Chromatinkörner möglichst genau eingetragen.

Die Nukleolen sind zuerst zwei oder drei an Zahl, später vereinigen sie sich zu einem einzigen grossen Nukleolus, wie schon Miyake für andere Pflanzen dargetan hat. Fig. 3 stellt einen Schnitt durch den Kern dar: hier treten die Chromatinklumpchen besonders scharf hervor. Dasselbe ist auch der Fall in Fig. 4 a und b, die zwei aufeinander folgende Schnitte durch zwei Pollen-
mutterzellen darstellten. In den beiden Kernen sind ungefähr 14—16 Chromatinklumpchen zu sehen. Einige von diesen sind paarweise angeordnet, was noch deutlicher in Fig. 5 zu sehen ist. Hier liegt ausserdem ein Beispiel davon vor, dass einige der Chromatinklumpchen bedeutend grösser sind als die übrigen. Für *Hieracium* habe ich schon hervorgehoben, dass die Chromosomen der heterotypischen Spindelfigur deutlich von ungleicher Form und Grösse sind. Vielleicht sind diese beiden Erscheinungen derselben Natur.

In Fig. 6 und 7 sind zwei Kerne von *H. auricula* abgebildet, die eben in das Synapsisstadium eingetreten sind. Das achromatische Kerngerüst ist gerade deutlich in Fäden ausgezogen und die Chromatinklumpchen sind fast überall paarweise angeordnet. Der Nukleolus zeigt das für das Synapsisstadium charakteristische Aussehen. Dass die Chromatinklumpchen hier den Gamosomenpaaren in den von Strasburger, Miyake und Overton beschriebenen Fällen entsprechen, scheint mir ganz klar zu sein. Ich halte mich also für berechtigt, die in früheren Stadien der Mutterkerne vorkommenden mehr oder weniger isoliert liegenden Chromatinklumpchen auch als Gamosomen zu bezeichnen. Ein Unterschied zwischen diesen Gamosomen und den Chromatinklumpchen der ruhenden somatischen Kerne scheint wenigstens morphologisch nicht zu bestehen. Ich möchte daher die Vermutung ausdrücken, dass weitere umfassende Untersuchungen über diese Frage zeigen werden, dass auch diese derselben Natur sind wie die Gamosomen. Aber man kennt bis jetzt zu wenig von der Natur dieser Chromatinklumpchen, um deren Zusammengehörigkeit mit den Gamosomen sicher zu beurteilen. Soviel steht jedenfalls fest, dass die Zahl derselben besonders in den ruhenden Kernen gleich der Chromosomenzahl ist.

In Fig. 6 ist schliesslich ein Kern von *H. venosum* im Synapsisstadium abgebildet; die Gamosomen sind hier und da zu Paaren vereinigt und haben ausserdem an Grösse und Länge zugenommen. Die oben angeführten Tatsachen sind also im Grossen und Ganzen eine Bestätigung der früheren Angaben von Miyake, Overton u. a., nur konnte ich hier meistens mit grosser Sicherheit die Zahl der Gamosomen derjenigen der Chromosomen gleich setzen. Die Ermittelung der Gamosomenzahl war hier durch die geringe Anzahl derselben erleichtert.

Wie schon oben angeführt, hat Grégoire das Vorhandensein von Gamosomen in den von ihm und auch von Miyake untersuchten

In früheren Stadien des Mutterkerns liegen, wie schon gesagt, die Gamosomen mehr oder weniger isoliert, doch kann man im allgemeinen eine Andeutung von paarweiser Annäherung der Gamoso-
men bemerken. Die paarige Anordnung wird jedoch später deutlicher und ist schliesslich im Synapsisstadium fast bis zur vollkommener Vereinigung vorgeschritten. Oft nehmen die Gamosomen hierbei eine hantelförmige Gestalt an, wie nach Lagerberg (I) bei Adoxa.

der Chromosomen verfolgen kann, der stark für die Umbiegungshypothese spricht. Ich habe jedoch auch andere Kernfiguren gesehen, die sich nur schwer, ja unmöglich mit einer solchen Auffassung vereinigen lassen. In *Tanacetum*, bei dem die Mutterkerne ziemlich gross sind, ist das Spiremstadium durch dicke Chromatinfäden ausgezeichnet (Fig. 9—10), die hier und da eine Andeutung von Längsspaltung erkennen lassen. Diese Längsspaltung wird in späteren Stadien immer deutlicher, in denen die Längshälften in gewöhnlicher Weise umeinander gedreht erscheinen. Die Chromosomen verkürzen sich mehr und mehr, und ich habe eine ununterbrochene Serie von dem in Fig. 9 abgebildeten Stadium bis zur fertigen Diakinese verfolgen können. Das in Fig. 11 dargestellte Stadium stimmt ungefähr mit der »second contraction« überein: es ist hierbei zu bemerken, dass die Längshälften der Chromosomenpaare viel dünner sind als die Chromatinschlingen des vorhergehenden Spiremstadiums (Fig 10). Sollte hier wirklich ein Faltungsprozess stattgefunden haben, so würden die Längshälften der Chromosomen in Fig. 11 mindestens ebenso dick sein, wie die Chromatinschleifen in Fig. 10. Das ist aber entschieden nicht der Fall.

Ich glaube also, dass in *Tanacetum* ein Faltungsprozess der Doppelchromosomen nach den Spiremstadien kaum angenommen werden kann.

SAMMANFATTNING.

De senaste årens många undersökningar öfver reduktionsfrågan tycks ingalunda ha resulterat i ett »gemensamt schema« åtminstone hvad växterna beträffar. Det är dock huvudsakligen på tvenne punkter meningarna divergera. Den ena är frågan om s. k. gamosomer uppträda i kärnans presynaptiska stadier, den andra huruvida kromosomparen efter spiremstadiet bildats genom en omböjningsprocess, eller om kromosomerna redan i synapsis förenat sig på längden två och två.

