TYPICAL FLIES

SERIES I
TYPICAL FLIES
A PHOTOGRAPHIC ATLAS OF DIPTERA
INCLUDING APHANIPTERA

BY

E. K. PEARCE
F.L.S., F.E.S.

SERIES I

SECOND EDITION

CAMBRIDGE
AT THE UNIVERSITY PRESS
1928
THE study of Diptera (two-winged flies) is rendered peculiarly difficult by the lack of elementary treatises on the subject. Certain groups are fully treated in the two large (and costly) volumes published by the late Mr Verrall, there are sundry scattered papers in various magazines, and monographs (such as Lowne's on the Blowfly); but there is nothing to compare with the numerous manuals dealing with Lepidoptera and Coleoptera, to name two orders only. This little book does not claim to fill the gap, but it is hoped that it may be of some use to the beginner, and attract attention to an order which possesses great interest, and is moreover of much economic importance. It is chiefly a picture book, as pictures appeal more to the eye than many pages of letterpress; and an important dipterous character—the venation of the wings—can be rendered with fidelity in a photograph.

I have found it difficult to obtain specimens set sufficiently flat for photographic reproduction; since, in photographing on the enlarged scale required, no amount of "stopping down" will produce an image sharp all over, unless the subject be fairly in one plane: in addition to this, some species when set and dried shrivel up, and give but a poor idea of their appearance when fresh. This of course chiefly applies to the bodies of flies, the wings and legs are not so affected.

Flies may be taken with the usual entomological net, preferably a green one, as less likely to cause alarm than a white one. Mosquito netting, which may be dyed the required colour, is much better than green leno. The net should be fairly large, but light and easily managed, as many flies are very swift and strong on the wing. When caught, the fly may be transferred to a glass bottomed entomological box: a good supply should be carried, and it is better that only one specimen be placed in a box. On returning home the flies may be killed in a laurel bottle, care being taken that the leaves do not become mildewed, which would probably ruin the specimens; a circular piece of white blotting paper should be placed over the leaves, and frequently renewed. Flies should remain in the bottle till they are thoroughly relaxed, which will require a day or two; if left too long they become rotten and easily break whilst setting. Narrow boards, such as are used for the smallest lepidoptera, will be suitable for large and medium sized flies; small
ones may be set on strips of flat cork, covered with thin white paper. Entomological forceps will be needed to insert the pin in the thorax of the fly; I prefer these curved, as they are also useful for moving pinned specimens. If the flies are to be photographed the pin must be cut off as short as possible above the thorax, and the cut end blackened with a touch of “matt black.” No. 20 pins will be useful for most flies, though the large species require something stronger, whilst the very small ones, if pinned at all, require the finest silver pins obtainable. Taylor, New Hall Works, Birmingham, will supply a sample card of pins. For setting, strips and triangles of stiff writing paper, to hold legs and wings in place, and a stiff sable paint-brush, a few handled bristles and a fine needle or two, also handled, will do all that is required: a lens is indispensable in setting small flies, and may with advantage be mounted on a simple stand to leave both hands free. Some flies, especially the Tachinidae, are very brittle; care must be taken in manipulating them. Culicidae should be set and photographed as quickly as possible, they very soon shrivel. Other flies may remain about ten days on the setting boards. As to numbers, half a dozen specimens should be ample, both sexes being represented, where possible. Fewer will often have to suffice with rare species, and for purposes of photography one well set specimen would be sufficient, were it not for the ever present risk of damage in moving from the store box: the slightest touch or jar will often cause the loss of a leg or antenna, and the attempt to replace these is seldom successful.

Store boxes may be had in many sizes (10 x 8 inches is as good as any); whatever size is used should be adhered to, as far as possible, for the sake of uniformity. They should be carefully examined for mites, a great enemy to the collector; even new boxes are sometimes contaminated. In sending flies by post it is well to use two boxes, pinning them well into the inner, and supporting them by extra pins if possible; then packing the box with shavings inside a larger one. The label will of course be tied on. When finally pinning flies into the store box it is essential to use a small label giving date and locality, which can be pinned, written side down, by the same pin as the specimen. The name, etc. of the fly is written on a second label and pinned behind it in the box: the sex should be marked, where known, and a number added to correspond with that in a notebook, where fuller details may be recorded. Flies should be stored in a cool dry place, free from accidental jars and careless handling. Naphthalin wrapped in a piece of net should be
pinned in a corner of the box as a guard against mites, the great enemy of the dipterist as of the entomologist in general.

The chief season for collecting in this country is from March till October, the sunny forenoon being the best time. Windy days are very unproductive. Even well-known and good localities are sometimes a blank, from causes we do not know, for flies seem very capricious in their habits. But, like other creatures, they have special haunts where they may usually be found at the proper season, and where they may be expected to occur if carefully searched for. Considerable experience in their habits and localities is needed by the collector. Generally speaking, umbelliferous plants, also bramble, hawthorn and ivy bloom seem to be most attractive. Flies often settle upon gate-posts, railings, and tree-trunks, especially if wounded or decayed. Others frequent salt-marshes and swamps, ponds and river-sides; whilst heath-lands, sheepruns, bare hot sandy areas and commons attract others. Horse and cattle droppings and decomposing animal and vegetable matter are well-known baits for many species. Others attack living animals, not excepting man; and certain flies prey on insects and spiders. Should horses or cattle be approached for the purpose of taking flies, much care must be exercised, as a net will generally stampede them; it is difficult to employ it to advantage under such conditions.

This little book has received the kind encouragement of many entomologists, among whom I may mention Professor Nuttall and Mr Warburton, both of Cambridge. Much practical help in the selection of species, and information as to types selected and their larvae, has been afforded by the kindness of Professor Theobald, whose assistance, it is hoped, has added greatly to the utility of this book. Thanks are also due to Mr Harwood, of Sudbury, Suffolk, for some of the fine specimens of diptera which he has furnished for the photographs herewith presented. It has not always been possible to do them justice, owing to the difficulties previously noted as besetting the photographer. Mr H. Waddington kindly supplied some fine microscopic slides. The author's brother, Mr N. D. F. Pearce, has also helped with the illustrations, as to the success of which the reader must be left to judge. Acknowledgement has been made in every case, it is thought, where help has been received: and if this effort is successful it is hoped that it may be some day supplemented by a further series of pictures, to fill a few gaps that were unavoidable in the present volume. The life history (ovum, larva, pupa) of many of the species shown is
yet to be traced by entomologists. Measurements are given in every case in millimetres (25 mm. = 1 inch), the first dimension being the length of the fly, and the second the expanse of wings. For various reasons it has not been found possible to reproduce the specimens on one uniform scale: the same difficulty was met with by Dr Michael in illustrating the Oribatidae.

E. K. PEARCE

BOURNEMOUTH

June 1915
THE demand for a second edition of this work may, it is hoped, be taken as evidence of an increasing interest in the Diptera. Certainly the labour involved in the production of these pictures has not been in vain if it has encouraged the wider study of British flies—a study which in the author's early days was confined to a very small circle of specialists. Before the coming of Moses Harris and his followers, of Walker, Verrall, Theobald, Ross, Wingate, Austen, Edwards, and Lang, the study of flies in this country was almost entirely neglected, though it is one which may be of the greatest service to horticulture and agriculture, and also to medical and veterinary science.

E. K. P.

MORDEN, WAREHAM, DORSET

May 1928
BRAUER’S CLASSIFICATION OF DIPTERA

(* An asterisk denotes that the family is illustrated in this book.)

Sub-order 1. ORTHORRHAPHA

Larva with a distinct head. Pupa obtected.
The adult escapes from the pupal skin by a straight dorsal slit which may be transverse but is more usually longitudinal. Imago lacks the frontal lunule and ptilinum.

Sub-order 2. CYCLORRHAPHA

Larva without any distinct head. The Pupa coarctate.
The adult escapes from the puparium through a more or less round opening at the anterior end. Frontal lunule present; ptilinum usually present.

Sub-order 1. ORTHORRHAPHA

Section I. NEMATOCERA

Antennae long and thread-like, composed of many similar or very similar segments. The maxillary palpi usually elongate and flexible of from 2 to 5 segments. Second long vein often forked.

Section II. BRACHYCERA

Antennae usually of three segments, the third usually elongated and sometimes composed of a number of indistinct sub-segments and often bearing a style or arista. Maxillary palpi of 1 to 2 segments, not flexible. Second long vein not forked. Squamae completely concealing the halteres.
CLASSIFICATION OF DIPTERA

1. THE ORTHORRHAPHA. Section I, NEMATOCERA contain the following families:

*1. †Pulicidae (Fleas).
*2. Cecidomyiidae (Gall Midges).
*3. Mycetophilidae (Fungus Gnats).
*4. Bibionidae (Fever Flies, St Mark's Flies).
*5. Simuliidae (Sand Flies).
7. Orphnephilidae.
8. Psychodidae (Owl Midges).
10. Dixidae.
*11. Ptychopteridae (False Daddy Long Legs).
*12. Limnobiidae (False Daddy Long Legs).
*13. Tipulidae (True Daddy Long Legs).

Section II, BRACHYCERA

*15. Stratiomyidae (Chameleon Flies).
*16. Tabanidae (Gad Flies).
*17. Leptidae (Leptis Flies).
*18. Asilidae (Robber Flies).
*20. Therevidae.
22. Cyrtidae.
*23. Empidae (Empis Flies).
*24. Dolichopodidae.
25. Lonchopteridae.

2. THE CYCLORRHAPHA. Section I, ASCHIZA

Frontal lunule more or less indefinite; no frontal suture.

27. Pipunculidae.
*28. Syrphidae (Hover Flies).

† These are by some raised to the rank of an order called Aphaniptera or Siphonapt era, but there is no reason whatever for separating the Fleas or Pulicidae from the Diptera.
CLASSIFICATION OF DIPTERA

Section II, SCHIZOPHORA

Frontal lunule and frontal suture marked.

Sub-section A. Muscoidea

Produce ova as a rule.

Sub-section B. Pupipara

Produce fully matured larvae.

Sub-section A. Muscoidea

Series a. Acalyptrata

Squamae small, not concealing the halteres.

Series b. Calyptrata

Squamae concealing the halteres.