Beträffande den första punkten är att märka, att STRASBURGER m. fl. hålla före att i synapsis kärnans »kromatin« samlar sig kring vissa punkter i form av mer eller mindre tydligt afgräntrade kromatinklumpar, hvilkas antal är lika med det o reducerade kromosomtalet. Kromatinklumparna kallas *gamosomer* och upp-

Mot denna teori ha nyligen Grégoire och Mottier upptrådt. De hålla för att kärnans kromatin redan från början förekommer i form av trådar, och gamosomerna äro enl. Grégoire ej annat än knutpunkterna, där flera trådar korsa hvarandra och där färgen därför längre kommer att hålla sig kvar vid differentieringen af preparaten.

Förf. har i Hieracium venosum och H. auricula funnit synnerligen lämpliga undersökningsobjekt, då dessa växters kärnor utmärkas af relativt lågt kromosomtal: i pollenmodercellkärnorna 7, resp. 9 kromosomer. I de unga pollenmodercellernas kärnor förekomma tydligt afgränsade kromatinklumpar och deras antal kunde utan synnerligt stor svårighet fastställas variera omkr. 14—18. I yngre stadier förekomma de mer eller mindre tydligt isolerade, men senare förenade de sig två och två, och parens antal kunde i tidiga synapsisstadier ganska säkert bestämmas till 7 á 9, d. v. s. det reduce-rade kromosomtalet. Undersökningen utgör alltså en bekräftelse på de af Strasburger, Miyake, Overton, Lagerberg och förf. förut påvisade förhållanden; då kromosomtalet här var ganska lågt, blev bestämmandet af antalet »gamosomer» lättare och säkrare. Huruvida dylika gamosomer, till antalet lika med kromosomerna, före-komma hos Lilium och andra monokotyledoner är väl ännu osäkert, då enl. Grégoires och Mottiers undersökningar antalet kromatinklumpar här är mycket varierande och ofta talrikare än kromosomerna. Det nämnda förhållandet att i pollenmodercellkärnorna kromatinklumpar förekomma i mer eller mindre lika antal med kromosomerna står sannolikt i samband med det af förf. förut påvisade faknum, att de s. k. pseudonukleolerna hos en del växters vegetativa kärnor förekomma i lika antal med kromosomerna.

Med afseende på den andra punkten, huruvida den af Mottier och andra försvarade »omböjningsteorien» har sitt berättigande, visade det sig att åtminstone hos den af förf. undersökte Tanacetum vulgare ett dylikt bildningssätt för kromosomerna ej gärna låter sig antaga.
LITTERATURVERZEICHNIS.

GRÉGOIRE, V.. II La formation des gemini hétérotypiques dans les végétaux. La Cellule. T. 24. 1907.

TAFELERKLÄRUNG.

Fig. 1. Zwei Archesporzellen eines Antherenfaches; in der unteren Zelle ist der Kern für die Bildung von zwei Pollenmutterzellen in der Teilung begriffen.

Fig. 2. Zwei aufeinander folgende Schnitte durch einen sehr jungen Pollenmutterzellkern.

Fig. 3. Schnitt durch eine etwas ältere Pollenmutterzelle mit einseitig gelagerten Chromatinklumpchen.

Fig. 4 a und b. Zwei aufeinanderfolgende Schnitte durch zwei Pollenmutterzellen; älteres Stadium als in Fig. 3.

Fig. 5. Zwei Schnitte durch einen Pollenmutterzellkern mit beginnender Synapsis.

Fig. 6. Kern in der Synapsis.

Fig. 7. Zwei Schnitte durch einen Kern in der Synapsis; hier treten die Gamosomen-Paare deutlich hervor.

Fig. 8. Dasselbe.

Fig. 9 und 10. Spiremstadium mit beginnender »Längsspaltung«.

Fig. 11. Verkürzung der Chromosomen; die »Längsspaltung« wird deutlicher.

Fig. 12. Weitere Verkürzung der Chromosomen kurz vor der Diakinese. Die meisten Chromosomen sind im Querschnitt abgebildet.
SVENSKA BOTANISKA FÖRENINGEN.

Föreningens årsmöte.

Föreningens styrelse för 1908 utgöres af: professor V. B. WITTROCK, ordförande; docenten R. SERNANDER, vice ordförande; docenten O. ROSENBERG, sekreterare och redaktör; fondmäklare G. INDEBETOU, skattmästare; samt öfriga ledamöter: läroverksadjunkten J. BERGGREN; lektor K. BOHLIN; professor O. JUEL; professor G. LAGERHEIM; lektor G. MALME; professor HJ. NILSSON; professor M. SONDÉN.

Redaktionskommitté för 1908: lektor K. BOHLIN, professor G. LAGERHEIM, docenten O. ROSENBERG, docenten N. SVEDELIUS, docenten R. SERNANDER.

Revisorer för 1908 års förvaltning:

hofkamrer H. HAFSTRÖM; 1:e aktuarie E. SÖDERBERG.

Revisorssuppleanter:

docenten H. HESSELMAN; doktor N. SYLVEN.

Docenten R. SERNANDER höll föredrag om *Stipa pennata* och Hornborga-sjön, några minnen från föreningens sommarexkursion.» Redogörelse för föredraget kommer att inflyta i ett senare hâfte.

Professor V. B. WITTROCK höll föredrag om *Plocarpus tetraphyllum* L. i Sverige.» Se sid. 361 i detta hâfte.