Section II, SCHIZOPHORA

Sub-section A. Muscoidea. Series a. Acalyptrata

*29. Conopidae.
*30. Cordyluridae.
31. Phycodromidae.
32. Helomyzidae.
33. Heteroneuridae.
*34. Sciomyzidae.
35. Psilidae.
36. Micropezidae.
37. Ortalidae.
*38. Trypetidae.
39. Lonchaeidae.
40. Sapromyzidae.
41. Opomyzidae.
42. Sepsidae.
43. Piophilidae (Cheese Flies, etc.).
44. Geomyzidae.
45. Ephydridae.
46. Drosophilidae.
*47. Chloropidae (Gout Flies).
48. Milichidae.
49. Agromyzidae.
CLASSIFICATION OF DIPTERA

50. Phytomyzidae.
51. Astiidae.
52. Borboridae.
53. Phoridae.

*54. Oestridae (Warble Flies).
*55. †Tachinidae (Tachina Flies).
*56. Muscidae (House Flies, etc.).
*57. Anthomyiidae (Root-feeding Maggots, etc.).

Sub-section B. Pupipara

*58. Hippoboscidae (Forest Flies).
59. Braulidae (Bee Flies).
60. Nycteribiidae (Bat Flies).

† The Sarcophaginae and Dexinae are sometimes separated from the Tachinidae as two separate families.
Orthorrhapha
Nematocera

Fig. 1. *Pulex irritans* Linn. ♂ 4 mm. The human flea, prevalent everywhere. The larvae live in dust and dirt, in crevices of floors, etc.

Fig. 2. *Hystrichopsylla talpae* Curtis. 6 mm. The common mole flea.

Fig. 3. *Trichopsylla styx* Rothsch. ♂ and ♀ 3 mm., from house-martin’s nest, Grantchester, Cambridge.

Fig. 4. *Typhlopsylla gracilis* Taschb. ♂ 2 mm. and ♀ 2.2 mm., from a mole’s nest, Grantchester.
Fig. 5. *Cecidomyia destructor* Say. 2.5 mm. The well-known Hessian fly, destructive to wheat, especially in the United States.

Fig. 6. *Schara thomae* Linn.♀ 5.5 × 12 mm. A gregarious fly, common on flowers of Umbelliferae. The larvae feed on plant-roots or on fungi and decaying vegetation.

Fig. 7. *Dilophus jacobill* Linn.♀ 5 × 11 mm. The Fever fly, very common on Umbelliferae in May and June. The larvae are injurious to the roots of garden crops.

Figs. 8, 9. *Ribio marci* Linn.♂ 7.5 × 16 mm. and ♀ 11 × 2.4 mm. St Mark’s fly, appearing about St Mark’s day and abundant through May. The flies cluster on blossoms but do no harm. The larvae are injurious to roots.
ORTHORRHAPHA
Nematocera

Fig. 10. Bibio hortulanus Linn. ♂ 9 × 18 mm. Very common, resting on leaves in gardens in spring. Larvae feed on hops and roots. Flies of this family found as fossils. (Theobald.)

Fig. 11. Simulium cinereum Macq. ♂ 3½ × 8 mm. One of the “Sand flies” of Europe. The adults bite viciously, and are thought to cause Pellagra. Larvae and pupae are aquatic in running water.

Figs. 12, 13. Chironomus rufignites Linn. ♂ 8 × 10½ mm., ♀ 6 × 12 mm. Hedges and riversides in June. Larvae aquatic, known as “blood-worms,” found in rain-barrels and pools.
Fig. 14. *Anopheles bifurcatus* Linn. & 6 mm. The female bites, not the male. Larvae and pupae found in stagnant and very slow-running water. The & a carrier of Malaria. (Bournemouth.)

Fig. 15. *Anopheles maculipennis* Meigen. & 4 3/4 x 10 mm. Common carrier of Malaria in Europe. (Grantchester.)

Fig. 15 a. *A. maculipennis* emerging from pupa. 3 1/2 mm.

Fig. 15 b. *A. maculipennis*, larva. 3 3/4 mm.

Fig. 15 c. *A. maculipennis*, pupa. 4 mm.
ORTHORRHAPHA
Nematocera

Fig. 16. Theobaldia annulata Meig. ♂ 7 x 15 mm. A common British mosquito and a vicious biter, often producing large and painful wheals. The adult female hibernates in cellars, outhouses, etc. Larvae and pupae are aquatic.

Fig. 17. Culex cantans is now Aedes maculatus Mg. Aedes annulipes Mg. is another closely allied species. There are indeed only two British species of the genus Culex as now understood.

Culicidae
Fig. 14. *Anopheles bifurcatus* Linn. \uparrow 6 mm. The female bites, not the male. Larvae and pupae found in stagnant and very slow-running water. The \uparrow a carrier of Malaria. (Bournemouth.)

Fig. 15. *Anopheles maculipennis* Meigen. \uparrow 4.5 x 10 mm. Common carrier of Malaria in Europe. (Grantchester.)

Fig. 15a. *A. maculipennis* emerging from pupa. 5 mm.
Fig. 16. *Theobaldia annulata* Meig. ♂ 7 x 13 mm. A common British mosquito and a vicious biter, often producing large and painful wheals. The adult female hibernates in cellars, outhouses, etc. Larvae and pupae are aquatic.

Fig. 17. *Aedes annulipes* Mg., formerly *Culex cantans* Meig. ♂ 8 x 13 mm. Less generally distributed than Fig. 16, but locally common. Found as a rule in woods and copses, bites viciously at dusk. Colchester.
ORTHORRHAPHA
Nematocera

Culicidae
Ptychopteridae

Fig. 18. Culex pipiens Linn. 2 6-12 mm. Perhaps the commonest of the "gnats."

Fig. 18A. C. pipiens, larvae emerging from egg-case. 2 X 2 mm. (Micro-slide, Waddington.)