Styrelsen har till ledamöter af föreningen invalt:

på förslag af doktor F. R. Aulin:
direktör E. ALMQVIST, Skara;
på förslag af läroverksadjunkten J. Berggren:
stationsföreståndaren A. ARVÉN, Mullsjö;
på förslag af lektor K. BOHLIN:
läroverksadjunkten E. VRETLIND, Enköping;
på förslag af läroverksadjunkten E. Collinder:
läroverksadjunkten C. LENDBERG, Sundsvall;
på förslag af doktor E. HAGLUND och doktor K. JOHANSSON:
lektor C. O. VON PORAT, Jönköping;
på förslag af professor G. LAGERHEIM:
apotekaren H. SAMSJOE, Stockholm;
på förslag af docenten O. Rosenberg:
f. d. rektor A. Arrhenius, Lundsberg, Nässundet,
ingenjör A. Bagge, Floda,
fru Carolina Benedicks-bruce, Visby,
fröken H. Leijonmarck, Stockholm,
apotekare E. Lundström, Stockholm,
doktor C. H. Östenfeld, Köpenhamn,
fröken Signe Österlund, Stockholm,
studerande Tor Bergeron, Lundsberg, Nässundet;
fröken Hildur Ljungdahl, Stockholm,
fil. stud. Henrik Lundegårdh, Stockholm,
 » Ragnar Sandegren,
 » Einar Teiling,
 » Gustaf Törnblom,
på förslag af docenten R. Sernander:
fil. stud. Erik Bergström, Uppsala,
 » Fredrik Dahlstedt, Uppsala,
 » Fritz Jonsson,
 » Thore Lindfors,
 » Olof Smedberg,
 » Harry Smith,
på förslag af docenten N. Svedelius:
lektor J. B. Haij, Växjö;
på förslag af apotekaren A. S. Trolander:
apotekare M. Eriksson, Sollebrunn;
på förslag af professor V. B. Wittrock:
professor E. Almquist, Stockholm,
godsägare H. Örtengren, Ekestad, Helmershus;
på förslag af byråchefen T. Örtenblad:
jägmästare Carl Ekman, Luleå,
 » David Frykman, Wilhelmina,
 » M. G. Jernberg, Luleå,
 » O. Kollberg, Leksand,
direktör E. Orstadius, Pajala,
överjägmästare W. Teden, Leksand,
löjtnant Lennart Wahlberg, Umeå,
förvaltare L. Wallerstedt, Anundsgård,
fröken Anna Öberg, Stockholm.

Föreningens sommarexkursion 1907.

hade sedan den 25 juni varit på platsen för att göra förberedande undersökningar och anordningar till Hornborgasjönsfärden. Sina erfarenheter från dessa undersökningar och föregående sommars erfarenhet från Skul-torps-kalktuffen och Stipa-lokalerna meddelade han i ett par små föredrag under aftonsamkvämen denna och följande dag.

På morgonen den 29 reste vi med tåget till Skultorps station, där A. S. TROLANDER tillstötte. På aften möttes vi i Sköfde af T. G. HALLE.

Innan vi med tåget fortsatte till Stenstorp, tågade vi upp till Skultorpa nabbe på Billingens trapp-platå och från dess karga vegetation ner genom

Kalktuffen vid Skultorp. 23/6 1907.
G. Indebetou foto.

Utsikt från Varholmen mot alfvarslätterna kring Dala kalkbrott. 1907.

G. Indebetou foto.

Hornborgasjön nära Dagsnäs. Nuphar luteum-samhälle. 1907.
de yppiga lunderna på gränsen mellan trappen och lerskiffern. Öfver deras viktigare konstituenter gjorde några af deltagarna en skisserad upptekning.

På orthoceralkalkplatån norr om Stenåsen iakttogo vi alnvarvegetation med *Lecanora bracteata*, *Lecidea decipiens*, *Poa alpina* o. s. v.

Efter en strålande vacker och varm dag kommo vi på aftonen åter till Sköfde.

Redan kl. 6,54 följande morgon sutto vi åter på tåget på färd till Broddetorp via Axvall, där vi frukosterade. Det ösregnade, men himlen klarnade just som vi stego ur vid Broddetorps station. Här möttes vi af vagnar,
som herr Jesper Swedenborg välvilligt anskaffat, och foro med dem till Sätuna vid Hornborgaån. Även här blev vi omhändertagna af herr Swedenborg, som anskaffat roddare och båtar, som vi nu använde för en roddtur öfver hela Hornborgasjön.

Vid Flian landade vi ett stycke upp i ån för att studera lagerföljden och förhållandena vid detta sjöns utflöde. Under den öfre sjötorven, som genomgräfts vid de celebra sänkningsarbetena, upptäcktes ett stubblager af samma beskaffenhet som det vi nyss haft tillfälle att iakttaga under den sandblandade kärrsjötorven i moderna kring Hornborgaåns utlopp. Vid detta stubblager fäste vi i anslutning till föregående undersökningar alldeles särskilt vår uppmärksamhet. Det visade sig nämligen, att detta samma utgjorde resterna af en skog, som en gång betäckt Hornborgasjöns-depressionen, såväl den del, som nu är upptagen af torfmossvidder, som den, hvilken nu upptages af vatten, och här ut till ett sådant djup, att
dåtidens Hornborgasjö var inskränkt till en mindre, under större delen af året aflöppsöjs sjöhåla i centralpartiet. Sedan gammalt äro bottenfasta stubbar angifna från sjöns södra del. I nordvästra delen, öfver hvilken vi nu foro, äro sådana också vanliga, och vi lyckades åfven att ur det grumliga vattnet på c. 1 meters djup upptaga en tallstam med sin rotkrona.

Vi skulle icke sedan börja med det af effekterna för sjöns underliggande skogsbottnen. Vid Hornborgasjön är dessbottens, lämnade vi båtarna och fortsatte till fot. Bottenfast stubbar angifna från sjöns södra del. I nordvästra delen, öfver hvilken vi nu foro, äro sådana också vanliga, och vi lyckades äfven att ur det grumliga vattnet på c. 1 meter djup upptaga en tallstam med sin rotkrona.

Vid Röde mosse och dess höga erosionsbrant, som visade en lagerföljd af Sphagnum-torfl och Scirpus-Phragmites-torfl, åtskilda af den nys ökat algenässan och fortsatte till fot. Öfver hvilken vi nu foro, äro sådana också vanliga, och vi lyckades äfven att ur det grumliga vattnet på c. 1 meter djup upptaga en tallstam med sin rotkrona.

Vid Röde mosse och dess höga erosionsbrant, som visade en lagerföljd af Sphagnum torfl och Scirpus-Phragmites torfl, åtskilda af den nys ökat algenässan och fortsatte till fot. Öfver hvilken vi nu foro, äro sådana också vanliga, och vi lyckades äfven att ur det grumliga vattnet på c. 1 meter djup upptaga en tallstam med sin rotkrona.

Vid Röde mosse och dess höga erosionsbrant, som visade en lagerföljd af Sphagnum-torfl och Scirpus-Phragmites-torfl, åtskilda af den nys ökat algenässan och fortsatte till fot. Öfver hvilken vi nu foro, äro sådana också vanliga, och vi lyckades äfven att ur det grumliga vattnet på c. 1 meter djup upptaga en tallstam med sin rotkrona.

Vid Röde mosse och dess höga erosionsbrant, som visade en lagerföljd af Sphagnum-torfl och Scirpus-Phragmites-torfl, åtskilda af den nys ökat algenässan och fortsatte till fot. Öfver hvilken vi nu foro, äro sådana också vanliga, och vi lyckades äfven att ur det grumliga vattnet på c. 1 meter djup upptaga en tallstam med sin rotkrona.

Vid Röde mosse och dess höga erosionsbrant, som visade en lagerföljd af Sphagnum-torfl och Scirpus-Phragmites-torfl, åtskilda af den nys ökat algenässan och fortsatte till fot. Öfver hvilken vi nu foro, äro sådana också vanliga, och vi lyckades äfven att ur det grumliga vattnet på c. 1 meter djup upptaga en tallstam med sin rotkrona.
Professor C. LINDMAN föredrog om »Naturhistoriska riksmuseets LINNÉ-herbarium.« Föredraganden redogjorde härvid i korthet för LINNÉS växtsamlingars öde efter LINNÉs död. LINNÉS herbarium minus hade tack vare CLAES ALSTRÖMERS energiska vidhållande av ett honom gifvet löfte om dettas erhållande kommit i ALSTRÖMERS ägo och efter ALSTRÖMERS död tillika med hans växtsamling i öfrigt hamnat inom landet. UR ALSTRÖMERS herbarium samt ur herbarier tillhörande LINNÉs lärjungar MOSELIUS och SOLANDER hade föredraganden sammanställt ett LINNÉ-herbarium bestående av ej mindre än omkring 2 000 arter, samlade eller bestämda af LINNÉ. En del af dessa LINNÉ-växter demonstrerades af föredraganden.

Docenten H. HESSELMAN föredrog om »Orobanche på Gotland«. Se sid. 373 i detta häfte.

Därefter förevisade professor LINDMAN pressadt och spritlagdt material af den från Berge i Smaalenene i Norge stammande förmodade ymphybriden mellan päron och hagtorn.

Den 7 december 1907.

Lektor G. MALME föredrog om »de internationella botaniska nomenklaturreglerna.«

Fil. stud. G. TÖRNEBLOM redogjorde för en del af de blombiologiska studier på Ölands alfvar, han såsom sällskapets resestipendiat sommaren 1906 där utfört.
Professor G. Lagerheim höll föredrag om »ultramikroskopet«, därvid demonstrerande ett dylikt tillhörande Stockholms högskola.
Professor V. Wittrock höll ett meddelande om och förevisade för sällskapet en del nyutskilda former af Hedera helix.

Botaniska sektionen af Naturvetenskapliga studentsällskapet i Uppsala.

Den 17 september 1907.

Professor O. Juel demonstrerade en samling mikroskopiska preparat af fossila växter.

Den 1 oktober 1907.

Lektor H. W. Arnell lämnade några meddelanden om följande mossor, af hvilka de tre första härmed för första gången angifvas för Sverige:

2) Aongstroemia longipes (Somfl.) Br. eur., hvilken sällsynta mossa af apotekaren J. Persson påträffats åfven i Sverige, nämligen flerestädes i Mora socken i Dalarna (så t. ex. på en väggkant vid Utmeland och fruktbarande i en sandgrop vid Hemulå kvarn) och i Hede socken i Härjedalen, på sista stället i sällskap med Scalia Hookeri.

3) Polytrichum gracile Dicks. var. anomalum (Milde) Hag., funnen af föredraganden vid Storåns utlopp i Ockesjön och på strandängar nära Ristafallet i Jämtland samt af apotekaren C. Jensen i Sarekområdet i Lule Lappmark. Denna mossa är en extrem, på tidtals öfversvämmede ställen förekommande form, som skiljer sig från huvudformen genom de mycket tunnare bladen, hvilkas celler åro omkring dubbelt större och tunnvägiga, och genom de färre bladlamellerna, blott omkring 20 på hvarje blad, medan deras antal hos huvudformen är omkring 40. Hos en vid Storsjö kyrkby i Härjedalen insamlad öfvergångsform åro de äldre skottens blad fullt normala, årskottens blad däremot som hos varieteten.

1 Se Bot. Not. 1882, s. 27.
Docenten N. Svedelius föredrog om endemismen och de nyare artbildningsteorierna. Se sid. 321 i denna tidskrift.