Fig. 18B. C. pipiens emerging from pupa-case. 2 8 mm. (Micro-slide, Waddington.)

Fig. 19. Ptychoptera albimana F. 2 X 9-12 X 21 mm. Common in damp places in summer. Larvae live in stagnant waters and have a long tube at end of body, which they raise to the surface for breathing.
Fig. 20. (Limnobiidae) *Limnobia ausalis* Meig. ♂ 8×18 mm. Found in damp places, larvae live in decaying vegetable matter, especially fungi and wood.

Fig. 21. (Amalopinae) *Pelicia rivosa* Linn. ♂ 24×48 mm. Chiefly in woods and heaths. One of the finest "Daddy long legs." New Forest.

Fig. 22. *Pachyrrhina maculosa* Meig. ♂ 12×25 mm. The larvae, called "leather-jackets," live on roots of plants, and are often very injurious.
Fig. 23. *Tipula vernalis* Meig.
\(\Delta 32 \times 52 \text{ mm.} \) Common in May in grassy places. The larvae feed on roots of grass weeds, etc.

Fig. 24. *Tipula gigantea* Schrank.
\(\Delta 32 \times 54 \text{ mm.} \) The largest British "Daddy long legs." Fairly common. (Colchester.)
Figs. 25, 26. *Tipula oleracea* Linn. ♂ 18 x 40 mm., ♀ 22 x 38 mm. The common Crane-fly or Daddy long legs. The larvae are widely known as "leather-jackets," and are highly injurious to various roots, especially in grass lawns.

Fig. 27. *Rhyphus fenestratus* Scopoli. ♀ 5 x 12 mm. Found on windows of houses and outhouses. The larvae live in water, rotting wood and hollow trees, or in manure.
Fig. 28. (Clitellarinae) *Dasyera pulchella* Meig. 8 x 13 mm. Found on leaves in May, not common. Larvae occur among confervae on the face of a mill-race dam. Colchester.

Fig. 29. Stratiomyinae: *Stratiomys furcata* Fabr. 7 x 13 x 22 mm. Chiefly on and near aquatic plants; larvae aquatic. (St Osyth.)

Fig. 30. (Sarginae) *Chrysomelas bifurcatus* Scopoli. 7 x 11 x 10 mm. Larvae are found in cow-dung. New Forest.

Fig. 31. (Sarginae) *Sargus flavipes* Meig. 7 x 7 x 15 mm. Larvae occur in cow-dung. Colchester.
Fig. 32. Sarginae Sargus caprarius Linn. ♀ 9 x 16 mm. Common on leaves in June. Larvae are found in garden mould and in elm sores.

Fig. 33. Sarginae Chloromyia formosa Scopoli. ♂ 9 x 17 mm. On leaves of shrubs and flowers. Larvae in garden mould; have been bred from Brassica rapa.

Fig. 34. Haematopota pluvialis Linn. ♀ 8 x 17 mm. Commons, riversides, fields and moors, near water, biting vigorously. Known as "Clegs" and "Breeze flies." They bite men and animals during the hot part of the day. The larvae of Tabanidae occur in damp sand and mud, and are known to attack other larvae. The adult males are rare.

Fig. 35. Haematopota pluvialis. ♀

Fig. 36. Haematopota pluvialis. ♂ 7 x 15 mm.
Fig. 36 A. Typical habitat of *H. pluvialis*. Wareham Heath.

Fig. 37. *Hematopota crassicornis* Ohlb. ♀ 9 x 18 mm. Less common than the preceding; found on posts, railings and herbage in marshy places. (Colchester.)

Fig. 38. *Hematopota italica* Meig. ♀ 12 x 22 mm. Chiefly found in Essex; Mersea Island and St Osyth. The three species are difficult of identification. (Alresford.)
The larvae of Tabanidae live in damp sand and mud, or beneath rotting leaves. They feed on other insects, worms, etc.

The eggs are laid in clusters on leaves and stems of plants and on damp rocks. "The typical race of T. solstitialis is far less common than the form distinguishus." E. E. A.

Fig. 30. *Tabanus solstitialis*, Schin., Br. Meig. ?; form distinguishus, Verrill. Determined E. E. Austen. ? 16 x 30 mm. The larvae of Tabanidae live in damp sand and mud, or beneath rotting leaves. They feed on other insects, worms, etc.

Fig. 31. *Tabanus (Atrylotus) fulvus* Meig. ? 13 x 26 mm. Tawny Breeze fly. Fairly common on Essex coast, N. Devon, New Forest, and in Scotland.

Fig. 32. *Tabanus bovinus* Linn. ? 22 x 45 mm. Ox Gadfly, terrifying horses and cattle by its bite, and attacking pedestrians. A closely allied species, *T. sudorius* Zeller, the largest British gadfly, is more common and is often confused with *T. bovinus*. (Lyndhurst.)
Figs. 43, 44. *Chrysops ceciliius* Linn. ♀ 9 x 19 mm., ♂ 10 x 18 mm. Sometimes very numerous in woods near water in summer, biting viciously. The large eyes are golden green with spots of purple, and there are three ocelli. Larvae live in mud. The male is very rarely taken.

Figs. 45, 46. *Chrysops relictus* Meig. ♀ 10 x 19 mm., ♂ 10 x 18 mm. Not uncommon in damp meadows, occurs near Colchester.
ORTHORRHAPHA
Brachycera

Tabanidae

Fig. 47.

Chrysops caeculans Linn.
Chrysops quadrata Meig.
Chrysops relicta Meig.