Den 15 oktober 1907.

Docenten R. Sernander föredrog öfver ämnet: Har Sverige haft stäppklimat i postglacial tid?

Fil. stud. Th. C. E. Fries meddelade fynd af Racodium rupestre Fr. på stenar vid Flottsund (\(\frac{3}{4}\) mil från Uppsala).

Den 29 oktober 1907.

Docenten N. Svedelius demonstrerade frukter af sydasiatiska kulturväxter.

Den 15 november 1907.

Fil. dr C. O. Noréx redogjorde för utvecklingshistoriska studier öfver podocarpéen Saxegothaea conspiciua.

Den 26 november 1907.

Fil. lic. T. Lagerberg meddelade iakttagelser öfver blomningens eko-logi hos representanter för fjällfloran kring Torne träsk. särskilt leguminosor och serophulariaceer.

Fil. kand. G. Samuelsson förelade kvistar af Pinus silvestris med hvitgula årskott och meddelade, att han på två skilda punkter inom Åfdalens socken i Dalarna anträffat yngre tallar med årskotten så beskaflade.

Vetenskapsakademien.

Den 13 april 1907.

Professor A. G. Nathorst redogjorde för sina undersökningar om ett nytt fossilt växtsläkte Pseudoecyas från Grönlands kritlager. De hithörande formerna hade förut betraktats som Cycas-arter.

Till införande i Arkiv för botanik antogs följande afhandlingar: 1) »A Linnean Herbarium in the Natural History Museum in Stockholm« af professor C. A. M. LINDMAN. 2) »Über die Anwendung von Kollodium-abdrücke bei der Untersuchung fossiler Pflanzen« af professor A. G. NATHorST.

Den 8 maj 1907.

Den 12 juni 1907.

Till införande i Arkiv för botanik antogs en afhandling af amanuensen dr. H. Dahlstedt: »Taraxacam palistre und verwandte Arten in Skandinavien.«

Den 11 sept. 1907.

Akademien hade som gåfva. från Linnean Society i London erhållit en reproduktion af ett måladt porträtt af sir J. D. Hooker; samt från frith. DE GEER å Leufsta en fotolitografisk reproduktion af en i biblioteket på Leufsta förvarad handskrift af LINXÉ: »Adonis Uplandicus.«

Den 9 okt. 1907.

Till ledamot af Akademien i ledigheten efter professor F. R. Kjellman invaldes professor SV. MURBECK. Akademiens äldre Linnémedalj i guld tilldelades lektor S. Almqvist. Densamme hade till Akademien skänkt en rikhaltig samling svenska Rosa-former.

Den 13 nov. 1907.

Den 4 dec. 1907.

Berättelser öfver med understöd af Akademien inom landet företagna resor hade inlämnats af lektor JOH. ERIKSON, som erhållit understöd för afslutande af sina studier öfver strandfloran i Blekinge skärgård, och af kand. G. SAMUELSSON öfver fortsatta hieraciologiska studier i norra Dalarna.

I Arkiv för botanik intogs en afhandling af AUG. HEINTZE: »Växtgeografiska anteckningar från ett par färder genom Skibotndalen i Tromsö amt.»
SMÄRRE MEDDELANDE.

Pilularia globulifera L. funnen i Närke.

Den 29 augusti 1901 fann jag vid västra stranden af sjön Tisaren, Lerbäcks socken i södra Närke, mångdvis Pilularia globulifera L. Den är ej förut känt från Närke, hvadan mina då gjorda anteckningar om dess förekomstSätt kanske äro på sin plats i vår tidskrift, så mycket mer som dess synekologi ännu är ofullständigt känt, och som det för våra botaniska institutioner kan vara av värde att veta, hvor de säkert kunna hämta friskt undersökningsmaterial af denna i så många hänseenden märkliga vattenormbunke.¹

I hvilket sällskap Pilularia växer på detta slag af lokaler och hur den här uppträder, angífves icke i flororna. Den enda notis härom, som jag i den svenska litteraturen lyckats upptäcka, föreligger hos Linnaeus, som på sin skånska resa (p. 395—397) den 28 juli (gamla stilen) 1749 upptäckte Pilularia vid Isternäset utanför Kristianstad som en ny medborgare för vår flora. »år en af de raraste örter, som förnöjt vår tids snällaste Botanister. Sedan denna örtens blifvit mig fördom wist af den namn- kunniga Botanisten Herr Professor Bernhard Jussieu vid Fontainebleau 1738, har jag den samma med all físt i Sverige eftersökt, men förgäfves,

¹ Exemplar inflyttade samma sommar i Uppsala Botaniska Trädgård fortleva där ännu.

Men Pilularia förekommer åfven i en del sjöar långt under den linje, till hvilken högssommartorkan sänker vattenståndet. En närmare kändedom om denna submersa forms uppträdande i de smaländska sjöarna erhöll man 1902 genom G. W. F. CARLSON. Han meddelar (p. 14 och 25) ett par upplysande anteckningar, från Toftasjön. där han på sandbotten fann den dels i en »fältskiktsformation«, nämligen ett Phragmites-samhälle, dels i en »bottenskiktsformation«, nämligen ett Lobelia-samhälle, i båda gående ner till mer än 2 meters djup (1921/01). Vidare har han (p. 26 och 36 några anteckningar om dess uppträdande i en Isoëtes-formation på lös, dyv botten och 0.5—1 m. djup i en vik af sjön Öijen.

Vid Tisaren ingick den efter de nyss omnämnda anteckningarna i 3 olika formationer, af hvilka ingen öfverensstämmer med de ofvan skildrade.

1 | På en kortare sträcka strax söder om lastkajen nåra Asbro station var den långsluttande stranden. som här består af fin sand med en ojämn.

1 Formationsbegreppet tages i detta meddelande med samma omfattning som i RAGNAR HULTS senare arbeten (särskilt Die alpinen Pflanzenformationen). — Frekvensgraderna är också HULTS.

9 Jmf. t. ex. SERNANDER, Sveriges växtvärld.
tunn dy-gyttebetäckning, nu barlagd. Denna breda barlagda remsa var be-växt af kolonierad vegetation1 af växlande sammansättning. I densamma förekom Pilularia ända upp till en zon af Carex stricta, Solanum Dulcamara och Siam latifolium närmast strandsnäret. Frekvensen var växlande, men på en fläck, hållande c. 10 m. af en linje dragen vinkelrät mot stranden och c. 10 m. i bredd, var den ymnigh och formationsbildande tillsammans med:

<table>
<thead>
<tr>
<th>Plantago</th>
<th>tunnsådd</th>
<th>supinus tunnsådd</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alisma</td>
<td>Myriophyllum</td>
<td>alterniflorum</td>
</tr>
<tr>
<td>Plantago</td>
<td>verticillatum</td>
<td></td>
</tr>
<tr>
<td>Batrachium</td>
<td>Nuphar latifolium</td>
<td></td>
</tr>
<tr>
<td>Pellatani</td>
<td>Polygonum</td>
<td>amphibium</td>
</tr>
<tr>
<td>Balomus umbellatus</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Junceus articularis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pilularia</td>
<td>Scirpus lacustris</td>
<td>riklig</td>
</tr>
<tr>
<td>Potamogelon</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2) Utåt hopslöt sig Scirpus lacustris till en formation, i hvars lägsta skikt funnos fläckar af en eller annan kvadratmeters storlek, på hvilka Pilularia med bladtopparnas uppskjutande långt öfver vattnet växte ymnig. Vattenståndet hade under den ovanligt heta och torra högsommaren varit ännu lägre. Formationen bestod af:

<table>
<thead>
<tr>
<th>Plantago</th>
<th>Alisma</th>
<th>Carex</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atropastrum</td>
<td>Pseidocapitellum</td>
<td>graminus</td>
</tr>
<tr>
<td>Plantago</td>
<td>Ranunculus</td>
<td>Flammula</td>
</tr>
<tr>
<td>Pseidocapitellum</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Balomus umbellatus</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Junceus articularis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pilularia</td>
<td>Scirpus</td>
<td>Palustris</td>
</tr>
<tr>
<td>Potamogelon</td>
<td>lacustris</td>
<td></td>
</tr>
<tr>
<td>Pilularia</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3) Längre söderut bildade Pilularia lägsta skiktet i en Equisetum limosum-formation och i en

1 Några år förut hittade jag i densamma sparsam Carex Pseudoerysperus.
2 De grova stråna ända till 84 cm. långa. Exemplar inplanterades i Uppsala Botaniska Trädgård och utvecklade där de år, de höllo sig vid lif. Likaledes mycket grova och höga strån.

»Den ena, som iakttogs blott i Öijen, i den ofvannämnda viken (se sid. 26), på dybotten och 0.5—1 m. djup, bland *Isoëtes lacustris*, *Ranunculus reptans*, *Subularia*, *Nitella*, *Nuphar* o. s. v., var af typiskt utseende och hade, liksom de flesta af mig sedda submersa exemplar af *Pilularia globulifera*, tämligen långa blad i (allmänhet 10—15 cm.).« Detta är också dimensionerna på Tisar-formens submersa blad.

»Den andra formen (se fig. 1) hade endast 1.5—3 cm. långa blad; internodierna voro högst 1.3 cm. långa; tillväxten tycktes vara mycket långsam, enar spåda blad med ännu inrullad spets sällan träffades. Hela växten var habituellt mycket lik den submersa formen af *Scirpus acicularis* och skulle latt kunna förväxlas med denna; — — anmärktes på sandbotten i Toftasjön och Helgasjön (i *Phragmites* och Lobelia-formationer, se sid. 14 och 25) ända till öfver 2 meters djup.«

Det återstår att se, om dessa tre former åro genom olika yttre förhållanden framkallade individuella variationer af samma elementarart, eller om särskilda sådana föreligga.

De submersa former, som jag varit i tillfälle att se i Tisaren och som pressade från andra delar af Sverige, ha alltid varit sterila — däremot funnos bland de för tillfället torrlagda exemplaren väl utbildade sporokarpior — och samma erfarenhet har Carlson från de smålandska sjöarna. Schenck säger också p. 110: »In tiefem Wasser ohne Früchte.« Allt talar för att sporokarpier anläggs på torrlagda exemplar. Th. M. Fries fann sommaren 1851 »mycket små frukter« (l. c. p. 93) på sin *forma fluitans* i bäcken från Bastesjön. Året utmärktes enligt författarens regnig väderlek; möjliga ha sporokarpier anlagts i luften, men sedan blifvit hejda i sin utveckling af submersion.
Hur *Pilularia* sprider sig känner man föga. Att den genom de utlöpande skottsytten, i hvilka individualisering genom skottaflösning snart inträder, kan aktívt utvidga sitt område högst väsentligt, syntes tydligt vid Tisarstranden.CARLSON har iakttagit indivíd, troligen lösgjorda från bottnen genom fiskars rotande, i Toftasjöns sommardrift (l. c. p. 26).

LITTERATURFÖRTECKNING.

» » » » Andra upplagan. Lund 1881.

ASPEGREN, G. CASTEN. Försök till en Blekingsk Flora. Carliskrona 1823.

FRIES, TH. M. Botaniska anteckningar rörande Femsjös socken i Småland. Botaniska Notiser 1852.

Om växternas utbildning i rinnande vatten.

I det följande skall redogöras för några av de iakttagelser jag gjort.