The abdominal markings afford a ready means of distinguishing these three species.

ORTHORRHAPHHA
Brachycera

Figs. 49, 50. *Leptis scoIopacea* Linn. ♂ 11 × 22 mm. ♀ 12 × 22 mm. Met with on boles of trees, beside rivers and ditches, in early summer. Predatory on insects. Larvae live in earth or rotten trees, and are also predaceous, attacking earthworms and grubs.

Fig. 51. *Leptis tringaria* Linn. ♂ 10 × 21 mm. Local, in damp places, appears in July and August. (Great Horkesley.)

Fig. 52. *Atherix marginata* Fb. ♀ 7 × 18 mm. *Atherix Ibis*, which has paler legs, is found on alders near water occasionally in dense clusters, where the eggs are deposited on twigs under the dead bodies. The larvae fall into water beneath, and have a forked tail. Walker, Vol. 1, relates this; also Verrall quotes him. See Series 3. Figs. 42, 43. Typical Flies, for an illustration of this. *Atherix marginata* has black legs.
Figs. 53, 54. Dasypogoninae. *Leptogaster cylindrica* De Geer. ♂ 12 × 13 mm., ♀ 14 × 17 mm. Found by sweeping among grass and bushes, the adult clinging to grass stems.

Figs. 55, 56. Dasypogoninae. *Dioctria aequalis* Linn. ♂ 13 × 22 mm., ♀ 13 × 26 ½ mm. A predatory species which occurs in some numbers on leaves in May. It feeds on Ichneumonidae and other insects. The larvae inhabit moist earth.
Dasypogoninae *Dasypogon brevirostris* Meig.
♂ 8 x 16 mm., ♀ 10 x 20 mm. Generally scarce, prefers hilly and mountainous districts, and dry localities. Larva unknown. (Newbury.)

Laphrinae *Laphria flavus* Linn.
♂ 21 x 33 mm. According to Dr Sharp the larva feeds upon dead coleopterous larvae in tree trunks. The adult like all Asilidae is predaceous. (Aberdeen.)

Laphrinae *Laphria marginata* Linn.
♂ 11 x 17 mm., ♀ 11 x 21 mm. Not uncommon, local, in woods at rest on leaves. Predatory.
Fig. 62, 63. (Asilinae) _Asilus crabroniformis_ Linn. ♂ 22 x 38 mm., ♀ 26 x 38 mm. Clings to long grass on heaths, darting away in short flights if disturbed and soon settling again. Feeds on large insects, e.g. _Sarcophaga carnaria_. Has been called the "Wolf-fly." Not uncommon on Wareham Heath, Dorset.

Fig. 64. _A. crabroniformis_. ♀ with wings closed at rest. 26 mm.

Fig. 64 A. Habitat of _A. crabroniformis_, Wareham Road, Dorset.
Fig. 64 b. A favourite habitat of *A. crabroniformis*; sandy patches on heath, near Wareham, Dorset.

Figs. 65, 66. (Asilinae) *Philonicus albipes* Meig. ♂ 18 x 27 mm., ♀ 17 x 25 mm. Found on East Coast sands, July and August, also Southbourne, Bournemouth; a large local race at Yarmouth. Preys on flies, grasshoppers, etc. (St Osyth.)
ORTHORRHAPHA
Brachycera

Asilidae

Figs. 67, 68. (Asilinae) Neotimus cyanurus Loew. ♂ 12 x 23 mm., ♀ 13 x 22 mm. Rests on leaves in woods, preys on small butterflies and other insects.

Figs. 69, 70. (Asilinae) Machimus atricapillus F ju. ♂ 12 x 20 mm., ♀ 15 x 22 mm. Rests on leaves in open spaces in woods, darts on its victims, returning to rest to devour them.
Asilidae

Bombylidae

Figs. 71, 72. (Asilinae) *Plymaxus trigonus* Meig. ♂ 12 x 19 mm. ♀ 12 x 20.5 mm. Seen by Mr Harwood preying on *Lucilia*, at Clacton-on-Sea. (St Osyth.)

![Male Asilidae](image1)

![Female Asilidae](image2)

Fig. 74. *Bombylus discolor* Mik. ♂ 12 x 27 mm. Scarcer than the following; seen on primroses in woods, April and May. Larva parasitic on larvae and pupae of small bees such as *Andrena* and *Halictus*. (Colchester.)

![Male Bombylidae](image3)

![Female Bombylidae](image4)
Figs. 75, 76. *Bombilus major* Linn. ♂ 10 × 27 mm., ♀ 12 × 29 mm.
Found hovering over primroses and ground ivy, also *Salix*.
Larva lives in the nests of *Andrena* and other wild bees. Fairly common in early spring. (New Forest.)
ORTHORRHAPHA
Brachycera

Therevidae
Empidae

Fig. 77. Theressa nobilitata Fabr. ♂ 11 x 17 mm.
Frequently seen at rest on leaves of plants, and on dry roadways and paths, in June.
Sometimes predatory. The carnivorous larvae live in earth, decaying wood and cow dung, and devour other larvae.

Fig. 78. Theressa annulata Fabr. ♂ 10 x 18 mm.
Common from Cornwall to Sutherland on sand dunes, June to August; the male is commonest. (Clacton-on-Sea.)