Fig. 1. A framställer ett individ av Sagittaria från Trosaån. Växande på ett ställe nedanför en liten fors, där ån flöt tämligen lugnt fram. Tyvärr anställde jag ej några observationer för att utröna strömhastigheten, så att i det afseendet åro mina iakttagelser osäkra. Emellertid företer individet i fråga alldeles tydliga förhållanden, som visa att växten reagerat i en viss riktning mot strömmande vatten. Figur 1. A visar individet från sidan, pilen anger strömriktningen. Det framgår däraf att bladskaf- tens nedre och mellersta delar åro upprätta eller mer eller mindre tillbakaböjda med strömmen. Under det bladskafets övre del är riktat framåt mot strömmen: en böjning i bladskafet har här inträdt, som gjort

att bladskifvan hos några blad blifvit riktad mer eller mindre vertikalt uppåt. Till en del är nog denna börjning orsakad av en geotropisk retning, alldenstund bladskarten genom strömmens mekaniska inverkan bragts något ur sitt normala läge och alltså sträva att genom en böjningsrörelse återtaga detsamma. En annan faktor som influerar är väl ock, att genom bladens börjning med strömmen en slitage intråder i bladskarrets kante del, hvilket åter har till följd att tillväxten här är långsammare än i den undre konkava sidan af bladskarten.

Särskilt tydligt visar sig strömmens inverkan på växten vid en detaljgranskning af vissa blads ställning. Fig. 1, B, C, D föreställer ett blad märkt i fig. A med *, aftecknad framifrån, ofvan- och underifrån; pilarna ange strömriktningen. Det framgår däraf, att bladskifvan riktats snedt in mot strömmen genom en vridnings- och böjningsrörelse i skarrets översta del. På detta sätt blefvo flera blad mer eller mindre starkt riktade in mot strömmen, som fig. 1, A visar. Detta framgår också af fig. 1, E, som föreställer individet sedt ofvanifrån, med blott angifvande af bladskifvornas ställning. Individ, som företedde liknande börjningar hos bladskarten, voro ganska vanliga på den nämnda lokalen.

Hos de nedsänkta utlöparskotten af Lysimachia thyrsiflora visade sig åfven dylika fenomen. Bladen sitta här mer eller mindre tydligt korsvis mot satta och äro som bekant oskaftade. Jag observerade några blad, hvars medelnerv var riktad vinklerätt mot strömmen. Bladskifvan visade en
böjning mot strömmen (fig. 2, A) på så sätt att hvarje blad blir tydligt skärformigt och båda bladen i ett par alltså mer eller mindre tydligt halvmånformiga: den emot strömmen vända kanten var tydligt konkav, den frånvända konvex.

Myriophyllum spicatum. Ett rikligt bestånd af denna växt undersöktes i Dalälven, växande på omkr. 1 meters vatten nedanför en fors, på ett ställe där strömmen dock var tämligen svag. Stjälkarna voro c:a 2 meter långa, de öfre delarna af skotten voro mer eller mindre horisontellt riktade med strömmen. Från skottaxlarnas nodi utgå rötter, som här visade en alldeles tydlig sned växtriktning mot strömmen, särskilt i de kortare rötterna (fig. 2, B, C). När rötterna voro längre, visade de sig
för svaga att motstå strömmen. Ett par skott öfverflyttades kl. 3 e. m. i stillastående vatten, i såvitt möjligt den ställning de förut intagit (fig. 2, C) och observerades kl. 6 e. m. då rötterna böjt sig vertikalt nedåt (fig. 2, C).

En del af de anförda iakttagelserna äro säkerligen att hänföra till yttringar af rheotropism. Då jag emellertid ej arbetat med några noggrannare försöksanordningar, är det klart, att det ej med säkerhet låter sig afgöra, i hvilken grad rheotropismen kan anses vara orsak till de nämnda företeelserna. Så mycket förefaller mig dock vara klart, att i naturen växterna reagera mot strömmande vatten, och särskilt anmärkningsvärdt är, att strömmens inriktande inflytande ej sträcker sig endast till rötter, som man hittills påvisat, utan åfven till öfriga delar af de undersökta växterna, såsom blad och bladskaft. Det anförda kan ju möjlichen ge anledning till att närmare iakttaga denna »tropism« ute i naturen.

Erklärung der Abbildungen.

Fig. 1. Sagittaria sagittaeefolia. A. Eine Pflanze in einem ziemlich ruhig strömenden Flusse (Trosa-ån) wachsend, von der Seite gesehen: der Pfeil deutet die Stromrichtung an; die Pflanze war im Wasser ganz untergetaucht; die oberen Teile der Blattstiele sind gegen die Stromrichtung gebogen; B, C, D, ein Blatt (in Fig. A mit * bezeichnet) von vorne, von der Ober- und Unterseite gesehen: durch eine Drehung des Blattstieles ist die Blattspreite gegen die Stromrichtung eingestellt; E; dieselbe Pflanze von oben gesehen, nur die Blattspreiten sind angegeben.

Fig 2, A. Lysimachia thyrsiflora; ein untergetauchter Spross von oben abgezeichnet; das quer zur Stromrichtung gestellte Blattpaar ist sichelförmig geworden.

Fig. 2, B, C. Myriophyllum spicatum; B, oberer Teil eines Sprosses mit zwei gegen die Stromrichtung stark gebogenen Wurzeln; C, ein anderer Spross mit rheotropisch reagirenden Wurzeln; das Spross-Stück wurde in ruhigem Wasser übergeführt und nach 3 Stunden abgezeichnet: die Wurzelspitzen hatten sich vertikal gebogen (bei den Wurzeln in Fig. C links abgezeichnet).

O. Rosenberg.
REFERAT.

Lycopodium complanatum är — enligt förf. på studium av ett stort antal exemplar från olika delar av Europa grundade uppfattning — en synnerligen konstant art. Intressant är därför fyndet av ofvanstående väl utpräglade form, hvilken förf. uppställer som subspecies. Den skiljer sig från typen huvudsakligen därigenom att kantbladens yttre kontur, bildad av det kölformiga bladets medelnerv, är nästan halfcirkelformigt utbuktad (fig. a), hos huvudformen fig. b betydligt rakare.

Den nya underarten har förf. funnit 1895 i en skog nära Tumba i Södermanland, där den förekom i stor mängd. Afvikelsen från huvudarten var synnerligen tydlig och konstant hos alla de undersökta individen.

Rosenberg.

betydlig växtling. Även om arterna i sina typiska former äro väl skilda, blir dock artbegränsningen svår på grund af talrika öfvergångsformar. Därtill kommer, att arterna i allmänhet ej utestuta hvarandra i fråga om sin geografiska utbredning.

Alla hithörande arter synas vara bundna vid kalkhaltig grund.

Helianthemum oelandicum (L.) Baumg. uppdelar förf. i följande former:
1. f. canescens Hartm.: folia subitus leviter cano-tomentosa, supra viridia, sparse strigoso-pilosa vel prope glabra.
2. f. praecox Fries: folia utrinque viridia, plus minus praecipue margine nervoque mediano strigoso-pilosa vel omnino glabra.
Denna form motsvarar *H. oelandicum* huvudarten i våra florer. Den delas i tvenne underformer:

Hvad den geografiska utbredningen af *Helianthemum oelandicum* beträffar, så förekommer den — fransedd den otroliga uppgiften om Spetsbergen — utom Öland endast i mellersta England (Yorkshire). Därifrån känner förf. endast formen *canelescens*, hvilken där »står i direkt sammanhang med äkta *H. canum».

Vestergren.
NOTISER.

E. o. professuren i botanik i Uppsala. Den efter professor Juels utnæmning till ordinarie professor i botanik i Uppsala lediga e. o. professuren är nu anslagen ledig till ansökan, före kl. 12 på dagen den 17 februari 1908.

Utnämningar. Till docenter i botanik vid Uppsala universitet hafta utnämnts fil. doktorerna C. Skottsberg och H. Kylin.

Till redaktionen inlämnade afhandlingar och tidskrifter.

Namnda bok, som, att döma af dess titel, i första hand tyckes vara ämnad för trädgårdsfolk, kan dock i hög grad rekommenderas äfven för botanister af facket. På ca 370 sidor har förf. samlat öfver 8,000 grekiska och latinska släkt- och artnamn samt en stor mängd speciellt inom den beskrivande morfologien och systematiken förekommande termer, jämte kortfattade förklaringar för dessas betydelse.

›Haven‹. Medlemsblad for de samvirkende danske Haveselskaber, Aarg. 7. Nr 11—24. 1907.

3) Växtnamn i texten sättas med kursiv stil (enkelt understruket i manuskriptet).

4) Vid kursiveringar må spårrad stil användas.

Citeringar börja ske genom hänvisningar till en afhandling bifogad litteraturförteckning. Noter under texten börja så vidt möjligt undvikas.

Det är redaktionens mening att, efter det redaktionskommittén antagit en afhandling till införande i tidskriften, omedelbart befordra densamma till trycket, så att författaren kan erhålla separat af densamma äfven innan det häfte utkommit, i hvilket afhandlingen inflyter.

Korrektur och andra handlingar, som röra tidskriften, insändas direkt till redaktören. Direkt förbindelse mellan författaren och tryckeriet får ej äga rum.

Hvarje författare erhåller 100 särtryck med omslag afgiftsfritt af sin i tidskriften intagna afhandling; större antal efter öfverenskommelse. Af smärre meddelanden intagna i tidskriftens borgisafdelning lämnas separat endast efter särskild öfverenskommelse.
INNEHÅLLSFÖRTECKNING.

G. O. A:N MALME: Afvikande tal- och ställningsförhållanden i blomman hos Gentiana campestris L. ... 353
V. B. WITROCK: Polycarpon tetraphyllum L. i Sverige (med 1 textbild) 361
S. BIRGER: Rügen som exkursionsort för svenska botanister (med 4 textbilder) ... 364
H. HESSELMAN: Orobanche alba Stephan *rubra Hooker och dess förekomst på Gotland (med 4 textbilder) 373
J. LIND: Liste over Svampe indsamlede under Svenska Botaniska Förningens Exkursion til Billingden 1907 385
C. SKOTTSSBERG: Om växtligheten å några tångbäddar i Nyländska skär- gården i Finland (med 3 textbilder) 389
O. ROSENBERG: Zur Kenntnis der präsynaptischen Entwicklungphasen der Reduktionstellung (hierzu Tafel 7) 398
Sammanfattning ... 407

SVENSKA BOTANISKA FÖRENINGEN:
Föreningens årsmöte ... 411
Föreningens sommarexkursion 1907 ... 412

SAMMANKOMSTER:
Botaniska Sällskapet ... 415
Botaniska sektionen af Naturvetenskapliga studentsällskapet i Uppsala 420
Vetenskapsakademien ... 421

SMÄRRE MEDDELANDEN:
Pilularia globulifera L. funnen i Närke ... 424
Om växternas utbildning i rinnande vatten ... 429

REFERAT:
C. A. M. LINDMAN: Lycopodium complanatum L. *moniliforme n. subsp. 433
E. JANCHEN: Helianthemum canum (L.) Baumg. und seine nächsten Verwandten ... 433

NOTISER:
Till redaktionen inlämnade afhandlingar och tidskrifter ... 436

Utgifvet den 4 Februari 1908.

CENTRALTRYCKERIET, STOCKHOLM, 1908.