Figs. 79, 80. Empinae Empis tessellata Fabr. ♂ 10 x 21 mm., ♂ 11 x 23 mm. Much attracted by may-blossom and umbelliferous plants: kills and devours many insects. Larvae live in earth, especially under dead leaves, and are carnivorous. Some species also live in decaying wood. (New Forest.)
Little is known of larval Dolichopodidae, some live in earth and rotten wood. Those of Medeterus feed on larvae and pupae of Tomicus, probably all are carnivorous. (Theobald.)
The larvae of Syrphidae mostly feed on aphides and scale insects. Effects include:

- *Syrphus noctiluca* Linn. ♀ 7 x 14 mm. On buttercups in May, soon over.

- *Orthoneura nobilis* Flm. ♂ 6 x 12 mm. Found in low-lying ditches on ranunculus and Umbelliferae. (Verrall.)

- *Chrysonomus splendens* Meig. ♂ 8 x 14 mm. Colchester.)
Fig. 88. *Syrphinae* Chilosis sparsa Loew. ♀ 10 x 18 mm. Frequents meadows and woods.

Fig. 89. *Syrphinae* Melanostoma mellicum Linn. ♂ 7 x 14 mm. Larvae found on Umbelliferae, eating aphides.

Figs. 90, 91. *Syrphinae* Leucozona incorum Linn. ♂ 11 x 22 mm., ♀ 10 x 22 mm. Fairly common on flowers in or near woods. (Silchester.)
Fig. 92. *Ischyrosyrphus glaucus* Linn. ♀ 11 x 24 mm. (Strathkelly.) Verra' mentions the broad whitish or bluish grey band base of abdomen.

Fig. 93. *Didia fasciata* Meg. ♂ 10 x 19 mm. (N. Kent.)

Figs. 94, 95. *Catalobota fyrastri* Linn. ♂ 15 x 25 mm., ♀ 14 x 25 mm. Very common on flowers, June to October. The leech-like larvae are valuable allies of the gardener, feeding as they do on aphides and scale insects. Seen in November, Bournemouth.
Fig. 96. *Syrphus ribesii* Linn. ♀ 11 x 21 mm. A common "hovering fly" in gardens and woods. The larvae feed upon plant lice, as do many Syrphid larvae and are most beneficial.

Fig. 97. *Syrphus nitidicollis* Meig. ♀ 11 x 21 mm. In glades of woods, apparently less common in gardens.

Fig. 98. *Syrphus bifaxiatus* Fabr. ♀ 11 x 22 mm. Common in gardens and under shrubs where sunshine penetrates.

Fig. 99. *Syrphus ballcatus* De Geer. ♀ 9 x 20 mm. A well-known hoverer, frequents sunny glades, the larva is a great devourer of aphides.
Fig. 100. *Sphaerophoria scripta* Linn. ♂ 11 × 15 mm. Generally distributed, the larvae feed on aphides as do those of most Syrphidae.

Fig. 101. *Xanthogramma ornatum* Meig. ♂ 10 × 20 mm. Not uncommon in June on leaves and flowers.

Fig. 102. *Baccha elongata* Fabr. ♀ 10 × 16 mm. Found in woods and fields in May, easily missed, on low herbage.

Fig. 103. *Ascia podagrica* Fabr. ♀ 6 × 10½ mm. (Colchester.)
Figs. 105, 106. Volucellinae) *Volucella bombylans* Linn. ♂ 15 × 31 mm., ♀ 15 × 30 mm. (Yellow form.) Partial to brambles and other flowers, June and July, a variable species. The larvae live in nests of bees, especially *B. lapidarius* and *B. derhamnella*, the flies having a red tail, in those of *B. hortorum* and *B. jonellus*, the flies having a white tail. (Theobald.)
Fig. 107. (Volucellinae) Volucella pellucens Linn. ♀ 16 x 32 mm. Seen on briar hedges, Bournemouth. The larva lives in bumble-bees' nests.

Fig. 108. (Eristalinae) Eristalis tenax Linn. ♂ 15 x 28 mm. The common "Drone-fly," hovering over flowers. The larva or "rat-tailed maggot" lives in foul pools and ditches.

Fig. 109. (Eristalinae) Eristalis arbustorum Linn. ♂ 10 x 12 mm. Found in gardens amongst flowers, and on banks.

Fig. 110. (Eristalinae) Helophilus pendulus Linn. ♂ 11 x 20 mm. The aquatic larvae are found in sunny pools and dykes.
Fig. 111. (Eristalinae) *Merodon equestris* Fabr. ♀ 13 x 24 mm. Resting in paths near beds of bulbs, narcissi, etc.; also near wild hyacinths in woods. The larvae live in bulbs, and are very injurious; their presence must be reported to the Board of Agriculture. (Colchester.)

Fig. 112. (Milesinae) *Tropidia nana* Harr. ♀ 8 x 14 mm. Grassy meadows and fenlands. (Verrall) (Arlesford.)

Fig. 113. (Milesinae) *Criorrhina ranunculi* Pz. ♀ 17 x 29 mm. Generally flies high up, occasionally settles on hawthorn. (New Forest.)

Fig. 114. (Milesinae) *Criorrhina oxyacanthae* Meig. ♀ 12 x 23 mm. At hawthorn, raspberry and other flowers in May. (Newbury.)
Fig. 115. (Milesinae) *Aylota lenta* Merg. ♀ 11 × 21 mm. Found alighting on various flowers.

Fig. 116. (Milesinae) *Eumerus strigatus* Flm. ♀ 65 × 12 mm. The larva attacks bulbs, and is often as harmful as Merodon in narcissi. Verrall says it has been bred from onions.

Fig. 117. (Milesinae) *Chrysichlamys caprea* Scopoli. ♀ 12 × 23 mm. Found chiefly in proximity of trees.
35 Syrphidae

Figs. 118, 119. (Milesinae) Stercomyia boratalis Flm. ♂ 16 x 30 mm., ♀ 16 x 29 mm. Verrall mentions the "singing" of the male fly. On commons, moors and heaths in the North, and on Dartmoor. (Inverurie and from Aberdeen.)

Fig. 120. Chrysotoxinae: Chrysotoxum cautum Harr. ♀ 14 x 28 mm. Wareham Heath. Walker says the larvae feed on roots of plants.
The larvae of all Conops are parasitic in larvae of wasps and bumble-bees, and emerge from the pupae as perfect insects. (New Forest.)

A rather late fly, appearing in August; parasitic on insects.
Fig. 125. Myopinae Myopa buccata Linn. ♀ 10 x 17 mm. Parasitic on insects, found about May on flowers.

Fig. 126. Oestridae Gastrophilus equi Fabr. ♂ 12 x 21 mm.

Fig. 127. ♀.

Fig. 127A. Micro-slide greatly enlarged.

Figs. 126, 127. Oestridae Gastrophilus equi Fabr. ♂ 12 x 21 mm. ♀ 24 x 27 mm. The well-known Horse Botfly. The young larvae are swallowed by the horse licking its legs, where the eggs (Fig. 127A) are placed. The larvae or bots live in the stomach. The egg measures 12 mm. (Gt Hor kesley.)
One of the two "Ox Warble flies," causing sores known as "warbles" by the presence of its larvae on backs and flanks of cattle. The eggs are laid on legs and larvae enter via skin and crawl to the back (Theobald). Man is also occasionally attacked. (New Forest.)

The "Sheep nostril fly," deposits eggs or larvae in nostrils of sheep. The maggots live in the nose, and penetrate the bony cavities of the skull.

(Specimen from Cambridge Museum.)
CYCLORRHAPHA

Proboscidea

Tachinidae

Sarcophagidae

Figs. 131, 132. Tachinidae) *Alophora hemiptera* Fabr. ♂ 12×23 mm., ♀ 9×17 mm. In fields on Umbelliferae at end of summer. Female has clear wings, male clouded and dark. (New Forest, near Matley Bog.)

Figs. 133, 134. (Sarcophagidae) *Sarcophaga carnaria* Linn. ♂ 14×25 mm., ♀ 11×23 mm. One of the commonest British “Flesh-flies.” Will lay its eggs on wounds.
Fig. 135. (Muscidae) *Stomoxys calcitrans* Linn. ♂ 7 x 16.5 mm. The common "Stable-fly" or "Storm-fly," biting in houses in summer and autumn. Carries disease. Larva lives in decaying vegetables.

Fig. 136. (Muscidae) *Haematobia irritans* Linn. ♀ 5 x 9 mm. Annoys horses and cattle. (Milford Haven.)

Figs. 137, 138. (Muscidae) *Musca domestica* Linn. ♂ 6.5 x 13 mm. ♀ 8 x 15 mm. Everywhere abundant in houses, carries typhoid and other disease germs. The larva lives in horse manure, spent hops and excrement.
Fig. 139. Muscidae *Calliphora vomitoria* Linn. ♀ 12 x 25 mm. One of the well-known “Blue bottle flies.”

Fig. 140. (Muscidae) *Lucilia serialata* Meig. ♂ 8 x 15 mm. The “Sheep maggot fly,” whose larvae burrow into the flesh of sheep, and cause the wool to fall off. One fly is said to produce 500 eggs.

Fig. 141. (Anthomyidae) *Spilogaster platyptera* Zitt. ♂ 7 x 15 mm. Said to be new to Britain. Bred from debris of hornets’ nest by Mr Harwood, Colchester.

Fig. 142. (Anthomyidae) *Hylomyia corticalis* Flm. ♂ 6 x 12 mm. The “Wheat bulb fly,” which lays eggs on young wheat, which the larvae destroy. (Theobald.) Specimen from Thames marshes.
Fig. 143. (Anthomyidae) *Anthomyia radicum* Linn. ♂ 5 × 11 mm. Larvae are very destructive to radishes, cabbage roots, etc. (Hythe.)

Fig. 144. (Anthomyidae) *Phorbia cepetorum* Meade. ♀ 7 × 13 mm. The "Onion fly." The larvae often do great harm to the onion crops all over the country, and are called the "Onion maggot."

Fig. 145. (Anthomyidae) *Pegomyia betae* Curtis. ♂ 5.5 × 12 mm. *Pegomyia hyoscyami* Panzer. The "Mangold fly," sometimes very injurious to mangold and beet crops. Lays eggs under the leaves of young plants, and the larvae tunnel into the leaves.

Fig. 146. (Homalomyinae) *Homalomyia cantalarii* Linn. ♂ 7 × 13 mm. The smallest of the common summer house-flies. Male more abundant than female.
Fig. 147. (Cordyluridae) *Scatophaga stercoraria* Linn. ♀ 7 x 17 mm. The well-known "Dung fly," laying its eggs in droppings of horses.

Figs. 148, 149. (Sciomyzidae) *Telenara punctulata* Scop. ♀ 5 x 11 mm. Frequents aquatic plants and Compositae. (Grantchester.)
Fig. 150. Ortalidae *Platystoma seminatun* Fabr.
♀ 5 x 12 mm. (Colchester.)

Fig. 151. (Trypetidae) *Aclidia heraclei* Linn.
♀ 4 x 11 mm. The well-known "Celery fly." The larvæ tunnel in celery and parsnip leaves, forming blisters.

Fig. 152. (Chloropidae) *Chlorops lacunipus* Meig. 5 x 8 mm. The "Gout fly," Destructive to barley.
Fig. 153. *Hippobosca equina* Linn. \(\frac{3}{4} \times 16 \) mm. The "Forest fly," crawling on horses, in the New Forest especially, and terrifying them. The female produces her young matured as a "puparium." (New Forest.)

Fig. 154. *Ornithomyia avicularia* Linn. \(\frac{5}{4} \times 15 \) mm. Parasitic on fowls, thrushes, blackbirds, etc. (Bourne-mouth.)

Fig. 155. *Melophagus ovinus* Linn. 6 mm. Known as the "Ked," or "Spider fly," greatly irritating sheep. The larva is hatched in the body of the fly (which is apterous) and changes to the pupal state at once.
INDEX

The references are to the Figures

Acridia levaederi 151
Aedes annulipes 17
Alophora hemiptera 131, 132
Anopheles bifurcatus 14
Anopheles maculipennis 15, 15 A, 15 B, 15 C
Anthonya radicum 143
Asca podagrana 103
Asilus crabroniformis 62, 63, 64
Asilus, habitat of 64 A, 64 B
Athecia marginata 52
Baccha elongata 102
Bibio hortulanus 10
Bibio marci 8, 9
Bombylus discolor 74
Bombylus major 75, 76
Calliphora vomitoria 139
Catabomba pyrastri 94, 95
Cecidomyia destructor 5
Chilosia sparsa 88
Chironomus rufipes 12, 13
Chloromyia formosa 33
Chlorops taenioptus 132
Chrysochlamys cuprea 117
Chrysogaster splendidus 87
Chrysonotus bipunctatus 30
Chrysops caccidentis 43, 44, 47
Chrysops quadrata 47
Chrysops relictus 45, 46, 47
Chrysops sepulcralis 48
Chrysotoxum cautum 120
Conops flavipes 121
Criorrhina oxyacanthae 114
Criorrhina ramunculi 113
Culex pipiens 18, 18 A, 18 B
Didea fasciata 93
Diplophus ferrilis 7
Dioctria oelandica 55, 56
Dolichopus atratus 81
Dysmachus trigonius 71, 72
Empis tessellata 79, 80
Eristalis arbustorum 109
Eristalis tenax 108
Eumenes strigatus 116
Gastrophilus equi 126, 127, 127 A
Haematobia irritans 136
Haematopota crassicornis 37
Haematopota, habitat of 36 A
Haematopota italicca 38
Haematopota pluvialis 34, 35, 36
Helophilus pendulus 110
Hippobosca equina 153
Homalomyia canicularis 146
Hylenia coarctata 142
Hypoderma bovis 129
Hypoderma lineatum 128
Hystrichopsylla talpae 2
Ischyrosyrphus glaucus 92
Isopogon brevirostris 57, 58
Laphria flava 39
Laphria marginata 60, 61
Leucozona lucorum 90, 91
Leptis scolopacca 49, 50
Leptis tringaria 51
Leptogaster cylindrica 53, 54
Linnobia alalis 20
Lucilia sericata 140
Machimus arvicapillus 69, 70
Mekanostoma mellinum 89
Melophagus ovinus 153
Merodon equestris 111
Musca domestica 137, 138
Myopa buccata 125
Nematonus cyanurus 67, 68
Oestrus ovis 130
Ornithomyia avicularia 154
Orthoneura nobilis 86
Oxycera palchella 28
Pachyrhina maculosa 22
Pedicia rivosa 21
Pegomyia beta 145
Phorbia cepetorum 144
Physodephala rufipes 122
Pipiza noctiluca 83
Platopsyca modesta 84
Platystoma seminatins 150
Poecilobothrus nobilitatus 82
Pychoptera albimana 19
Pulex irritans 1
Rhingia campestris 104
Rhyphus fenestralis 27
Sarcophaga carnaria 133, 134
Sargus cuparius 32
Sargus flavipes 31
Scatophaga stercoraria 147
Screlus notatus 83
Sciara thomae 6
Sericomyia borealis 118, 119
Sicus ferrugineus 123, 124
Simulium cinereum 11
Sphaerophoria scripta 100
Spilgoaster platypetra 141
Stomoxys calcitrans 135
Stratiomyus furcata 29
Syrphus balteatus 99
Syrphus bifasciatus 98
Syrphus nitidicollis 97
Syrphus ribesii 96
Tabanus bovinus 42
Tabanus fulcatus 41
Tabanus latistriatus 40
Tabanus solstitialis 39
Tetanocera punctulata 148, 149
Theobaldia annulata 16, 16 A
Thereva annulata 78
Thereva nobilitata 77
Thyridanthrax (Anthrax) fenestralis 73
Tipula gigantea 24
Tipula oleracea 25, 26
Tipula vernals 23
Trichopsylla styx 3
Tropidia scita 112
Typhlopsylla gracilis 4
Volucella bombylans 105, 106
Volucella pellucens 107
Xanthogramma ornatum 101
Xylota lenta 115
Typical flies
Typical flies;